Roll No

BE-102

B.E. I & II Semester

Examination, June 2016

Engineering Mathematics - I

Time: Three Hours

Maximum Marks: 70

- **Note:** i) Answer five questions. In each question part A, B, C is compulsory and D part has internal choice.
 - ii) All parts of each question are to be attempted at one place.
 - iii) All questions carry equal marks, out of which part A and B (Max. 50 words) carry 2 marks, part C (Max. 100 words) carry 3 marks, part D (Max. 400 words) carry 7 marks.
 - iv) Except numericals, Derivation, Design and Drawing etc.
- 1. a) Define radius of curvature and centre of curvature.
 - b) If $u = x^3 + y^3 + 3xy$, then find $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$.
 - c) Find the first three terms in the expansion of log(1+ tanx) by Maclaurin's theorem.
 - d) Discuss the maxima or minima value of $u = f(x) = x^3 y^2 7x^2 + 4y + 15x 13.$

OR

If
$$u = \sec^{-1}\left(\frac{x^2 + y^2}{x - y}\right)$$
. Find the value of

$$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}}.$$

- 2. a) Define Gamma and Beta function.
 - b) Evaluate $\int_{1}^{2} x dx$, as the limit of a sum.
 - c) Evaluate the integral $\iiint xyz \, dz \, dy \, dx$, Over the volume enclosed by three co-ordinates planes and the plane x+y+z=1.
 - d) Prove that $\lceil (m) \rceil \lceil (m + \frac{1}{2}) \rceil = \frac{\sqrt{\pi}}{2^{2m-1}} \lceil (2m) \rceil$.

Change the order of integration

$$\int_0^4 \int_{x^2/4}^{2\sqrt{x}} dy \, dx.$$

- 3. a) Define linear and non-linear ordinary differential equation.
 - b) Solve $(x^3 + 3xy^2)dx + (3x^2y + y^3)dy = 0$.
 - c) Solve $y = 2px + y^2p^3$.
 - d) Solve $\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 6y = e^{-2x}\sin 2x$.

OR

Solve
$$\frac{dx}{dt} + y = \sin t$$

and
$$\frac{dy}{dt} + x = \cos t$$
.

- 4. a) Define rank of a matrix.
 - b) Find the rank of a matrix $A = \begin{bmatrix} 1 & 2 & 3 & 2 \\ 2 & 3 & 5 & 1 \\ 1 & 3 & 4 & 5 \end{bmatrix}$
 - c) Examine for consistency, the following equations:

$$5x+3y+14z = 4$$
,
 $y+2z = 1$,
 $x-y+2z = 0$,
 $2x+y+6z = 2$

d) Find Eigen values and Eigen vectors of the following

matrix
$$A = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$$

OR

Verify Cayley-Hamilton theorem for the following

matrix
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$$
. Also find A^{-1} .

- 5. a) Define simple graph and tree.
 - b) Explain elementary concept of fuzzy logic.
 - c) For a Boolean algebra B, prove that $(x \cdot y' + y \cdot z) \cdot (x \cdot z + y \cdot z') = x \cdot z$

d) Draw the switching circuit of the following Boolean function and simplified it.

$$f(x, y, z) = x \cdot y \cdot z + x \cdot y' \cdot z + x' \cdot y' \cdot z$$

Or

For Boolean algebra B, prove that

- i) $(a+b)'=a'\cdot b'$, $\forall a,b \in B$
- ii) $(a \cdot b)' = a' + b'$, $\forall a, b \in B$
