Name :
Roll No. :

Invigilator's Signature : \qquad

CS / BBA(H), BIRM, BSCM / SEM-2 / BBA-203 / 2011 2011

STATISTICS - II

Time Allotted: 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any ten of the following :

$$
10 \times 1=10
$$

i) What is the probability that a leap year will contain 53 Sundays?
a) $\frac{1}{7}$
b) $\frac{2}{7}$
c) $\frac{5}{7}$
d) None of these.
ii) If 3 dice are thrown simultaneously, the total number of possible outcomes are
a) 18
b) 216
c) 36
d) none of these.

CS / BBA(H), BIRM, BSCM / SEM-2 / BBA-203 / 2011
iii) The expectation of the distribution

$$
x:
$$

1
2
3

$P(x): \quad 0 \cdot 2$
$0 \cdot 1$
$0 \cdot 2$
$0 \cdot 3$
$0 \cdot 1$ is given by
a) 3
b) 2
c) $2 \cdot 5$
d) none of these.
iv) Which of the following statements is false ?
a) $\quad P(A \cap B)=P(A) P(B / A)$
b) $\quad P(A \cup B)=P(A)+P(B)-P(A \cap B)$
c) $\quad P(A \cap B)=P(A) P(B)$
d) $\quad P\left(A^{C}\right)=1-P(A)$.
v) Let $x \sim N\left(10,5^{2}\right)$, then $E(2 x+3)$ is equal to
a) 13
b) 10
c) 23
d) none of these.
vi) Let $X \sim N\left(10,5^{2}\right)$ then $E(2 X+3)$ is equal to
a) $\frac{5}{4}$
b) $\frac{5}{2}$
c) 5
d) none of these.

vii) Type-II error of testing a hypothesis reflects
a) rejecting a true null hypothesis

b) accepting a false alternative hypothesis
c) accepting a false null hypothesis
d) none of these.
viii) The p.d.f. of a continuous distribution is as follows :
$f(x)=2 e-k x, 0<x<\infty$
then the value of k is
a) 0
b) 2
c) 1
d) none of these.
ix) The frequency distribution of 100 observations are as follows :

| $x:$ | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| frequency : | 20 | 10 | k | 45 | 7 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

The value of k is
a) 16
b) 10
c) 18
d) none of these.
x) The mean of uniform distribution
$f(x)=k, a \leq x \leq b$ is
a) 0
b) $(b-a) / 2$
c) 1
d) $\frac{a+b}{2}$.
 same?

a) Normal
b) Binomial
c) Poisson
d) None of these.
xii) A binomial distribution with parameters n and p may be approximated by a Poisson distribution provided
a) n is small and p is large
b) $\quad n$ is large and p is small
c) n is large and p is large
d) $\quad n$ is small and p is small.
xiii) Critical region is a region of
a) acceptance of null hypothesis
b) rejection of null hypothesis
c) indecision
d) none of these.
xiv) Which of the following is the 'non-parametric' test?
a) χ^{2}-test
b) t-test
c) z-test
d) None of these.
GROUP - B
(Short Answer Type Questions)
Answer any three of the following. $3 \times 5=15$
2. A random variable X follows Poisson distribution such that $P(X=1)=P(X=2)$.

Find the mean and variance of the distribution.

3. A random variable X has the following probability distribution:

X	0	1	2	3	4	5	6	7	8
$P(X)$	k	$3 k$	$5 k$	$7 k$	$9 k$	$11 k$	$13 k$	$15 k$	$17 k$

i) Find the value of k
ii) Find $P(X<3)$ and $P(0<X<4)$.
4. Write short notes on the following :
a) Simple random sampling
b) Chi-square test.
5. What are the properties of good estimator ? For $N\left(\mu, \sigma^{2}\right)$ distribution what is the unbiased estimator of μ ?
6. A random sample of the height of 100 students from a large population of students is drawn. The average height of the students in the sample is 5.6 feet while S.D. is 0.75 feet. Find 95% confidence limits for the average height of all the students in the population.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $\quad 3 \times 15=45$
7. a) State and prove Baye's theorem.
b) There are two identical boxes. First box contains 3 white balls, 7 red balls and 5 green balls. Second box contains 5 white balls, 3 red balls and 10 green balls. One box is chosen at random and a ball is drawn from it and it is found to be green. What is the probability that the ball is drawn from first box ?
8. a) Define with an example, a continuous random wariable.
b) Joint probability mass function of two random variables X and Y is given below :

X	1	2	3	Total
1	$2 / 21$	$3 / 21$	$4 / 21$	$9 / 21$
2	$1 / 21$	$2 / 21$	$1 / 21$	$4 / 21$
3	$3 / 21$	$4 / 21$	$1 / 21$	$8 / 21$
Total	$6 / 21$	$9 / 21$	$6 / 21$	1

i) Write the marginal distribution function X.
ii) Find the covariance between X and Y.
c) If X is a random variable, then prove that $V(a x+b)=a^{2} V(X)$.
$4+8+3$
9. a) The average number of misprints per page of a book is 2. What is the probability that a particular page is free from misprint ? If the book contains 1000 pages, how many of them contain more than 2 misprints ?
b) Use Neyman-Pearson Lemma to obtain the best critical region for testing $H_{0}: \theta=\theta_{0}$ against $H_{1}: \theta>\theta_{0}$, in case of a normal population $N\left(\theta, \sigma^{2}\right)$, where σ^{2} is known.

$$
7+8
$$

10. a) What are the properties of MLE ?
b) Show that the sample mean based on a sample random sample with replacement (SRSWR) is an unbiased estimator of the population mean.
c) Obtain the maximum likelihood estimate (MLE) of the parameter of a Poisson distribution.

$$
4+5+6
$$

11．a）What is Analysis of Variance ？
b）Describe its usefulness in test of significance．vominn
c）Prepare ANOVA table for the following one way classified data and comment．

Weight of balls（gm）

	Machine 1	Machine 2	Machine 3
$2 \cdot 0$	$1 \cdot 8$	3.0	
2.2	2.2	2.8	
TOTAL	5.9	$2 \cdot 0$	3.2

（ Given $F_{0.05}=5 \cdot 14$ for（2，6）d．f．） $3+3+9$

