Roll No.					

B.E. / B.Tech. (Part Time) DEGREE ARREAR EXAMINATIONS, NOV / DEC 2013

CIVIL ENGINEERING

VII Semester

PTCE 9306 Hydrology and Water Resources Engineering

(Regulation 2009)

Time: 3 Hours

Answer ALL Questions

Max. Marks 100

PART- A (10 x 2 = 20 Marks)

- 1. List the different forms of water concerning the study of hydrology.
- 2. Differentiate between convective and cyclonic precipitation.
- 3. State the effect of slope of a drainage basin on runoff.
- 4. What are the assumptions made for the unit hydrograph?
- 5. Give a brief about flood zoning.
- 6. State any two methods of assessing drought.
- 7. Differentiate between confined and unconfined aquifers.
- 8. Write Theis equation and give its application.
- 9. Define trap efficiency.
- 10. Compare and contrast a gravity dam with an arch dam.

Part - B (5 x 16 = 80 marks)

- 11. (i) A fully penetrating well having a diameter 30 cm draws water from a confined aquifer of permeability 10⁻³m/s and thickness of 15m. If steady state discharge is found to be 1/30 m³/s, compute the drawdown at points 15m and 45m from the centre of the well. Radius of influence is 1000m. (8)
 - (ii) Explain the GEC norms of groundwater estimation.

(8)

- 12. a) (i) Describe how the Lysimeter is used to determine the evapotranspiration from a cultivated land. (8)
 - (ii) Discuss on the factors affecting evaporation.

(8)

(OR)

b) (i) The data pertaining to a rainfall intensity graph given below shows a 60 minute rain that fell in a catchment of 1500 ha. The average infiltration capacity of the catchment was found to be 1.5 cm/hr during the entire period of the rain. Find the maximum runoff rate if the peak percentage

(8)

Time (minutes)	10	20	30	40	50	60
Rainfall Intensity (cm/hr)	2.0	4.0	5.3	3.5	3.5	1.7

- (ii) Describe the procedure of using a double ring inflitrometer for getting an infiltration capacity curve. (8)
- 13. a) (i) Elaborate on the SCS method of establishing the rainfall-runoff relationship. (8)
 - (ii) The ordinates at hourly interval for a one-hour unit hydrograph corresponding to 1 cm effective rainfall of one hour duration are given below. Compute the total runoff hydrograph resulting from a 2 hour storm rainfall with effective rainfall in the first hour of 2 cm and in the second hour of 1 cm, assuming a constant base flow of 20 cumecs. (8)

Time (hr)	0	1	2	3	4	5	6	7	8	9	10	11	12
UHO (m³/s)	0	660	1140	840	590	390	240	150	90	50	25	10	0

(OR)

b) Compute the stream flow from the data given below.

(16)

Distar	ce (m)	0	0.6	1.2	1.8	2.4	3.0	3.6	4.2	4.8	5.14
Depth	(m)	0	0.3	1.29	2.16	2.55	2.22	1.68	1.41	1.05	0.63
Veloc ty (m/s)	0.2d	0	1.42	0.57	0.78	0.87	0.81	0.75	0.69	0.63	0.54
(1111/3)	0.8d	0	0.21	0.36	0.54	0.60	0.30	0.51	0.45	0.39	0.33

14. a) Draw the classification tree of reservoirs and explain them bringing out their advantages and disadvantages. (16)

(OR)

b) (i) Explain with a neat sketch the zones of a reservoir.

(8)

(ii) Elaborate on reservoir sedimentation.

(8)

- 15. a) Explain the different methods available for the estimation of the flood. (16) (OR)
 - b) Write short notes on
 - (i) Inter-Basin transfer of rivers

(8)

(ii) Rain water harvesting method for urban areas.

(8)