

CS/B.TECH(IT)/SEM-7/IT-703E/2012-13 2012
 INFORMATION THEORY AND CODING

Time Allotted : 3 Hours

Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for the following : $5 \times 2=10$
i) The minimum and maximum values of source entropy of a source X having m number of symbols are
a) 0 and $\log _{2} m$
b) 1 and $\frac{1}{m}$
c) 0 and m
d) $\quad \log _{2} m$ and 0 .
ii) The source entropy for a binary source X generating independent symbols 0 and 1 with equal probabilities is
a) 2 bits / symbol
b) $1 \mathrm{bit} /$ symbol
c) 4 bits / symbol
d) none of these.
iii) Golay code is a
a) BCH code
b) Linear code
c) Convolutional code
d) Cyclic code.
iv) The coset leader of the code $C=\{0000,1011,1110$) is
a) 0010
b) 1001
c) 1100
d) 0111 .
v) Two linear q-array codes are called equivalent if one can be obtained from the other by one or both of the operations listed below

(i) Multiplication of the components by a non-zero scalar
(ii) Permutation of the position of the codeword.
a) only (i)
b) only (ii)
c) both (i) and (ii)
d) none of these.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following. $3 \times 5=15$
2. What is mutual information for the events X and Y ? When does mutual information become self information?
3. State and explain in brief source coding theorem.
4. Discuss the Huffman coding procedure for constructing binary optimal.
5. Explain a channel model in brief. What is Binary symmetric Channel?
6. What are the necessary condition for a code C to be cyclic ? Give an example.

GROUP - C
(Long Answer Type Questions)
Answer any three of the following. $\quad 3 \times 15=45$
7. a) State and prove Shannon's Channel Capacity theorem.
b) Find amount of information produced by each source with probability x, y, z with probability $\frac{1}{5}, \frac{1}{2}$ and $\frac{1}{3}$.
c) A discrete memory less source has an alphabet of five symbols with there are given by, $[X]=[X 1, X 2, X 3, X 4, X 5]$ $[P]=[0 \cdot 45,0 \cdot 15,0 \cdot 15,0 \cdot 10,0 \cdot 15]$

Compute entropy and second order extension for the symbol. Find the amount of information gained by observing the source.
8. a) Explain the following :
(i) Singleton Bound
(ii) Nearest neighbourhood Decoding
(iii) Syndrome
(iv) Hamming code
(v) Code Rate.
b) Show that $C=\{0000,1100,0011,1111\}$ is a linear code. What is its minimum distance ?
c) Find an expression for the probability of decoding error in block code with transition probability p. Hence calculate its value for a $(6,3)$ code given that the weight distribution of its coset leaders is
$\alpha_{0}=1, \alpha_{1}=6, \alpha_{2}=3, \alpha_{3}=5, \alpha_{4}=\alpha_{5}=\alpha_{6}=0$
9. a) Find the generator matrix of the given (3, 2, 1) convolutional encoder. Find the codeword for the inputs $u(1)=(110)$ and $u(2)=(011)$

b) Find the state table, state diagram, code tree and trellis diagram of the following convolutional encoder.

10. Write short notes on the following :
a) Generation of a BCH code
b) Decoding of a BCH code
c) Error detecting and correcting capabilities of a block code.

