Name :	Urean
Roll No. :	An Annual With Some light and Excellent
Invigilator's Signature :	

CS/B.TECH(CSE)(N)/SEM-5/CS-503/2012-13

2012

DISCRETE MATHEMATICS

Time Allotted : 3 Hours

Full Marks: 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

GROUP – A

(Multiple Choice Type Questions)

- 1. Choose the correct alternatives for the following : $10 \times 1 = 10$
 - i) What is the chromatic number of the following graph with 7 vertices ?

c) 4 d) 3.

5202(N)

[Turn over

- ii) If there are n^r arrangements of r objects and n bins, then
 - a) the objects and bins are all distinguishable
 - b) the objects are distinguishable and bins are indistinguishable
 - c) the objects are indistinguishable and bins are distinguishable
 - d) the objects and bins are indistinguishable.
- iii) Consider the set A of all integers greater than 1. Let D be a relation defined on A by (x,y) εD iff x divides y.Then which of the following is true ?
 - a) *D* is both a lattice and a partial ordering
 - b) *D* is a lattice but not a partial ordering
 - c) *D* is neither a lattice nor a partial ordering
 - d) *D* is a partial ordering but not a lattice.
- iv) If 12 distinct points are placed on the circumference of a circle and all the chords connecting these points are drawn, at how many points do the chords intersect ? Assume that no three chords intersect at the same point.
 - a) C(12, 2) b) C(12, 4)
 - c) 2^{12} d) 12! / 2.

5202(N)

- v) The set of natural numbers N with the relation ship '|'
 (divides) is a poset. How many minimal and maximal elements does it have ?
 - a) 1 minimal and 1 maximal
 - b) 1 minimal and 0 maximal
 - c) 1 minimal and more than 1 maximal
 - d) 0 minimal and 0 maximal.
- vi) What is the result of $(-3)X_85 +_8(-3)X_8(-5)$ in $[Z_8, +_8, X_8]$, where Z_8 is the set of integers modulo 8, $+_8$ is the modulo 8 addition operation and X_8 is the modulo 8 multiplication operation ?
 - a) 0
 b) 7
 c) 8
 d) 2.
- vii) How many ways are there to travel in *xyz* space from the origin (0, 0, 0) to the point (4, 3, 5) by taking unit steps in positive *x*, *y*, *z* directions only ?
 - a) 4!.3!.5!
 - b) 60
 - c) 12!/(5!4!3!)
 - d) 3^{12} .
- viii) $A \wedge B$ is equivalent to which of the following ?

a)	$\neg A \rightarrow \neg B$	b)	$\neg A \rightarrow B$
c)	$\neg B \rightarrow A$	d)	$\neg (A \rightarrow \neg B).$

5202(N)

[Turn over

CS/B.TECH(CSE)(N)/SEM-5/CS-503/2012-13

ix) A sequence d = (d₁, d₂, d₃,..., d_n) is graphic if there is a simple undirected graph with degree sequence d. Which of the following degree sequences are graphic ? Why ?
 P: (2, 3, 3, 4, 4, 5)

Q:(2, 3, 4, 4, 5)

- a) Neither P or Q b) Both P and Q
- c) *P* only d) *Q* only.
- x) A complemented, distributive lattice is also called a Boolean Algebra. Consider a set $S = \{a, b, c\}$ and let $M = \wp(S)$ be the power set of S. Consider the inclusion (subset) relation ' \subseteq '. Then (M, \subseteq) is
 - a) not a partial ordering
 - b) a partial ordering but not a lattice
 - c) a lattice but not a boolean algebra
 - d) a boolean algebra.

GROUP – B

(Short Answer Type Questions)

Answer any *three* of the following $3 \times 5 = 15$

C₉ is a cycle (*i.e.*, a circular chain) with the nine vertices
 a, b, c, d, e, f, g, h, i. How many distinct maximal matchings of size four in C₉ contain the edge ab ?

5202(N)

- 3. Consider K_6 , the complete graph on the six vertices a, b, c, d, e, f. The graph G_1 is obtained from K_6 by deleting the edge ab. The graph G_2 is obtained from G_1 by deleting the edge cd. What are the chromatic numbers of G_1 and G_2 ?
- 4. A new flag is to be designed with 6 vertical stripes using4 colours. In how many ways can this be done so that no2 adjacent stripes have the same colour ?
- 5. Give the sequence whose generating function is $g(z) = 5(z^5 1)/(z 1)$.
- 6. Consider the poset S = {2,4,6,9,12,18,27,36,48,60,72} under the relation '|' (i.e. 'divides'). Find the following : Maximum element, Minimal element, Greatest element, Least element, lub (2, 9), glb (60, 72).

GROUP – C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 7. a) Show that s is a valid conclusion from the premises $p \rightarrow \neg q, q \lor r, \neg s \rightarrow p$.
 - b) How many 10 bit binary strings are there none of which contains the patters '110' ?
 - c) Use theory of congruence to prove that for $n \ge 1$, 17 | ($2^{3n+1} + 3 \cdot 5^{2n+1}$). 5 + 5 + 5

5202(N)

CS/B.TECH(CSE)(N)/SEM-5/CS-503/2012-13

- 8. a) Show that t is a valid conclusion from the premises $p \Rightarrow q, q \Rightarrow r, r \Rightarrow s$ and $p \lor t$.
 - b) For any integer *n*, prove that the integer 8n+3 and 5n+2 are relatively prime. Hence find integers *x*, *y* such that $(8n+3x)+(5n+2) = \gcd(8n+3,5n+2)$.
 - c) Define CRS (mode m) (complete residue system modulo m). Find all CRS (mod 5). 5+5+5
- 9. a) Solve the recurrence relation :

 $a_{n+2} - 4a_{n+1} + 4a_{n-2} = (r+1)2^r$

- b) Show that every bipartite graph is 2-chromatic.
- c) A positive integer *n* is expressed in the form 10b + b. Prove that *n* is divisible by 17 if a - 5b is divisible by 17. 3 + 5 + 7
- 10. a) Show that the poset given in the following Hasse diagram is a lattice. Is it distributive and complemented ? Justify your answer.

b) Show that in a complemented distributive lattice $< L, \land, \lor >$

i)
$$(a \wedge b)' = a' \vee b'$$

ii)
$$(a \lor b)' = a' \land b'$$

5202(N)

c) Solve the following recurrence relation using generating function :

 $a_n = 4(a_{n-1} - a_{n-2}) + 2^n (n \ge 2); a_0 = 1, a_1 = 4.$ 6 + 4 + 5

11. a) Check the validity of the following arguments :

"If my program runs successfully then I will submit my project. I can appear the examination only if I submit my project. Either my program runs successfully or the computer crashes then I can not appear in examination."

- b) Define SDR of a family of finite sets. What is Hall's Marriage Condition ? Consider the family of finite sets $S = \{A_1, A_2, A_3, A_4\}$ where $A_1 = \{a, b, d, e\}$, $A_2 = \{b, c, d, e, f\}$, $A_3 = \{c, f\}$ and $A_4 = \{b, c, f\}$. Show whether S satisfies the marriage condition. If yes, find two valid SDR of S.
- c) Write down the truth table for conditional and bi-conditional proposition. 5+5+5

=============

5202(N)

[Turn over