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Chapter 1 : Basic Concepts and Finite Automata 

Write note on Chomsky Hierarchy. 

MU - Dec. 2009, Dec. 2012, May 2013, May 2014, 

Dec. 2014, May 2015, Dec. 2016, 

May 2017, Dec. 2017 

Q.1 

Ans. : Chomsky Hlerarchy 

A grammar can be classified on the basis of production rules. 

Chomsky classified grammars into the following types : 

1. Type 3: Regular grammar — 

2. . Type 2: Context free grammar 

3. Type 1: Context sensitive grammar 

4. Type 0: Unrestricted grammar. 

1. Type3 or Regular Grammar : 

A grammar is called Type 3 or regular grammar if all its 

productions are of the following forms : 

“AE 

A-a 

A — 2B 

A — Ba 

Where,ae DandA,Be V. 

A language ‘generated by Type 3 grammar is known, as 

regular language. 

2. Type2or Context Free Grammar 

A grammar is called Type 2 or context free grammar if all its 

productions are of the following form A => a where A € V and 

ae (VUT)*. 

V is a set of variables and T is a set of terminals. 

The language generated by a Type 2 grammar is called a 

context free language, a regular language but not the reverse. 

3. Type 1 or Context Sensitive Grammar 

A grammar is called a Type 1 or context sensitive grammar if 

all its productions are of the following form. 

a > 6 

Where, p is atleast as long as o.. 

4. TypeOor Unrestricted Grammar 

Productions can be written without any restriction in a 

unrestricted grammar. If there is production of the a — f, then 

length of «could be more than length of B. 

Every grammar also is a Type 0 grammar. 

A Type 2 grammar is also a Type 1 grammar 

A Type 3 grammar is also a Type 2 grammar. 

Q.2 State applications of Finite Automata in brief. 

Ans. : 

Applications of Finite Automata 

Finite automata are used for solving several common types of 

computer algorithms. Some of them are : 

Gi) Design of digital circuit 

(ii) String matching 

(iii) Communication protocols for information exchange. 

(iv) Lexical analysis phase of a compiler. 

Finite. automata can work as an algorithm for regular 

Janguage. It can be used for checking whether a string we L, where 

Lis a regular language. 
  

Qa.3 What I is Finite Automata? 

Ans. : 

Finite Automata 

Finite automata are also called a finite state machine. 

A finite state machine is a mathematical model for actual 

physical process. By considering the possible inputs on which 

these machines. can work, one can analyse their strengths and 

weaknesses. : 

Finite automata are used for solving several common types of 

computer algorithms. Some of them are : : 

1. Design of digital circuits. 

2. String matching. 

3. Communication protocols for information exchange. 

4 Lexical analyser of a typical compiler. 
  

  Q. 4 * Define the term : Unrestricted grammar 

. 
Ans. : 

Unrestricted grammar 

Productions can be written without any restriction in a 

unrestricted grammar. If there is production of the & — B, then 

length of c could be more than length of B. 

Every grammar also is a Type 0 grammar. 

A Type 2 grammar is also a Type 1 grammar 

A Type 3 grammar is also a Type 2 grammar. 
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in a mealy machine is associated with: - 
Q.1 Write short note on Mealy machine. An arc from state 4, 

Ans. : ‘ 1, Input alphabet € 2 

Mealy Machine 2. Anoutput alphabet € O. 

, An arc marked as ‘a/0’ in Fig. 2.1 implies that : 
Input ; : 7 

ao Output 1. ais in inpu 

2. °Ois an output. 

State transition behavior and output behavior of a miealy 

machine can be shown separately as in Fig. 2.2 and 2.3; or they can 

be combined together as in Fig. 2.4. ‘ 

  

- Formal Definition of a Mealy Machine 

A mealy machine M is defined as : 

M = {Q,2,0,5,A, q9) 

Ne Shen StstesBoprannolia Disshyanachie Where, Q = A finite set of states. 

State transition function (8) (or STF) : = = A finite set of input alphabet 

O = A finite set of output alphabet 

6 = A transition function £xQ—>Q 

2X = Anoutput function 2xQ—>O 

M do € Q is an initial state. 

  

  

Q.2 Distinguish between NFA and DFA. 

transition function for Mealy machine of as Fig. 2.2 : State as . on Mealy maciane o ULE Lament ney ee 
May-2015, May 2016. May 2017. Dec. 2017 

  

  

  

  

  

  

       
  

  

          
  

_ Output function (2) (or MAF) : Ans. : 

Difference between NFA and DFA 

Transition Non-deterministic. Deterministic 

No. of} NFA has fewer | More, if NFA 
. . states. number of states. contains Q states then 

Fig. 2.3 : Output function for mealy machine of Fig. 2.1 the corresponding 
. : DFA will have < 2° 

State table for both 6 and A (both STF and MAF) : states 

Power NFA is as powerful as ‘DFA. is as powerful 
q,/0 a DFA as an NFA 
q,/0 Design Easy to design due to |: Relatively, more | 
q/0 non-determinism. difficult to design as 
ayo . . transitions ‘are |~ 

deterministic. : 
Output Acceptance | It is difficult to find | It is easy to find 

Next state Whether w € L as there | whether w € L as- 

Fig. 2.4 : State table depicting both transition and output fe ‘ — Paths. transitions . are 
vior of mealy machine of Fig, 2.1 ng is | deterministic. beha' y 

required to explore 
several parallel paths, 
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Q.3 Define DFA. 

Ans. : 

Definition of DFA 

A deterministic finite automata is a quintuple. 

M = (Q,2,5,4q,, F), where 

Qisaset of states, 

Lis a set of alphabet. 

qy © Qis the initial state, 

F ¢ Qis the set of final states, and 6, the transition function, 
is a function from Q x ¥ to Q. 
  

Q.4 Obtain a grammar to generate the language 
L={0"1"1n20)}. Coen 

Ans. : 

Productions for the required language are as follows. 

P = {S—>0Si1 le} 

CFG for the above language is ({S}, {0, 1}, P, S) _ 
  

Q.5 Give deterministic finite automata accepting the 

following languages over the alphabet {0, 1} 

(a) Number of 1’s is even and number of 0’s Is 

even. 

(b) Number of 1’s is odd and number of 0’s is 

odd. Tazo 
Ans. : 

(a) - Number of 1’s is even and number of 0’s is even. 

At any instance of time, we will have following cases for 

number of 0’s and number of 1’s seen by the machine. ° 

  

  

      

Even Even co 

Even Odd qr 

Odd Even q 

Odd Odd 4, 
  

An input 0 in state q,, will make number of 0’s odd. 

5 (qd, 0) = 4, 

An input | in state q,, will make number of 1’s odd. 

5 (dy 1) > 49, 

An input 0 in state q,, will make number of 0's odd. 

5 (q,,0) > 4, 

An input | in state q,, will make number of 1’s even, 

§q) 1) > % 

An input 0 in state q,, will make number of 0's even, 

5 (q,, 0) = qd 

Teasy-sorutions 
  

An input 1 in state q,, will make number of 1’s odd. 

8@,1)>4, 
An input 0 in state q,, will make number of 0’s even. 

§ (q,,0) > q, 

An input 1 in state q,, will make number of 1’s even. 

§(q,,0) > 4, 
qy is the starting state. An empty string contains even number 

of 0’s and even number of 1’s. q, is a final state. q, stands for even 

number of 0’s and even number of 1’s. 

  

(a) Transition diagram (b) Transition table 

Fig. 2.5 : Final DFA for Q .5(a) 

(b) Number of 1’s is odd and number of 0’s is odd. 

In solution of Q. 5(a), the state q, stands for odd number of 

0’s should be declared as final state. 

  

(c) Transition diagram (d) Transition table 

Fig. 2.5 : Final DFA for for Q .5(b) 
  

Q.6 Give the finite automation M_ accepting 

(a,b)*(baaa). 

Ans. : 

The R.E. = (a, b)* (baaa), represents strings ending in baaa. 

The FA is given below 

a,b 

@ 
O--_@+@©+ ©+ © 

Fig. 2.6 
  

Q.7 Give applications of Finite Automata. 

Ans. : 

Applications of Finite Automata 

Finite automata are used for solving several common types of 

computer algorithms. Some of them are : 

‘ J “ 
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(i)' Design of digital circuit 

(ii) String matching 

ii) .Communication protocols for information exchange. 
(iv) Lexical analysis phase of a compiler. 

Finite automata can work as an algorithm for regular 
language. It can be used for checking whether a String we L, where 
Lis a regular language. 4 

Q.8 Design a DFA to accept strings over the alphabet 
set {a, b} that begin with ‘aa’ but not end with ‘aa’, 

  

Fig. 2.7. | 

A string not starting with aa will reach the dead state q, . 

Astring starting with aa will reach the state q,. 

A string starting with aa and not ending in aa will be either in q, 

OF qs. | 

The DFA is given by, 

Ms = (os Gas Gar Fa» Gas Gs Go) s (8, B}, 8, doy {Gus Gs}) 
  

Q@.9 Design a MOORE and MEALY machine to 
decrement a binary number. 

Ans. : 

One can decrement a binary by adding 11...1 (all 1's is 2’s 

complement of 1) to the given number. ‘The addition should start 

from the least significant digit. 

‘Mealy machine 

  

Fig. 2.8 

(qo — Previous carry as 0, q, — Previous carry as 1) 

ies all trailing 0’s are written as 1 and the first 1 is written as 0. 

Moore machine: - 

  

Fig. 2.9 

  

  

Q.10 Design minimized DFA for accepting strings 
ending with 100 over alphabet (0, 1). 

Ans. : 

All strings ending in 100 : 

The substring ‘100’ should be at the end of the string. 

Transitions from q, should be modified to handle the condition that 

the string has to end in ‘100’. 

  

(a) State transition diagram (b) State transition table 

Fig. 2.10 4 

q, to q, on input 1 : 

An input of 1 in q, Will make the previous four characters as 

*1001°. Out of the four characters as ‘1001° Only the last character 
‘I’ is relevant to ‘100°. 

q, to q, on Input 0: 

An input of 0 in q, will make the previous four characters 

*1000°, Out of the four characters 1000”, nothing is relevant to 
‘100°. 

Q. 14 Design Moore Machine t generate ‘output Alt . string Is ending with abb, B if string ending with aba and C otherwise over alphabet (a, b). and convert It to mealy machine. “i: 

    

Gs PITT Tt 
  

  

Scanned by CamScanner



\ 

WF theory of Comp. Sci. (MU-Sem, 5-Comp.,) ' 

‘Ans. : 

~ Design of Moore machine 

  

‘Fig. 2.11 

Conversion Into Mealy machine : 

’ Step1: 

output associated with a state to transition entering 

into that state. 

_ La . b 

9 1 4»C do Cc 

41] 4C dC 

| 4B gy A 

G3 | GC dC 

q. | GC. d c 

Step2: . Minimization 

The two states q, and q, can be merged into a single state, say qj. 

Go} Gr dos C 

Gi | dC dC 

| 4B a,A 

93} 4»C  doC 

The two state qo, q, can be merged into a single state, say qo. 

jab 
G | div© dor © 

qi} dv aC 

42} 4B do A   
The final Mealy machine is 

bic aC     
b/A 

Fig. 2.12 

Construction of a trivial Mealy machine by moving 

<TCS-5 

Q.12 Convert following €-NFA to NFA without €. 

  

Fig. 2.13 

‘Ans. : 

To convert €-NFA to NFA without € - 

Step1: To remove é€ transition from q state to r state, we do 

following 

(a) “Duplicate transitions of r state on q state 

(b) Since ris the final state, we make q as well as the 

final state. 

Step 2: To remove € transition from p state to q state do 

following : / 

(a) Duplicate the transitions of q state on p state 

(b) Since q is a final state we make p as weil as the 

final state. 

Thus, the NFA is : 

a : b c 

OG. G 
OOO 

Fig. 2.14 

Since all 3 states in the NFA are final states, we can merge all 

3 states 

.«. NFA — without € is 

a,b,c 

Fig. 2.15 
  

  
Q.13 Design the DFA to accept the language containing , 

all the strings over > = {a, b, c} that starts and 

ends with different symbols. 

Ans.: 

M = (Q,2,8.4.F} 

Q = (Gos Qs Gas Vas As Ws» Gg» 7} 

2X = {a,b,c} 
qo = initial state 

F = (43.45: 47) 

  

PToasy solutions) 
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Fig. 2.16 

. 8 = Transitions are: 

8 dy a) >a 35°) > ds 

8b) > q °8@)a >& 

5@>°c) > ds  §@,b) >a 
5(q,8) > 5(@,¢) >q . 

5 (qb) => 4 5(qs,a) => qs 

8(q,¢) => a 8 (qs.b) => 

5 Ga) => ds “8 (dsc) => qs 

5@.c) > 4; 5(4,8a) > % 

8(q,b) > §(q,b) => q 

85a) > 4, Spc) > 4 

8 (qb) => Gg, 

Q.14 Convert the following grammar into finite 

automata. 

S$—aXIbYlalb 

X—>aS|bYIb 

Y—aXIbS 

Ans. : 
’ The above grammar can be converted to FA as follows : 

” For every non terminating symbol we consider it as a 

different state 

M = {Q,2%,4,5S, F} 

Q = {S,X,Y) 

z= {a,b) 

S = initial state 

F = {X,Y} 

  

5: Transition functions are ; 

5(S,a) => X 

6(S,b) = Y- 

@ 5 
. @GSEHETIIIIS 

  

>S5 

>yY 

=X 

=>S 

5X, a) 

5 (X, b) 

. &(Y,a) 

8 (Y, b) 

Q.15 Design the DFA to accept all the binary strings 

over = = {0, 1} that are beginning with 1 and 

having Its decimal value multiple of 5. 

Ans. : : 

" Running remained is maintained through the states qo, q,, % 

dy, Gy: If the number start with 0, itis rejected| 

  

Fig. 2.18 

Reminder calculation for finding the next state 
  

  

  

  

  

  

  

            

A 0 00 + 5 = 0(q,) 01+5=1(q) 

a 1 10+5=2(q,) 11+5=3(q) 

& 10 100+5=4(q,) | 101+5=0(q) 

a 1 M0+5=1(q) 111 +5=2(q) 

a | 100 1000+5=3(q;) | 1001+5=4(q) 
  

The operator + is for reminder. 

Q.16 Design mealy machine to find out 2's complement 
of a binary number. 

Ans. : 

2's complement of a binary number 

2's complement of a binary number can be found by not 
changing bits from right end till the first ‘1" and then 
complementing remaining bits. For example, the 2’s complement 
of a binary number 0101101000 is calculated as given below : 

010110 1000 . 
=> 1010011000 

Complement No change 
every bit 

Fig. 2.19 

  

- * 
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Wrneory of Comp. Sci. (MU-Sem. 5-Comp.) 

The required mealy machine is given below. 

The input is entered from right to left. 

Gg "1 ey" 

Fig. 2.20    

  

  

   n equivalent DFA 

  

  

  

qo | {90 a1} | {41} {} 

q { q2} {4142} | CF 

“qo | {ao} { qo} { q3}           
  

Ans. : 

The transition graph of the given NFA is : 

  

€-closure of states : 

Go — Go) 

q, — Gy) 

G — (G»%) 

NFA to DFA using direct method. 

  

  

Fig. 2.22 

If ‘a’ is followed by ‘a’ then the machine enters the failure 

state q, - 

A ‘b’ immediately after ‘a’ takes the machine to the accepting 

state qo : . 

  

  
  

Q. 18 Design a DFA over an alphabet = = {a, b} to 

recognize a language In which every ‘a’ Is 

followed by ‘b’ 

Ans. : 

  

  

Q.19 Design a mealy machine to determine the residue 

mod 3 of a binary number. | 

Ans. : 

  

® Fig. 2.24 

State qyis for the running reminder as 0. 

State q, is for the running reminder as 1. 

State q, is for the running reminder as 2. 

Output 1 indicates divisibility by 3 

Output 0 indicate that the number is not divisible by 3. 

. Required R.E. = (0 + 1 (1 + 01)* 00)* 
  

Q: 20 Convert the following NFA to an equivalent DFA 

qo | {405 41} q {} 

  

  

  

  

        
  

a {42} | £4192} | {} 

*d2 | {40} {q.} | (a3 

Ans. : 

€- closure of states 

State |: €- closure 

qo { %} 

1 {a} 

ke (a, 9} 

Constructing DFA using the direct method 

Step1: — Transitions for the state {qo} 

  

    

MV Jeasy-solutions 
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Step 2: 

      Step 3: Writing transitions for the state {qo> 91} 

  

Writing transitions for the: states {q,, q,} and 

{dos divd}o 
Step 4; 

  

  

Q.21 Draw DFA for the following language over {a, b} : 

(a) All strings starting with abb. 

(b) - All strings with abb as a substring i.e., abb 
anywhere in the string. 

(c) All strings ending in abb. 

Ans. : 

(a) All strings starting with abb 

___ First input as ‘b’ will take the machine to a failure state. 

First two inputs as ‘aa’ will take the machine to a failure state. 

First three inputs as ‘aba’ will take the machine to a failure state. 

First three inputs as ‘abb’ will take the machine to a final state, 

  

(b) State transition table 

Fig. 2.25 : Final DFA for Q. 21(a) 

= : Teasy-sorutions) 

(a) State transition diagram   

2 . 7 ‘ . . ~ + i 

WF Theory of Comp. Sci. (MU-Sem. 5-Comp.) a ross. 

Writing transitions for the state {q,} A DFA without explicit failure state is given in Fig. 2.25(a) 

   
(a) State transition diagram (b) State transition table 

Fig. 2.26 : Final DFA for Q. 21(a), without a 

failure / dead state 

(b) All strings with abb as a substring 

The machine will have fours states : 

State q, -It is the starting state and indicates that nothing of 

relevance to complete ‘abb’ has been seen. 

State q, — preceding character is ‘a’ and ‘bb’ is required to 

complete ‘abb’. 

State q,» — Preceding characters are ‘ab’ and ‘b’ is required to 

complete ‘abb.’ , 

State G5 - Preceding dlinestiers are ‘abb’ and the substring 

‘abb’ has been seen by the machine. 

Cys Cs 
d-9+6@ 

  

(a) State transition diagram (b) State transition table 
Fig. 2.27 ; Final DFA for Q. 21(b) 

y to dy On input ‘b’ ; 

First character in ‘abb’ is a. 
Qy to q, On input ‘a’ : 

q, is for preceding characters as ‘a’, first character of abb. 
q, to : on input ‘a’ ; 

N input of ‘a’ in state q, Will make the preceding two i 
et aa’, Last ‘a’ will stil] constitute the first ‘a’ of 7 

q, t0g, on input ‘b? ; 

q, is for preceding two nen as ‘ab’ of ‘abb’. 
q, to q, On input ‘a’ 

An input ‘a’ in 4, Will make the preceding three characters a8 ‘aba’. Out of the three characters ‘aba’, only the last character ‘a’ is relevant to ‘abb’, 
i 
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q, to q, on input b: . 

q, is for preceding three characters as ‘abb’. 

q, to. q; on input a orb: 

The substring ‘abb’ has been seen by the machine and a new 
input will not change this status, 

(c) All strings ending In abb 
As the substring ‘abb’ should! be at the end of the string. 

Transitions from q, Should be modified to handle the condition that 

the string has to end in ‘abb’. 

  

' (a) State transition diagram (b) State transition table 

Fig. 2.28 : Final DFA for Q. 21(c) 

q, to q, on input a: 

An input of a in q, will make the previous four characters as 

‘abba’. Out of the four characters as ‘abba’ only the last 

character ‘a’ is relevant to ‘abb’. 

q, 0 q, on input b : 

An input of b in q, will make the previous four characters 

‘abbb’. Out of the four characters ‘abbb’, nothing is relevant 

to ‘abb’. 
  

Q.22 Design a DFA which can accept a binary number 

divisible by 3, 

Or 

Design of a divisibility - by - 3 — tester for a 

binary number. [DERELUEAIE eA ed 

Ans. : 

"A binary number is divisible by 3, if the remainder when 
divided by 3 will work out to be zero, We must device a 

mechanism for finding the final remainder. 

We can calculate the running remainder based on previous 

remainder and the next input., 

The running remainder could be : 

0 — associated state, dy 

1 — associated state, q, 

2 — associated state, q, 

Starting with the most significant bit, input is taken one bit at 

.a time, Running remainder is calculated after every input. The 

process of finding the running remainder is being explained with 

the help of an example.   

  

TCS-9 

Number to be divided: 101101. . 

| oO tf ft 0 4 + pe aitod by 3 

Next inputis1 1 | (1), MOD 3 = (1), 
  
  

Remainder1 1 0 
next Input 0 (10)2 MOD 3 = (10)2   
  

Remalnder10 1 9, 1 101), MOD 3 = (10 
next Input 1 (1012 (2   
  

Remainder 10 4 0 1 (101), MOD 3 = (10) 
next Input 4 .   
  

Remainder 10 | 0 0 (100), MOD 3 = (1) 
next Input 1 

y   
Remainder 4 (11)p MOD 3 = (0), 
next input 1 

Fig. 2.29 

The calculation of next remainder is shown below, 

Previous Next . Calculation of Next 

remainder input remainder remainder 

0@) 0 00%3 = 0 (q) 

0 (q,) 1 01%3 => 1(q)) 

1@) 0 100%3 => - 10(q,) 

1) 1 1%3 = 0q,) 

10(q,) 0 100%3 = 1@) 

10 q,) 1 101%3 => 10 (q,) 

Po\ 
Binary Binary decimal Binary 

  

(b) State transition diagram (c) State transition table 
Fig. 2.30 : DFA for Q, 22 

  

Q. 23 Design a DFA for a mod 5 tester for ternary input. 

Ans. : . ; 

A temary system has three alphabets > 

Z-= {0,1,2} 

Base of a ternary number is 3. 

  

@ENEIS 
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The running remainder could be : 

(0); = O— associated state, qy 

(1); = 1—> associated state, q, 

(2); = 2— associated state, q, 

(10); = 34 associated state, qy 

(11), = 4— associated state, q, 

tT fT 

  

Fig. 2.31 

Q.24 Design DFA that accepts the following language :_ 

(il) Set of all strings with odd number of 1’s 
followed by even number of 0’s = = {0, 1}. 

(ii) Set of all strings which begin and end with 
different letters & = {x, y, Z}. 

  

(iil) Strings ending with 110 or 111. 

Ans. : 

(i) 

(il) 

  

Fig. 2.32(b) 

@3 GRESInn 

(ill) 

  

  

  

  

Fig. 2.33(c) 

.25 Construct the minimum state automata equivalent 

° to given DFA. 

> a o 

q, cf q 

% ; qs qh 

. a3 qs, Qo 

4 G3 as 

qs qs Ms 

G6 / ds Ge 

q7 Ge G3 

Ans. : 

Step1: — Finding 0-equivalence partitioning of states by 

putting final and non-final states into independent 

block. 

Po = (qo q» q,> Qy> qs5> de> q,) 

block 1 

(q,) 

block 2 

Finding 1-equivalence partitioning of states by 
considering transition on ‘0’ and transition on ‘1’. 

I TY 
Go, 91, 92,94, 45 46 47 (Qs) +— Transition on 0 

Step 2: 

block 1. block 2 

On input 0, block 1 is successor of Gor Vy Qs gp G+ 
On input 0, block 2 is successor of GQ» Gy: 
“+ Gy q, are distinguishable from or Fi, Ag Ig Gy 

CRs Be fe oe gs 9 a7) (Qs) +—Transition on 1 
block 1 block 2° 

On input 1, block 2 is successor of q,. 
On input 1, block 1 is successor of o> 4, I» 
4, i8 distinguishable from or Qs Qs 
PL= (dy. Gy ys I) (4, 44) (G,) (G5) 

Ip Ws » Ip 
15 » dy 
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Step3: Finding 2-equivalence partitioning of states by 
‘ considering transition on ‘0’ and transition on ‘1’. 

| 
block 10 block 11 

  

(97) ny as eH (d2° 4) 

block 12 

+—Tranaltion on 0 
Cag) 

+—Tranalttion on1 

block 2 

- On input 1, block 11 is successor of q,. 4, 

On input 1, block 10 is successor of Go» Ig 

qy G, is distinguishable from Pe 

P= Gy 9) (q,. 45) G,, 9.) (G,) (q,) 

Step4: ~ Finding 3-equivalence partitioning of states by 

we transition on 0-and 1. 

To 

to 

I -—— +— Transition ond 

(Gq +96) (9, 45) {ta u) (4) G4) (47) (43) 
“it LiU_+ 

  

Blocks can not be divided further. 

<P; =P, = (qy 4.) (d,> 45) (G,, 4, (G,) (G,) which is final set 

of blocks of athe classes. 

Step 5: Construction of minimum state DFA. 

0 1 

HM» G,) | (,-45) . Gy 4) 

(ys) | Gy Ig) ~ Go» Ie) 

(q»4,) | (4) (dy 45) 

@t| @ Ga 
(q,) | Gy 4.) (q,) 

(a) State transition diagram for minimum- 

  

  

(b) State transition diagram for minimum-state DFA state DFA 

Fig. 2.34. 

oy (CT easy-solutions 

<— Transition on 1 

  

Q.26 A language L Is accepted by some NFA if and 

only if It is accepted by some DFA. 

oR. 

For every NFA, there exists an equivalent DFA. 

Ans. : 

Proof’ 

Given theorem has two parts : 

1. "If Lis accepted by a DFA M,, then L is accepted by some 
NFA M,. 

2. If Lis accepted by an NFA M,, then L is accepted by some 

_ DFAM,. 

First part can be proved trivially. Determinism is a case of 

non-determinism. Thus a DFA is also an NFA. 

Second part of the theorem is proved below : 

Construct M, from M, using subset generation algorithm as 

explained earlier. We can prove the theorem using induction on the - 

_length of a. 

Base case : Let w = € with | w 1 = 0, where | «1 is length of w. 

Starting state for both NFA and DFA are taken as q,, When 

9 = €, both DFA and NFA will be in q,. Hence, the base case is 

proved. 

Assumption : Let us assume that both NFA and DFA are 

equivalent for every string of length. n. We must show that the 

machines M, (NFA) and M, (DFA) are equivalent for strings of 

length (n + 1). Let @, , ,; = @,a, where «, is a string of length n and 

@, ,, iS a string of length (n + 1). ‘a’ is an arbitrary alphabet from 

x. 

5,4, w,) = 5.) w,), where 6, is transition function of DFA 

(M,) and 8, is transition function of NFA (M,). 

If the subset reached by NFA is given by 

{Py Boy +++ Py} 
k wo 

then, 84,1) = U 80,2) 4) 
. . i=l 

k 

or {Pp P»---Pya) = U 80,2) ii) 
i=l 

also, 5,4 ®,) = {P,'P» + Pt Gi) 

from (i), (ii) and (iii) we get, . 

BxQy M41) = 8, Gy.) a) - 
B,({P,» Py» «++ yb @) 

k 

U 5@,a= Ba S40) 
i=1 

u 

Thus, the result is true for | | =n + 1, hence it is always true. 
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Q.27 Convert the following NFA to a DFA and 
Informally describe the language It accepts. 

  

Ans. : 

Step1: — {p} is taken as the first subset. 

, O-Successor of {p}_ = 8 ({p}, 0) = {p,q} 

I-Successor of {p}_ = 8 ({p}, 1) = {p} 
Step2: The new subsets (p, q} is generated. Successors of © 

{p, q} are calculated. 

5({p,q}.0) = 5(p,0)U8(q,0) 
= {pg}u {rs} 
= {p.q.1,8} 

» 8Cpgh.D = 6@DUVb@D= (pu {t} 

= {p,t} 
Step3: Two new subsets tp. q, tr, S} and {p, t} are generated. 

Their successors are calculated. : 

5 ({p, q, 1, s}, 0) = 8(p, 0) U 8 (g, 0) U8 (7, 0) U8 (s, 0) 

= {p.q}Utrs}Ufp.Ud 
= {p.q.r,8}, 

8({p.q.1 5}, 1) =p, 1) V8q@ ILS, )U86s, 1 

= {q}U lt} U {t}Uud 

= {p,t} 

8 ({p,t},0) = 8p, 0) U8 (t, 0) 

= {p,q} U= {p,q} 

S(pt}.1) = 6, DUS 1) 

= fphUo=tP) 
No, new subset is generated. Every subset containing either s 

or tis marked as a final state. 

Informal Description: Strings over {0, 1} with second digit 

from the end is 0, 

       
      —{p) | {p.4) {p) 

{p.q) | {p,a.15) (Pst) 

{p.q.t8}* | {p,q.rs) (Pt) 

{p.t}* | {pq}. {P) 

a) Btate table 

 @anntinnn 

  

_TCS.49 "| 

  

(b) State diagram 

Fig. 2.35 : Final DFA for Q. 27 

  

Q.28 Construct a NFA that accepts a set of all strings 

over {a, b} ending in aba. Use this NFA to 

construct DFA accepting the same set of strings. | 

Ans. : 

a,b 

G6 ©+©6 
Fig. 2.36 (a) : Non-deterministic finite automata 

Non-determinism should be utilized to full extent while 

designing an NFA. A string of length n, ending in aba can be | 

recognized by the NFA given in Fig. 2.36(a). First n-3 characters 
can be absorbed by the state q, by making a guess. On guessing the 

last three characters as aba, the machine can make a transition from 
dy to q,. 

NFA to DFA conversion : 

Step 1: {q,} is taken as first subset 

a-successor of {q.} = -8(qy, a) = {q..q,} 

= 8( qb) = {q,} 
A new subset { q..q,} is generated. Successors of 

{ dg. G,} are calculated. 

5 (dy dy}. a) = S(qy a) V8 Gy a) = {q9, 4,} 0.0 = (4%) 
B (ay ay} b) = B(qy, bY VE Gy, b) = (4, U {a,} = Lay} 
Step3: A new subset (qo q,} is generated. Successors of. 

(qo) q,) are calculated, 

B (ld Qh a) = Sq, a) V8 Gy a) = (ay, 4.) U {a5} 
{dg ys Wg} 
5(qy b) US @, b) ={q,}Ud= {qo} 

b-successor of {qo} 

Step 2: 

ul 

B({q.4,},b) 

Step 4; A new subset (q,, 4,4} is generated. Successors of 

{dy 4,9} are calculated, 

5 (dg, 4,95), 8) A . 8q.a) US , 2) U 5 (ay ) 

{dy 4,} VOU O= (ay 44} 

   

B
o
s
s
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5 ((44,4,)b) = B(q,, b) U8 (q,,b) U8 (qy, b) dy — Running remainder is 4 = (11). 

= {q.) ¥ (a,} UV >= (ay4,) { ; 

No, new subset is generated. Every subset containing q, is : | 

marked as a final state. In decimal Internary ' 
system system 

     
  

  

(b) State diagram of the DFA - 

a : b _ ; 

rq) {ay 4} {a} — Fig. 2.37(b) : Moore machine 
ya 

{44} | {aya} {ay 4} _ | Q.30 Design a mealy machine for a binary input 
sequence such that if the sequence ends with 100 

{494} | {943} {4g} the output is 1 otherwise output Is 0. 

{qq 4y 45)" ] {49-9} {4 43} 

(c) State table of the DFA Ans. : 

Fig. 2.36 

  

Q,29 Give Mealy and Moore machine for the following : 

From Input £*, where = = (0, 1, 2) print the residue 
modulo 5 of the Input treated as ternary (base 3). 

May 2006; Dec. 2015 

Ans. : 

(a) Mealy machine 

  

(b) State table . 
Fig. 2.38 

Meaning of various states : 

  

“1/0 qo— Start state 
3 hi 

+ Fig. 2.37(a) : Mealy machine q,— previous symbol is 1 

Meaning of various states is : / d:preceding two symbols are 10 

Qo ~ Running remainder is 0 7 

R . inder is 1 A transition from q, to qo will make the preceding three 
q, — Running remainder is 

” 

q, ~ Running remainder is 2 symbol as 100 and hence the output 1. 
— Running re . 

q; ~ Running remainder is 3 = (10),   
  

wade 
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Q.1 Write short note on Myhill-Nerode theorem. 

Dec. 2005, May 2006, Dec. 2006, May 2007, 

May 2008, Dec. 2008, Dec. 2012, May 2013 

Ans. : 

Myhill-Nerode theorem 

Given a language L, two strings x and y are said to be in the 

same class if for all possible strings z either both xz and yz are in L 

or both are not. 

The Myhill-Nerode theorem says : 

1. A language L divides the set of all possible strings into 

mutually exclusive classes. 

2. If Lis regular, the number of classes created by L is finite.. 

3. Ifthe number of classes L creates is finite, then L is regular. 

In finite automata, each state can be thought of as creating a 

class of strings. Two strings are said to be in the same class if they 

both trace a path from starting state q, to some state q; (say). 

Number of strings is infinite. 

_ Number oftstates in an FA is finite. 

Many strings when applied to the FA will end up in the same 

state. Each state of FA can stand for a class of strings. 

Chapter 3 : Regular Expressions and L anguages 

In the string xy'z with i = 0, at least one ‘a’ or atleast 

one ‘b’ will be erased from (ab)" * U of (aby" * 1a, 

This will lead to one of the following situations : 

1. Number of a’s in (ab)" is equal to number of as 

“in at of (ab)"a". 
2, — xy°z will not be of the form (ab)"a“. 

Step 3: 

Therefore, xy'Z eL. 

Hence, this is proved by contradiction. 

  

3 

5. Complementation 6. 
5 

1 
  

Q.2 Show that 

(1 + 00"1) + (1 + 00°1) (0 + 10*1)'(0 + 101) = 0"1 

(0 + 10*1)" Rene 2006 

Ans. : 

LHS. = (1+00*1)+(1+00*1) (0 + 10*1)'@ + 10*1) 

= (1 400") [e+ + 10*1)"O+ 10*1)] 

= (1+00*1) (0+ 10*1)" 

i = [(e+00*) 1] + 10*1)* = 0*1(0 + 10*1)" 

= RAS. 

  

Q.3. Prove L={ (ab)"a": n>k, k2 0} Is not regular. 

Ans. : 

Step1: Let us assume that L is regular and L is accepted'by 

, an FA with n states. 

Step 2: Let us choose a string 

o = (oy 1 

‘lol = Un¢l)tn=3ne220 
Let us write w as xyz, with 

_lyl > 0 and Ixyl S$ n- 

The string xy will contain a maximum of n symbols from (ab)". 

M7 {easy-solutions) 
  

    
     

Q.4 Write short notes on closure prop erties of regular 

language. Dec. 2006, May 2013. Dec. 2014 

Ans. : 

Closure properties of regular language 

If an operation on regular languages generates a regular 

language then we say that the class of regular languages is closed 

under the above operation. Some of the important closure 

properties for regular languages are given below. 

1. Union 2. Difference 

Concatenation 4. Intersection 

Kleene star 

Transpose or reversal. 

‘ Regular Language is Closed under Union 

Let M, (S, 2, 1, So, F) and 

M, (Q, 2, 5,, do, G) be two given automata. 

To prove the closure property; we must show that there is 
another machine M, which accepts every string accepted by either 

M, or M, and no other string. The construction M, is quite simple 

as shown in Fig. 3.1. 
  

  

G 

          

  

  

  

      

Fig. 3.1 M; is constructed such the L(M,) = L(M,) ULM). 

wy 
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Machine M, is constructed to accept L(™,) VU L(M,). 

M; = (R, ©, 85, 9, H) where ry is a new start state. Two 
g-moves, one from Tp to Sy and another from r, to qa are added. 

R= SUQY [m)} 

H = FUG . 

8, = 8, V8, 0 (tye, 8), (rp, & ay) 
Machine M, can non-deterministically choose either M, or 

M,, Therefore, 

LM) = LOM) ULM) | 
2. Regular Language Is Closed under Concatenation 

Let M, = G&ES.s.F-) 
; and M, = (Q,%,8,, qo, G) be two given automata. 

To prove that closure property under concatenation, we must 

show that there is. another machine M, such that L(M,) = L(M,)- 

L(™,). The construction of M, is shown in Fig. 3.2. 

  
  

—&) 

© 9O 

—@) 

        
    

  

  

    
  

Fig. 3.2 : M, is constructed such that L(M,) = L(M,) - L(M,) 

M, is constructed by adding ¢-move from every final state of 

M, to start state of M,. 

Machine M, is given by : 

M, = (R,Z, 53, 8 G) where 

8, = 8, U,V {e-move from every final state of M, 

to start state of M,} 

Machine M, recognizes L(M,) + L(M,) by going non- 

deterministically fromyhe final state of M, to start state of M,. 

3. Regular Language Is Closed under Kleene Star 

Let M, = (Q, 5 8, do F) be the given automata, We can 
17 , . ? . 

construct a non-deterministic finite automata M, such that 

LM.) = L(M,)*. The’ construction of M, from M, is shown in 

Fig. 3.3.   

  

  

      

  

ol 

+~@ |O 
© 

Fig. 3.3 : M, is constructed such that L(M,) = LM™,)* 

    
  

M, is constructed as given below : 

(a) A new start state 8, is added with an ¢-move from Sy to do. 

(b) A new final state f, is added with e-moves from every state of 

F to fy, An €-move is added from s, to f, as € is a member of 

L(v,)*. 

Machine M, = (QU (5 fo}, 2, 8, So, {foh) 

Machine can accept a string € L(M,) and resume back from 

the start state q, through the e-move from f, to q,. Thus accepting 

L(™,)*. 

4. Regular Language is Closed under 

Complementation 

Let M = {Q, &, 5, qo, F) be the given automata. To prove the 

closure property under complementation, we must show that there 

-is another machine M which accepts L(M) where 

LM) = LM) = Z*-L™M) 

| I 

Given Machine after 
machine complementation 

_ If M is a deterministic finite automata then M can be 

constructed by interchanging final and non final states of M. 

(Q, 2, 8, qo, Q- F) 

5. Regular Language is Closed under Intersection 

M = 

If L, and L, are two regular languages, then 

Lal, = (LoL) =@, UL 
= E*-[@*-L)U@*-L)) 

Closeness under intersection follows directly from closeness 

under union and complementation. 

6. Regular Languages are Closed under Difference 

Let L, and L, are two regular languages. The difference 

L, - L, is the set of strings that are in language L, but not in L,. 

Construction of a composite automata for L(M,) - L(M,) is 

explained in Chapter 2, Thus regular languages are closed under 

difference, " 

    

Doon : 
@s EIS 
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7. Regular Languages are Closed under Reversal 

  

  

  

  

   (Ill) L = fe (a, b)* | (number of a’s In o) mod if 

  

    
  

  

i 
3 = 0} ad 4 Reversal of a language L is obtained by reversing every string ww) L={a HI n>= 4,m<= = 3} : a a 

inL. Reversal of a language L is represented by L® 
ae 

For example, . Ans. : vy 

if L = {aab, abb, aaa}; then L¥ = (baa, bba, ana} Gi) The set of all strings over {0, 1} without length two. 

: * Let M, = (Q, &, 5, qo: F) be the given automata. To prove the e+ (0+1)+(0+1) +1) +1) OF 1) 
closure property under reversal, we must show that there is another (ii) Le {a’b” | (n + m) is even} 
machine M, which accepts L(M,)*. ( (aa)* ab + bb) (bb)* 

_ R ‘ ; q ea (ii) L= {w € (@, b)* I (number of a’s in «) mod 3 = 0) 
M, can be constructed from M, by : (b+ ab*ab*a)* 

1,» By reversing every transition in Mj. Gv) L={ab™|n>=4 in <= 3} 

2. — Start state of M, is made the only final state. " aaaaa*[e +b + bb + bbb] 

. 3. A new start state s, is added with e-move to every final state Q.7 ProveL= {(ab)"a‘ In>k, k >= 0} Is not regular. 

of M,. 4 _ 
\ Q.5 Design a NFA to accept (a + b)*aba convert it toa | Ans. : ag 

; reduced DFA. Step1: | Let us assume that L is regular and L is accepted by 
Ans.: an FA with n states. 7 . 
(a+b)" aba -Step2: Let us choose a string 

RE to NFA : o°= (ab)"*!a" 

(a+b)* aba 

= Omen ©) lol = An+1)+n=3n+22n 
* Let us write w as xyz, with . (a+b) a 

= 70 O-O +O ly! > 0 
Oy. : y 

& b a and Ixy] < na - +O O+O- © 
as : The string xy will contain a maximum of n symbols from (ab)". 

-_ = 3 a @— @ a Step3: In the Sting xy'z with i = 0, at least one ‘a’ or atleast 

one ‘b” will be erased from (ab)"*! of (ab)"* 1a". 
Fig. 3.4: RE to NFA This will lead to one of the following situations : 

NFA to DFA . 1. Number of a’s in (ab)" is equal to number of a's © 
, 

in a‘ of (ab)*a* 

2. _xy°z will not be of the form (ab)"a* 
Therefore, xyz eL. 

< b Hence, this is proved by contradiction. 

’ Fig. 3.5 : NFA to DFA . Q.8 Construct a NFA for the RE (01* + 1) and convert it. | to DFA. “ 
Q.6 Write RE for the following languages Ans. : 

(Il) The set of all string over {0, a without (01* + 1) 
length two. 

RE to (Il) L={a"b” | (n + m) Is even} NFA 

@s CHET eg é; 
ae 
| 
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\ o1* 

1 

; Fig. 3.6(b) : NFA to DFA 

  

  

Q.9 Construct an NFA with e-moves forthe 

RE 10(0 + 01 + 0110)* 

Ans. : , 

10(04+01401 10)%-— 

-O——_© 
(0+0140110)* 

1 e o & y 

= O-O-0-0-0——-_O 

a . Teasy-sorutions) 

  
  

Qa. 10 State the pumping lemma for regular language. 

Ans: , 

Pumping lemma for regular language 

‘Pumping lemma gives a necessary condition. for an input 

. String to belong to a regular set. 

Pumping lemma does not give sufficient condition for a 

language to be regular. ‘ 

Pumping lemma should not be used to establish that a given 
_ language is regular. 

Pumping lemma should be used to establish that a given 

language is not regular. 

The pumping lemma uses the pigeonhole principle which 

states that if n pigeons are placed into less than n holes, some holes 

have to have more than one pigeon in it. Similarly, a string of 

length 2 n when recognized by a FA with n states will see some 

states repeating. 

Definition of Pumping Lemma 

Let L be. a regular language and M = (Q, &, 8, dp: F) be a 

finite automata with n-states. Language L is accepted by m. Let 

@ € Land | @l 2 n, then w can be written as xyz, where 

@ tlyl>o 

Gi) Ixylsn 

(iii) xy’ z €L for all i 2 0 here y denotes that y is repeated or 

pumped i times. : 

Interpretation of Pumping Lemma 

  

Fig, 3.8 : FA considered for interpretation of pumping lemma 

Let us consider the FA of Fig. 3.8 

No. of states = 5 (qp to qy) 

Let us take a string @ with|@125, recognized by the FA. 

@ = abcabcb 

To recognize the string w = abcabcb, the machine will transit 

through various states as shown in Fig. 3.6.2. 

q, is repeating 

Ls a b c a b c b 
0 > Fa Fg > 91 92 913 > 4 

States , 

Fig. 3.9 : Transitions of FA on input abcabcb 

As the input abcabcb takes the machine through the loop 

qi — 93 — 43 —> q,, this loop can repeat any number of times. In 

terms of abcabcb, we can say that if abcabcb is accepted by FA 

Scanned by CamScanner



\ 

Wtheory of Comp. Sci, (MU-Sem. 5-Comp.) 

then every string in a(bca)*bcb will be accepted by the FA of 
Fig. 3.8. The portion bea is input during the loop. 

Gi > > G3 > Oy. 
Thus, if abcabcb is accepted by the FA then abcabcb can be 

"written as xyz, with ‘ 
x =a. 

y = bea 

z = beb. 

Length of abcabeb is > n 

xy'z for every i = 0 or a(bca)'beb for every i 2 0 will be 
accepted by the FA of Fig. 3.8. : 

Q.11 Construct NFA from (0+ 1)*(00 + 11) and convert 
Into minimized DFA. Cee 

Ans. :. 

(0 + 1)*(00 + 11) 

RE to NFA (0+1)* (00+11) : © 3 
(O+1)" ey 00411 ZR = O—O—_© 

Fig. 3.10 : RE to NFA 

x - 00 . 

- O+0+6 © 
11 

  

Fig. 3.10(a) : RE to NFA 

NFA to DFA 

  

Fig. 3.10(b) : NFA to DFA_ 

@sGNETIIS 
  

   
¢ 
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Q.12 Explain decision properties for regular languages, 

CT) 
Ans. : 

| 4 

Decision properties for regular languages 

1. Is aregular set empty ? - Emptiness property. ; / 

2. Whether a finite automata accepts a finite number of strings 2” 

— Finiteness property. 

3. Whether a finite automata accepts an infinite number of 

strings ? —Infiniteness property. 

In addition to above decision problems, we can formulate a 

number of other decision problems. Some of them are : 

1. Given a regular expression R and a string w, does w belong to 

LR)? ” 

Given two FAs M, and M,, is L(M,) = L(M,) ? 

Given two FAs M, and M,, is L(M,) subset of L™,) ? 

Given an FA M, is M a minimum state FA accepting L(M).? 

Decision Algorithm for emptiness : 

Finite automata will fail to accept any string if it does not 
have a final state, - 

Finite automata will fail to accept a string if none of its 

accepting states is reachable from the initial state. 

We can determine the emptiness of language accepted by an 

FA by calculating Q,, the set of states that can be reached from q, 

by using strings of length k or less. 

{45} ifk=0 

*"UQ_1U (8 G,a)} IqeQ_,andae D} ifk>0 

We can go on computing the Q, for each k > 0 until one of 
the two cases arise : 

1. Q, contains a final state. 

The language is not empty. 

2 Q=Q-) 

The language is empty as the final states are not reachable 
from qo. 

Decision algorithm for finiteness / infiniteness : 
The set of strings accepted by a finite automata M with 0 states is finite if and only if the finite automata accepts onl: strings . of length less than n, espe 
The set of strings acce; 

States is infinite if and only 
nslwl<2n, 
From the pumping lemma we know : 
1. If @ with length of w 2 n is accepted by M then @ can be 

pted by a finite automata M with 0 
if it accepts some string w such that 

written as xyz. 

2. Forevery, i xy'z will be accepted by M, 
We can always design an algorithm to generate all strings 

over & with length between n and 2n. 

Scanned by CamScanner



W Theory of Comp. Sol. (MU-Sem. 5-Comp.)    
If any of these strings is accepted i M then ony: is infinite 

else L(M) is finite. 

Q.13 Using pumping lemma for regular sets, prove that 
the language L={oo"loe {0, 1}*} Is not regular. 

Ans. : 

Step1: Letus assume that L is regular and L is accepted by a 
~ FA with n states. 

Step2: Let us choose a string 
, n n 

@= ab ba 
. ~ 

a 4 +—from 
om 

lal = 2n+22n 

Let us write w as xyz with 

~tlyl >°Q and Ixyl < n 

Since | xy | <n, x must be of the form a’. 

Since I xy | <n, y must be of the form a’ |r> 0. 

Now, 

© =a'bba'= + + abba’ 

xy z 

Step3:  Letus check whether xy’ z for i = 2 belongs to L. 

xy'z = a’a“a"~*"'bba"=a" *"bba” 

Since r > 0, a * ‘bba’ is not of the form ow" as the 

strings starts with (n + 1) a’s but ends in‘(n) a’s. 

Therefore, xyz ¢ L. Hence by contradiction, we can 

say that the given language is not regular. 

  

Q.14 Using pumping lemma for regular sets. Prove that 

the language L = { ww | w € {0, 1}*} Is not regular. 

Dec. 2006, Dec. 2010 

Ans. : 

Step1: Let us assume that the given language is regular and 

L is accepted by a FA with an states. 

Step2: Let us choose a string 

sab ab o=a 
@ o 

2n+22n 

+— from ww 

lol = 

Let us write @ as xyz with 

lyl > O 

andixy! $< n 

Since|xy| <  n,x must be of the form a’, 

Since Ixy! < n, y must be of the form a' Ir > 0. 

TCS-19 

Now, w=a'ba'b= a® a’ a’*“ba’b 

x y z 
Step3: Let us check whether xy! z for i = 2 belongs to L. 

xy’z = a’a“a"*~'ba’b 

a"*"ba"b 

Since r > 0, a" * ‘ba’b is not of the form wo" as the 
number of a’s in the first half is n + r and in the 

second half is n. 

Therefore, xyz é L. Hence by contradiction, the 

given language is not regular. 

  

Q.15 Show that the language L {a"ba" | n > 0} Is not 
regular. 

Ans. : 

Step1: Let us assume that L is regular and L is accepted by 

an FA with n states. 

Step2: Letuschoosea string ; 

0 = aba’ 

lol = 2n+1l2n 

Let us write w as xyz, with 

lyl > 0 

and |xyl-< n 

Since, Ixy | <n, y must be of the form a I r>0 

Since, | xy | <n, x must be of the form a’. 

Now, ab" can be written as : 

a’a'a"~°-" ba” 

Step3: Let us check whether xyz for i=0 belongs to L. 

0 10 n-s-r, 
xyz = a(a)a ba" 

= a ‘ba’ 

Since, r> 0 the string a’ ‘ba €L. 

Hence by contradiction we can say that the given 

language is not regular. ‘ , 

  

  
Q.16 Write short note on application areas of R.E. 

Ans.: 

Application areas of Regular Expression 

1. R.E. in Unix , 

The UNIX regular expression lets us specify a group of 

characters using a pair of square brackets [ ]. The mules for 

character classes are : 

1. [ab] Stand for a+b 

2. [0-9] Stand for a digit from 0 to 9 

3. [A-Z] Stands for an upper-case letter 

  

Gahan 
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. ding to the regular - 4.. [a-z] Stands for a | Q.17 Design a DFA correspon 5 ora lower-case letter : expression. (a + b)* aba (a + b)* May 2013 

([0-9A-Za-—z] Stands fora letter or a digit. A ! 
ns. : ‘ 

The grep utility in UNIX, scans a file for the occurrence of a 
pattern and displays those lines in which the given pattern is 
found. 

The language associated with the R.E. (a+ b)*abata +b)* = 

‘strings with “aba” as substring. 

DPA for-strings with aba as substring.    For example : 

$ grep president emp.txt 

It will list those lines from the file emp.txt which has the 

pattem “president”. The pattem in grep command can be 

  

specified using regular expression. . Fig. 3.11 
6. * matches zero or more occurrences of previous character. a 48 Construct an NFA with epsilon transition for the 

7. @ matches a single character. / . following RE. (00 + 11)* (10)* 

8. [pqr] Matches a single character which is not a p, q or r, Ans. : 

_ 9... “pat Matches pattern pat at the beginning of a line 

10. pat$ = Matches pattern at end of line. / ‘ 

Example , y a \ ‘ by 
c x 

t \ 

(a) The regular expression [aA] g [ar] [ar] wal stands for either O SO E @ (10)* O 

“Agarwal” or ‘agrawal”, i \ :      
(b) g* stands for zero or more occurrences of g. 

(c) $grep “A-* thakur” emp.txt will look for a pattern starting 

with A. and ending with thakur jin the file emp.txt. 

2. Lexical Analysis 

Lexical analysis is an important phase of a compiler. The 

lexical analyser scans the source program-and converts it into a 

steam of tokens. A token is a string of consecutive symbol defining 

_ an entity. 

For example a C statement x = y + z has the following tokens : 

x  — An identifier 

  

=  -— Assignment operator 

y = Anidentifier 

+  — Arithmetic operator + 

z  -— An identifier 
ag Fig. 3.12 

Keywords, identifiers and operators are common examples of 

tokens. ’ Q.19 Convert (0 + €) (10)* (€ 4 1) Into NFA with 

The UNIX utility lex can be used for writing of a lexical €-moves and hence obtain a DFA. CoE 

analysis program. Input to lex is a set of regular expressions for Ans. : 

each type of token and output of lex is a C program for lexical Step1: REtoNFA for +e) U9) +n 

’ analysis.   
  

@OhETnnIIn — ae 
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Fig. 3.13 

_ (Note : States have been removed.) 

Step 2: &€-NFA to DFA 

€-closure of states 

Go {> Ga» Is} + qi 7 {a1} 

o> {4,95}, d3 > {a} 

The DFA using the direct method is given below. 

: Q 

  

Fig. 3.14 

Q.20 Using pumping lemma for regular sets, prove that 

the language, L = {0"lnisa prime} Is not regular. 

Dec. 2007, Dec. 2009, Dec. 2015, May 2016 

Ans. : 

Step1: Let us assume that the given language is regular and 

Lis accepted by a FA with n states. 

Let us choose a string © = a’, where p is a prime and 

p>no. 

lm! = la’i=pen 

Step 2: 

Let us write w as xyz with 

  

lyl > 0, 

and Ixyl So 

We can assume that y = a" for m>0. 

Step 3: Length of xy'z can be written as given below : 

Ixy'z! = Ixyzl+lyo' l= p+G-1)m 

assy! = la'l=m 

Let us check whether P (i - 1) m is a prime for every i. 

Fori=p+1,p+(i-1)m=P+P,,=P(1+m). 

P (1 + m) is not a prime as ‘it has two factors p and 

(1+4m)and 

Ip! > 1, 

ll+ml > 1 

So xy’ * 7 ¢L Hence by contradiction the given 

language is not regular. 
  

Q. 21. Draw a state diagram and construct a regular 

expression corresponding to the following state 

  

  

  

            

transition table. 

‘State o|1 

— "di | G1 | Ge 

Gz | 43 | Ge 

Gs | G1 | Ge 

Ans. : 

State diagram 

  

R.E. form state diagram 

Step 1: Removing loop between q, and q, we get 

  

Step2: Removing the main loop, we get 

(0 + 1(1 + 01)*00 

| 
    Q. 22 Show that the language L = {a"b’} Is not regular. 

  Dec. 2006, May 2010, Dec. 2010, Dec. 2012, May 2013, 

May 2014, Dec. 2016, May 2017, Dec. 2017   

    ae Q@OnETInI 
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Ans.: ; 

Step 1: Letus assume that L is regular and L is accepted by a 
FA with n states. ‘ 

Step2: Let us choose a string \ 

o= ab 

lol = 2n2n 

Let us write w as xyz, with 

lyl > 0 

andixyl < n 

Since, I xy I<n, y must be of the form a‘ I r> 0 

Since, | xy | <n, x must be the form a’. ° 

Now, ab" can be written as 
t a 7 a’*'b" . 

TTT 

y 

Step3: Let us check whether xyz fori = 2 belongs to L. 
xy’z = ai (a’)’a sip ; 

= ‘ata2tat —s= 2 

ai t@tn-s-rpn 

Derino | 
a ob 

a+r Since r> 0, number of a’s in a" b" is greater than number 

of b’s. Therefore, xyz é L. Hence by contradiction we can say that 

the given language is not regular. 
  

Q.23 Construct NFA for given regular expressions : 

(i) (a+b)*ab 

(li) aa(a + b)*b 

- (iil) (aba) (a + b)* 

' (Iv) (ab/ba)*I(aa/bb)* 

Ans..: 

@) (a+b)*ab: NFA 

ae 5 

Q-O-® 

(ii) aa(a+b)*b: NFA 

   

  

  

TCS-29° 

(iv) (abiba)*I(aalbb)* : NFA 

  

. 

Q. 24: Convert (0 + e) (10)*(e + 1) into NFA with e-moves . 

and obtain DFA. 

Ans. : 

Step 1: 

  

NEFA for the given expression : 

  

Step2: €-closure of states : 

do — {do a. 4 } 

qi > (495) 

% > {a} 

G3 > (a) - 

Step3: DFA using direct method : 

  
  

@s easy-solutions . ;   Scanned by CamScanner
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_ Chapter 4 : Regular Grammar (RG). 

A dead state is added to handle transition. The 

resulting DFA is shown in Fig. 4.1(c). 
Q.1 Construct right linear grammar and. left nea | Step 3: 

grammar for the language (ba)*, 

Ans. = 

Transition system for (ba)* is given by : 

ba 

We can write left linear grammar and the right linear 

grammar form the transition systems, 

. 

Right linear grammar : 

S—> baS le 

Left linear grammar : 

S— Shale 
  

Q.2 Final the equivalent DFA accepting the regular 
language defined by the right linear grammar 

given as : 

S—+aAIbB,A—>aAlbclaB>aBlbC—>bB 

Ans. : 

Anew final stateF is being introduced to handle productions like, 

A7>a B-b 

Step1:. Adding transitions corresponding to 

production, we get the FA shown in Fig. 4.1(a). 
a 

every 

  

Fig. 4.1(a) 

Step2: Drawing an equivalent DPA, we get : 

    

Fig. 4.1(c) 
  

  Fig. 4.1(b) 

Q.3 Construct left linear and right linear grammar for 

_ the regular expression. 

May 2009 ((01 + 10)"41)*00)* 

The given expression can be represented using a transition 

system as shown below : 

(1 + 10y"11%)00 ((O1+10y"11*) LC) 

Ans. :    

Fig. 4.2(a) 

  

io - 
QO ETI 
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Removing é — transitions, we get : 

01,10 

  

Fig. 4.2(b) 

Writing of right linear grammar we get, 

S$— 00S 111A 101B110B le 

A+ 11A101B110B100S 

B-OIBI10BI 1A 

For writing of left linear grammar, we interchange the start 

state and the final state and change direction of all transitions. The 

resulting transition system is given by : 

  

Fig. 4.2(c) 

Writing of left linear grammar we get, 

S— S001 A00le , 

A> A111B111S11, 

B— B01 110B1S011S10! A011 A10 

i
n
a
 

   
i 

TCS-24 : | 

a 
Step1: Adding transitions corresponding to every ‘4 

production, we get 
4 

Fig. 4.3(a) 

Step2: Adding a state E to handle 6-transitions, we get the 

final DFA. 

  

a 

Fig. 4.3(b) : Final DFA 

  

  

Q.4 Convert the following right-linear grammar to an 

equivalent DFA. 

S—bB 

B—obC 

B-aB 

C-a 

Bob 

Ans. : 

Re-writing the production we get 

S — bB 

B — bClb 

B — aB 

c-oa 

@onETs 
  

Q.5 Convert following RG to DFA 

S— 0A11B, A—0C11A10, 

‘B>1BI1AI1, C—+O010A. 

Ans. : : 

A new final state F is being introduced to handle productions like, _ 

A -0,B7>1,C>50. 

Step1: Adding transitions corresponding to 

production, we get the FA shown in Fig. 4.4(a). 

every 

  

Fig. 4.4(a) 

Step2: Drawing an equivalent DRA, we get 

  

Fig. 4.4(b) 
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States {S}, {A}, {B}, (C,F}, and {A, F) are renamed 

8S Go» Gi G2» ry and a dead state q, is introduced to 

handle $ — transitions. The resulting DFA is shown 

in Fig. 4.4(c) : , 

Step 3: 

  

Fig. 4.4(c) : Final DFA 

  

Q.6 Write an equivalent left linear grammar from the 
given right linear grammar. 

'S—>0A11B 

A> O0CI1A10 

B-1BI1AI1 

C-O0I10A 

Ans. : 7 

Step 1: Transition system for the given right linear grammar 

_ is-as shown in Fig. 4.5(a). 

  

Fig. 4.5(a) : Transition graph 

-TCS-25 

Step 2: — Interchanging the start state with the final state and 

reversing direction of transitions, we get 

  

Fig. 4.5(b) 

‘Step3: Writing of left linear grammar from the transition 

system, we get : 

— COIAOIBI 

— A1ICOIBIIO 

— Bilt 

= Ad. 

“a
A 

w
P
r
n
u
n
 

  
  

Q.1 Write an unambiguous CFG for arithmetic 

expressions with operators: +, *, /, “4, unary 

minus and operand a, b, ¢, d,e, f.Also, If should 

be’ possible to generate brackets with your 

rammar. Derive (a + b) 4 d/e + (— f) from your 

oaminer ) 
Ans. : 

An unambiguous grammar is given below. 

EB+E4+TIT [+ has lowest priority with L — R associativity] 

Chapter 5 : Context Free Grammars (CFG) —__          

T—oT*FIT/FIF (* and / has higher priority over 

+ with L > R associativity] 

F>FAGIG [4 has higher priority over * and / with 

L- R associativity] , 

G+-HIH [unary — has the highest priority] 

H-albleldleltfl(B) — [to handle brackets and identifiers] 

Derivation tree for (a + b) Ad/e+(-f)   
  

@GSnnD 
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Fig. 5.1 : Derivation tree for (a +b) 4d/e+(-f) 

Where, a € T is a terminal and © is a string of Zer0 OF more 4 

variables. 

The language L,(G) should be without €.. 

Right hand side of each production should start with a 

terminal followed by a string of non-terminals of length zero op 

more. 

Q.4 Prove that the language L = {a° | p Is a prime} te 

Ane. : 

A, ; Let us assume that L is a CFL. 

2. Letn be the natural number for L, as per the pumping lemma, 

Let p be a prime number greater than n. Then z = ae L. We 
can write z = uvxyZz. : 

4. By pumping lemma uv’xy"z = uxz € L, Therefore, 

| uxz | is a prime number. 

Let us assume that | uxz 1 = q. 

Now, let us consider a string uv"xy*z, 

The length of uv"xy’z is given by : 

luv'xy’zl = q+q(lvl+ly), which is not a-prime with 

qis a factor. 

Thus, uv’xy°z ¢ L. This is a contradiction. 

Therefore, L is not a context free lan guage. 

  

  

Q.2 Convert the following CFG to GNF : 

S—aSalbSble 

’ Ans. : 

_ The grammar can be brought to GNF through. simple 

substitutions C, + a and C, — b. 

S — aSC,IbSC,IC 

Cc7a 

C76 
  

Q:3 Write short note on GNF. 

Ans. : 

‘Grelbach Normal Form (GNF) 

A context free grammar G = (V, T, P, S) is said to be in GNF 

if every production is of the form : 

A — ad, 

Teasy-sorutions) 
  

@.5 Given a CFG G, find G’ in CNF generating L (G)-e 
S+ASBle A—+>AaS!a B-—>SbSIAIbb 

May 2006, May-2009, May 2010. Dec. 2011 

Step 1: Simplification of grammar 

Symbol S is nullable. 

After removing - 

Ans. : 

Productions, the set of productions is given by 
S —> ASBIAB 

A — AaSlAala 

B — SbSISbIDSIDIAIbb 
Unit production B + A is re 

productions is given by 

S + ASBIAB 

A > AaSlAala 
Bo SbS|Sb1bS1b1 AaS | Aalal bb Step 2: "Every symbol in 

A 

Moved, the resulting set of 

, in productions of the form — O where lod 2 2 should be a variable. 
This can be done by adding two Productions : Coa 

and Cy > bd 

Scanned by CamScanner 
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The set of productions after the above changes is 

   
  

  

  

  

  

  

  

  

  

  

  

  

  

S — ASBIAB 

A — AC,SIAC,la 

B — SGSISC,IC,S1b/AC,S1AC,1a1C,C, 

Qcwaa 

CQ -7b 

Step 3: Finding an equivalent CNF 

, Original production: ‘Raquiva 

S— ASB S— AC, 

Cc, > SB 

‘S— AB S— AB 

A> AC,S A+ AC, 

C,->C,s 

AAC, AAC, 

Aa Aa 

B-—SC,S B+ SC, 

= Cc, 9 Cs 

B>SC,ICSIb | S3SC,ICSIb 

B-— AC,S BAC, 

| BAC, lalG,C, | B>AC,lalC,C, 

: | Ca Ca 

Cb C,—b       
  

Q.6 Convert the following grammar into GNF 

S$ 3 XY1I0. X—00XIY Y-> 1X1 

May 2006, May 2012 

Ans. : 

Simplification of grammar 

The unit production x —>-y is removed, the equivalent set of 

productions is given by : 

S > XYI1I0 

X — OOXIIX1 

Y —> 1X1 

The symbol X is non-generating. 

The set of productions after elimination of X is given by : 

S — 0, itis in GNF 
_—_. 

Q.7 Find CFG for generating 

(1) String containing alternate sequence of 0’s 

and 1’s, D = {0, 1} 

(ll) The string contalning no consecutive ‘b’s 

but ‘a’s can be consecutive. 

The set of all string over alphabet {a, b} with 

exactly twice as many a’s as b’s. 

Language having number of a’s greater than 

number of b’s. 

Dec. 2006, May 2009, Dec. 2009 

(It!) 

(iv)   

TCS-27 
   

Ans. : 

(i) String containing alternate sequence of 0’s and 

1's, = (0, 1} 

Since, any binary number will satisfy the condition of 

alternate sequence of 0’s and 1’s, the nena L=(0+1)* 

The set of productions are : 

S > 0S11Sle 

. CFGG = ({S), {0,1}, {S>bS11S1e},S) 

(ii) The string containing no consecutive b’s but a’s can be 

consecutive. 

The set of productions for the given language L are : 

P= { 
S — aSlbXIble 

xX -— aSla 

} 

These production can easily be written from the FA for the 

above language. The FA is shown in Fig. Ex. 5.2.33. 

a 

Fig. 5.2 

Set of variables V = {S, X} 

Set of terminals T = {a,b} 

Start symbol = S’ 

(iii) The set of all strings over alphabet {a, b} with exactly twice 

as many a’s as b’s. 

The CFGG = (V,T,P,S) 

Where V = {S} 

T = {a,b} 

P = {S-— aSaSb& | aSbSaS | bSaSaS | e} 

S = Start symbol 

(iv) Language having number of a’s greater than number of b’s. 

The set of productions for the grammar are given by : 

P ={ 

— SaS1|aSS1SSalalaX! Xa 

— aBlbA 

— aX|bAAla 

-— bXlaBBlb 

} 
The variable X generates a string having equal number of a’s 

and b's, Group of excess a’s over b's are generated by 

S-productions. | 

n
p
r
 
x
u
 

    

@ GEESE SNE 
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Where 

Set of variables V = (S.X,A,B) 

Set of terminals T = {a,b} 

Start symbol = § 

Q.8 Convert the given grammar to GNF. 
S — SSlaSblab 

Ans. : 

Step 1: Other than the first symbol on the RHS of every 
production, every symbol must be a variable. 

We can make the substitution X for b. 

The resulting set of productions after the above 
substitution is : 

S —SSlaSXlax 

xX —b 

Removing left recursion from s-production, we get : 

S > aSXS,laXS laSXlaX 

S, > SS,IS 

xX -—b 

S}-productions are not in GNF. They can be brought 

to GNF by substituting S. 

S — aSXS,laXS,laSXlaX 

S, — aSXS,S,laXS,S,laSXS ,laXS laSXS lax, laSXlaX 

Step 2: 

Step 3 : 

  

xX >—b 

Q.9 Prove thatL=(0 12a 1is=4 and j > = 1} is not 
context free. 

Ans. : 

Let us assume that L is CFL 

2. Let us pick up a word w = 0" 1" 2° 3", where the constant n is 
given as per the pumping lemma. 

3. wis rewritten as uvxyz where Ivxyl < n and v-y # € i.e. both v 

. and y are not null. 

4. From pumping lemma, if uvxyz € L then uv'xyz is in L(G) 

for each i = 0,1,2,... 

There are two case :, 

CaseI: vy contains three symbols, These three symbols 

could be 0,1,2 or 1,2,3. 

The exact ordering of 0,1,2,3 will be broken in 

uv’xy’z and hence uvxy’z ¢L(G) 

Case Il: If vy does not contain three symbols then uv’xy’z 

will have either unequal number of 0’s a a8 or 

unequal number of 1’s and 3’s. Hence, uv xy'z ¢ L 

(G). 

Thus, proved by contradiction.   

TCS.08 

‘ Ll 

Q.10 Prove that L = {abe 112 1} Is nota CFL. 

Ans. : 

1. Let us assume that L is CFL. 

2. Let us pick up a word w = a'b’c” where the constant p is 

given as per the pumping lemma. ; 

3. wis rewritten as UVXyZ. 

Where | vxy | <n and v-y#€i.e., both v and y are not oul,   4. From pumping lemma, if uvxyz € L then uv'xy' zis inL @) 

foreachi=0, 1,2, ... ; 

There are two cases : 

Case I: vy contains all three symbols a, b and c. 

If vy contains all three symbols a, b and c then either 

v or y contains two symbols. The exact ordering of a, 

b and c will be broken in uv xyz and hence 

uv'xy"z ¢ L(G) 

If vy does not contain three symbols a, b and c then 

uv’xy7z will have unequal number of a’s, b’s 

and c’s and hence uv’xy"z € L(G). : 

Case II: 

Hence, it is proved by contradiction. 

Q.11 Convert the following grammar to CNF S 3 AACD 
A>aAble C—+aCla A-aDalbDble 

Ans. : 

- First of all, the grammar must be simplified. 

Step1: Removing null productions. 

Nullable set = {A} 

Null productions are removed with the resulting ‘set of 
production as : 

S - AACDIACDICD 

A — adAblab 

C > aCla 

A — aDalbDb 

Step 2: Removing non-generating symbol 
Symbol § and D are non-generating. 

Since, the startin & Symbol itself is - ting, it is 8 invalid grammar. ; non-generating, 

  

  

  

| SEIS 
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Q.12 Given a CFG G, find G’ In CNF generating L (G) -€ 

  

  

  

  

  

  

  

  

  

  

  

  

            

. TCS-29 

    

Q.13 Let G = (V, T, P, S) be the CFG having following 

    

Ss > ASBle set of productions. Derive the string “aabbaa” 

A-AaSla aoe leftmost derivation and rightmost 

B—» SbSIAIbb derivation. 
S$ aAS|a,A—> SbAISS Iba 

May 2006, May 2009, May 2010, Dec. 2011 
Ans. : 

Ans. = 

Step 1: . Simplification of grammar (I) Leftmost. derivation : 

Symbol S is nullable. , Leftmost derivation of aabbaa is being phown with the help of 

After removing &-productions, the set of productions is given by 7 parie'tree. 

A-— AaS|Aala 7 : AS 

B — SbSISbIbSIbIAIbb S— aAS A, 
Unit. production B > A is removed, the résulting set of 

ction: b produ s is given by Ao ees 

S — ASBIAB ° 

A — AaSlAala 
3S 4. = § 5. NK 

B — SbS|SbIbS1bI AaS | Aalal bb /\, f\\, ft Ss 

Step2: . Every symbol in a, in productions of the form A 30. /| \ / | \ AN | 

where Ia) 2 2 should be a variable. ¢ 5A gp gp, A a 

This can be done by adding two productions : / | ; / \ | / \ 

C, 7a a aba ab oa 

and C, > b Soa Aba Sa 

The set of productions after the above changes is Fig. 5.4(a) 

S — ASBIAB » S > aAS — aSbAS — aabAS — aabbas —> aabbaa 

A > AC,SIAC,|a (ii) Rightmost derivation : 
AC, lalC, 

B > SGSISCIGSIDIACSTAC!2 1 Rightmost derivation of aabbaa is being shown with the help 
Ga of the parse tree. 

—>b ‘ 

Step 3 ° CNF ' SS tep3: Finding an equivalent \ \ 

Sue = (Nf 
S— ASB S—7 AC, S>aAS | 

C, > SB Soa 

S— AB s> AB 

A AC,S AAC, 5 Ss ; 

oes NX A NK, / G76, ‘fi | | [° 
AAC, A> AC, S aa 

Aa: - Aza /\ | \ | J \ | / | \ | 

B-SC,S BSC, b Aa PN S$bA a 

Cc, 7¢,8 | / \ 

B IC,S1b A- SDA boa ab a 
> SC,IC,S Ib $3 SC,1C, A->ba S58 

B- ACS B— AC, 
: Fig. 5.4(b) 

B~AC,1alC,C, | BA ACI alGG 
S > aAS > aAa— aSbAa > aSbbaa — aabbaa 

Ca Cc,7a - t 

Gb cC,7b 

ee > = 

(a Teasy-solutions, 
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Q.14 L1G be te grammar 8 0B BA A= a0 
bAA B -b|bS | aBBFind 
(1) Left most derivation 
(Il) Right most derivation 

(ill) Parse Tree 

(Iv) Is the grammar unambiguous ? 
For given strings ak aaabbabbba aes bbaaabbaba 
(C)'00110101 . 

Ans. : 

(A) For string “asabbabbba” 
Tt will be worthwhile to draw the parse tree and from the 

Parse tree, one can easily write left most and right most derivation. 

@) Left most derivation : 

S —aB ~> aaBB — aaaBBB —> aaabBB 

—> aaabbB — aaabbaBB — aaabbabB > aaabbabbS 

— aaabbabbbA —> aaabbabbba 

Gi) Right most derivation : 

S—aB—aaBB—aaBaBB—aaBaBbS—aaBaBbbA 

—aaBaBbba 

—aaBabbba—aaaB Babbba=»aaaBbabbba—aaabbabbba 

(iii) Parse tree : 

Fig. 5.5 

(iv) The grammar is ambiguous as we can draw two parse trees 

for aababb : 8 

JS . 

A™ 
a B B A 
i 

co
. 

o
=
—
w
 

SOE 

  

‘ i 

s : of ag 

. 

a
i
e
 
L
a
n
 

Mr
 a
 

ai
 

o
_
O
 

(b) 
Fig. 5.5 

(B) For string "bbaaabbaba” 

(i) Leftmost derivation 

S — bA— bbAA —> bbaA — bbaaS 

— bbaaaB — bbaaabs —> bbaaabbA 

— bbaaabbas — bbaaabbabA — bbaaabbaba 

Gi) Rightmost derivation 

S + bA—> bbAA > bbAaS > bbAaaB 
+ bbAaabS —+ bbAaabbA — bbAzabbaS — 
— bbAaabbabA — bbAaabbaba — bbaaabbaba 

(iii) Parse tree for bbaaabbaba | 

Ss 

b A A 

/é™s 
/~ 

B 

v™ . 

~~ 
A 

“™ 
s 

MN 
| 

Fig. 5.5(c) 

(C) For the String 00110101 

(i) Leftmost derivation 

S— OBB — OOBB — 001B - 0011S 

— 00110 B-001101S —) 0011010B 

+ 00110101 Ha
rt
a 

on
 

  

bi 
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(ii) Rightmost derivation CO 

S— 0B — 00BB + O0B1S + 00B10B 

— 00B101S - 00B1010B > 00810101 

— 001110101 

(iii) Parse tree 

Ss 

is 
i, 

//, 
i, 

“ \, 

Y \, 
/ 

1 
Fig. 5.5(d) 

_Q.15 Obtain a grammar to generate the langua 

L={0"1"1n20)}. [re 
Ans. : 

Productions for the required language are as follows. 

iP = {S50SI1 le) 
CFG for the above language is ({$}, {0, 1}, P, S) 
  

Q.16 Reduce the following grammar to GNF.S — AB, 

A— BSBIBBIbB—aAbla 

Ans. : 

Step1: | Making every symbol other than the first symbol (in 

derived string o in A > c) as a variable : 

. Variables C, is substituted for b with resulting set of 

productions give as : 

S — AB 

_A ~ BSBIBBIb 

B — aAC,|a,C,>b 

Step2: The variables S, A, B and C, are renamed as A,, A,, 

A, and. A, respectively. The resulting set of 

productions is given below. 

A, — AA, 

Ay > AgAy As! AgAg!b 

A, > aA,A,la 

A, 3b   

TCS-31__ 

Step3: Convert to CFG 

Given production 
‘ ’ fn GNF 

Agob —> Ayob 

Ag >aAjAg|a —> Ag >ahsAgla 

Ag Ag Ay Ag . 

Substituting Ag An aA, Ay AjAg| aAyAg 

Aa Aghg 

Substituting Ag » Ag > aA, AA, | aAg 

Ao +b — A>b : 

Ay ApAg 

Substituting A, » Ay > aA, AgAyAgAg| aAyAgAg 

| AAyA,AAgAg | 2AgAg | DAg 

*. The final set of productions is : 

A, aA,A,A,A,A, | aA,A,A, 1 aA,A,A,A,1aA,A, 1 bA, 

A, aA,A,A,A,1aA,A,1aA,A,A,1aA,1b 

A, aA,A,la 

Ay b. 

  

Q.17 Reduce the following grammars to GNF 

Bo>aAblaS3AAl 1A 3SS11 

Ans. : . . 

Step1: Renaming of variables by substituting A, for S and A, 

for A. 

A, 7A, A,11 

A, A, A, 11 

Every production of the form A; — A; with i > j 

must be modified to make is j. 

A, — production, A, —> A, A, should be modified. We 

must substitute A, A, | 1 for the first Ay. . 

[MAA] 3 [BeBe 

The resulting set of productions is : 

Apo A, A Il 

A, >A, A, A, 11 A, 11 

Removing left recursion : 

The A, — production contains left recursion. Left 

recursion can be removed through 

Step 2: 

Step 3; 

  

A, 71 A, B,11B, 
  3 

@s LES ee 
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B, 3A, A, B,1A, A, 

The resulting set of productions is : 
AAAI . 
A, 91 A,B,I1B,ILA, 11 
B, >A, A, B,1A, Ay 

Step4: A, —productions are in GNF. 

, A, and B, productions can be converted to GNF with 
the help of A, — productions. 

A, >1A,B,11B, 11 A, 11 
A, 71 A,B, A,11B,A,11 A, A,11 A, 11 
B, —1 A,B, A, B,¢1B, A; B,11 A, A, B 

IV A,B, 11 A,B, A,11B,A,11A, A, 11 A, 

Q.18 Let G be the grammar S— aB1bAA> alaS| 
bAA B > b | bS | aBB Find 

(i) _ Left most derivation 

(ii) Right most derivation 

(iii) Parse Tree 

(iv) Is the grammar unambiguous ? 

For given strings (A) aaabbabbba (B) bbaaabbaba 

(C) 00110101 
Ans. : . 

’ (A) For string “aaabbabbba” 

It will be worthwhile to draw the parse tree and from the 

parse tree, one can easily write left most and right most derivation. 

G) Left most derivation : 

S >aB — aaBB — aaaBBB —> aaabBB 

— aaabbB — aaabbaBB — aaabbabB aaabbabbS 

> aaabbabbbA — aaabbabbba 

Gi)" Right most derivation : 

S—aB—aaBB—aaBaBB—aaBaBbS—aaBaBbbA 

—aaBaBbba 

—aaBabbba—aaaB Babbba—aaaB babbba— aaabbabbba 

(ii) Parse tree : 

A! 

JN LN, 
Li “és 

Fig. 5.6 

Gas ee 

TCS.99) 

(iv) The grammar is ambiguous as we can draw two PATSC.tregg 

for aababb : 5 

. 1 

J, A, 
| /N A 

Me 
(b) 

  

Fig. 5.6 

(B) For string “bbaaabbaba" 

(i) Leftmost derivation 

S > bA —>.bbAA —- bbaA — bbaaS 

— bbaaaB — bbaaabs > bbaaabbA 

— bbaaabbas — bbaaabbabA — bbaaabbaba 

(ii) * Rightmost derivation 

S— bA— bbAA + bbAaS > bbAaaB 

— bbAaabS —> bbAaabbA > bbAaabbaS 

— bbAaabbabA —> bbAaabbaba > bbaaabbaba 

Parse tree for bbaaabbaba 
Ss 

wo, 
J, 

an 

(iii) 

Fig. 5.6(c) 

(c) For the string 00110101 

(i) Leftmost derivation   S— OBB > 00BB + 001B g Oks _ 

Scanned by CamScanner



WwW Theory of Comp. Sci. (MU-Sem. 5-Comp.) TCS-33 
a a 

00110 B+ 0011018 > 0011010B 

— 00110101. 

Gi). Rightmost derivation 

S > 0B - 00BB ~ 00B1S — 00B10B 
— 00B101S — 00B1010B > 00B10101 
—> 001110101 

Gii) Parse tree 
Ss 

oN, 

“\,; 

ffs 

v™, 
IN 
aN 

/ 
1 

0 

Fig. 5.6(d) 
  

- @.19 Consider the following grammar : 

S$ > iCtS | iCtSeS | a C > b For the String |- 

‘ibtibtaea’ find the following (i) Leftmost 

derivation (ii) Rightmost derivation (iii)Parse Tree 

(iv) Check if the above grammar is Ambiguous 

Ans. : 

(i) Leftmost derivation : 

  

(ii) Rightmost derivation : 

S>iCtS [usingS—>iCtS] | S—iCtS  [usingS > iCtS] 

—ibtS [using C > b] > iCtiCtSeS 

— ibtiCtSeS [using S > iCtSeS] 

[using S > iCtSeS] = iCtiCtSea [using S— a] 

Q.20 Convert the following Grammar to CNF form : 

S— ABAA->aAlbAle B>bBlaAle 

Ans. : 

1. The non-terminals {S, A, B} are nullable. Null productions 

are removed, The resulting grammar is : 

S— ABAIBAIABIAAIAIB 

A aAlbAlalb 

“Bo bBlaAlbla 

2. Removing unit productions, we get 

S— ABAIBA!ABI AAI aA/bAlalb/bBIaA 

A aAlbAlalb 

B—bBlaAlbla 

3. Every symbol in a, in production of the form A — o where | 

a | > 2 should be a variable. 

This can be done by adding two productions. 

C,7a 

C,—-b 

The set of productions after the above changes is : 

S— ABAIBAIABIAAIC, AIC,Alal bIC,BIC,A 

A>C,AICAlalb 

B>CBIC,Albla 

C,7a,C,>b 

  

Finding an equivalent CNF. 
  

  

  

S>AC,C,>BA 
  

— ibtibtSeS [using C > b] 

—>ibtibtaeS [using S > al 

— ibtibtaea . [using S > a]   
— iCteCtaea [using S > a] 

— iCtebtaea [using C > b] 

"+ ibtebtaea [using C > b]   
  

(Ill) Parse Tree : 

S— BAIABIAAICA 

1C,AlalbIC,BICA 

S—> BAIABIAAICAIC AI 
albIC,BICA 
  

ASCAICAlalb. A>C,AICAlalb 
  

B>C,BICAlbla B>C,BICAlbla 
  

Ca Cra 
  

Cb   Cb         Q.21 Obtain leftmost derivation, rightmost derivation 
and derivation tree for the string “cccbaccba”. 

The grammar Is S > SS al SSb | ¢ 

    

® @URETIMIS 
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Ans. ’ 

Derivation tree : 
X we . . s 

—_— Se. 

/\ /\* 
/ s a | | b 

. b cc 

c Cc 

Fig. 5.8 

Left most derivation Right most derivation 

Ss —SSa Ss 7 SSa 

‘ _4$SaSa — SSSba 

- => cSaSa — SScba 

— cSSbaSa — Sccba 

— ccSbaSa, — SSaccba_ 

— cecbaSa - — SSSbaccba 

— cccbaSSba — SScbaccba 

— cecbacSba — Sccbaccba 

— ccecbaccha — cccbaccba 

  

Q.22 Convert following grammar to CNF and GNF. 

S + ASB lal bb 

A> aSAla 

B— SbSI bb 

Ans. : 

S— ASB lal bb . 

A vaSAla 

B— SbS I bb 

Converting to CNF : 

Re-writing the grammar, we get, 

S > ASB lal V,V, 

A>V,SAla 

B—>SV,SIV,V, 

V,—b 

V,7a 

Now, re-writing each production in its equivalent CNF form, 

we get, 

Productions 

S— ASB 

Sa 

Teasy-solutions 

CNF forms 

so AV;, V; — SB 

Sa 

   

  

Ss S>VVi 

$73 V,Va.V47> SA 

    

A>V,SAla 

Aza 

BOSV,SIV, V; B SVs, Vs> VS 

, B-> V, V, 

V,7b vb 

V,7a Vv,7a 

Converting to GNF : 

Step1: Substituting symbols, we get, 

S— ASBlalbX, 

A-aSAla 

B>SX,SIbxX, 

Xpob 

X,7a 

Step2: Re-writing production in GNF : 

Productions CNF forms 

(il) X,>b X,>b 

(2) X,->a XxX, a 

(3) A-»aSAla A >aSAla 
(4) S—ASBlalbX, S — aSASB | aSB [substituting A] 

SalbX, 

(5) B-SX,SIbxX Ss + aSASBX,S | aSBX,S | aX,S | 

bX, X,S 

[substituting for S] 

S— bx 
  

  
Q.23 Consider the following grammar G = (V, T P, §), 

V =(S, X), T = {0, 1} and productions P are 

~ $30 10X11 0181 

X— 0XX111S 

S is start symbol. Show that above grammar is 
ambiguous. 

Ans. : 

A grammar is said to be ambiguous grammar if the languag® generated by the grammar contains some strings that has 2 parse trees, 

Ex. : Let us consider the given grammar 
S > 010X110181 

X > OXXILIS 

where, S is the start symbol, 

\ 
ia 

mh The grammar generates the string 010011 in 2 different Way® | 
© 2 deviations are shown in Fig. 1(a)-Q. 61 and Fig. 1(b)-Q- 61: | As the same String has 2 di gramsat : ifferent e trees. i 

is ambiguous grammar, ws The given a 

A string 010011 is generated by the given grammar. 

   

\ 
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S s 
ISN 

e 1s 3 ce 
MIN LM 
Ox1:. £¥ 

{ XD 
0 0X 1 

{ 

(a) - (b) : 
Fig. 5.9 

Q.24 Consider the following grammar G = (V, T, P, S), 
_ V={S, X}, T= {a, b} and productions P are 
S— aSb | aX 

X- XalSala 

Convert this grammar in Greibach Normal Form 
(GNF). 

Ans. : 

Given set of productions 

S - aSblaX 
X — XalSala 

' Substituting C, for a, C, for b, A, for S and A, for X. 

A; > aA,C,laA, 

A, > A,C,1A,C,la 
Coma 

GQw7b 

Removing left recursion form A, production, we get 

Gla C,>b 

A; 7 aA,G,laA, 

A, 2A,C,A,1aA,1A,C,la 

_ A; 2% C,A,1A, 

Re-writing productions in GNF from 

A; 7 aA,C,laA, 

A, 7 aA,C,C,A,1aA,C,A,laA,laA, OC, 

laA,C,la 

A, — aA,laA,C,C,A,1aA,C,A;1a Ay 

laA,C,C,laA,C,la 

CGC7a 

Cc, 7 b 

Q.25 Construct a grammar In GNF which Is equivalent 

to the grammar S — AA] a, A> SS |b. 

May 2008, Dec. 2011, Dec. 2016 

Ans, : 

Step1: Grammar is already in a simple form without : 

1. e-productions, 2. Unit productions. 

3. Useless symbol.   

TCS-35 

We can proceed for renaming of variables, Variables S and A 
are renamed as A, and A, respectively. The set of productions after 

renaming becomes : 

A, > A,A, 

A;>a Productions after renaming 

A, > ASA, 
A,—>b 

Step2: Every production of the form A, > Aa with i > j 

must be modified to make i<j. 

A, — production A, A, A, should be modified. 

4 
We must substitute A,A, | a for the first A,. We should not 

: touch the second A, of A, A). 

A Aas [eo eee] 

The resulting set of productions is : 

A, > A,A,la 

A, — A,A,A,1aA, 1b 

Step3: Removing left recursion : 

The A, — productions A, > A,A,A, | aA, | b contains left 

recursion. Left recursion from A,-production can be removed 

through introduction of B,-production. 

A, — aA,B,1bB, 

B, > A,A,B,1A,A, 

The resulting set of productions is : 

A, > A,Ajla 

A, — aA,B,1aB,1aA,1b 

B, > A,A,B,1A,A, 

Step4: A, — productions are in GNF. 

A, and B, productions can be converted to GNF with the help 

of A2-productions. 

A, — aA,B,|bB, aA, Ib... in GNF 

A, 7 A, A, 

YJ Substitute aA,B, | bB, | aA, |b for first A, 

A, — aA,B,A, 1 bB,A, 1 aA,A, 1 DA, 

A, 7 a... in GNF 

Now, for B, - Production 

B, — A,A,B, 

Substitute aA,B, | bB, | aA, |b for the first A, 

B, — aA,B,A,B, | bB,A,B, | aA, A,B, | bA,B, 

B, > A,A, 

Y Substitute a A, B, 1 B, 1a A, |b for the first A, 

  

Qn ETM 
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B, — aA,B,A,|bB,A, | aA,A,|bA, 

The final set of productions is : 

A, — aA,B,1bB,1aA, 1b 

A, — aA,B,A,1bB,A, |aA,A,| bA, la 

A set of productions P " 

B, — aA,B,A,B, 1 bB,A,B, | aA, A,B, 1bA,B, | 

a A,BoA, | bB,A; |aA,A, | bA, 

where,Set of variables V = (A,, A,, B,) 

Set of terminals T = (a, b) 

Start symbol = Ay 

Set of productions P = Given above. 

  

Q.26 Consider the following grammar : 

S > ictslictSeSla | 

C4 b 

For the string ‘ibtibtaea’ find the following : 

(i) Leftmost derivation 

(ii) Rightmost derivation 

(iii) Parse tree 

(iv) Check if above grammar is ambiguous. 

| Boreal A 

Ans. : 

(I) Leftmost derivation 

Cb s-icts 
S=> iciSeS=—ibtSeS =——— 

Cb Sa 
ibtictSeS=—— > ibtibtSeS=——ibtibtaesS 

>ijibtibtaea 

(ii) Rightmost derivation 
Soa $—icts 

s>ictSeS=——iCtSea =—_—~> 

Soa 
ictictSea=——iCtiCtaea 

Cob Cob. 
=> iCtibtaea —— ibtibtaea 

  
    

Q.1 Distinguish between NPDA and DPDA. 

Ans. : 

Distinguish between NPDA and DPDA 

A NPDA provides non-determinism to PDA. 

In a DPDA there is only one move in every situation, Where 

as, in case of NPDA there could be multiple moves under a 

situation. DPDA is less powerful than NPDA. 

OnE 

  

(iii) Parse tree s 

    

(iv) It is an ambiguous grammar due to laughing if problem. 

Q. 27 Reduce following grammar to GNF. 

S > AB 

A — BSBIBBIb 

B — alaAb 

(i) Ss — 018/01 

s > 108/10 

S > 00le 

Ans. : 

Removing € -production, we get, 

S — 01S101110S!10100 

It can be converted into GNF in an easy way by introducing 

two production 

X71 and YOO 

“. Productions in GNF are 

S > OXSIOXIL1YSI1 YIOY 

X->1 

Y-0 

Every context free language can not be recognized by * 

DPDA but it can be recognized by NPDA. The class of language # 

DPDA can accept lies in between a regular language and CEL. A 

palindrome can be accepted by NPDA but it can not be accepted bY 
-aDPDA ff 
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Q.2 Design a PDA to accept (bdb)"c", 

Ans. : . 

To solve this problem, we can take a stack symbol x. For 
every ‘bdb’, one x will be pushed on top of the stack. After. reading 

\ (bdb)’, the stack should contain n number of x's. These-x’s will be 
matched with c’s. The transitions for the PDA accepting through an 
empty stack are given in Fig. 6.1. 

b,x/x 

bizo/Zp 
d,x/x 

d,Z/Z 

  

Fig. 6.1 

A cycle through qq —> q; — q, — dg traces a group of bdb. 

The PDA M = (Q,3,T,8, dp.» 0} 
Where, 

Q’ = _ {49 Gis Go 3}, B= {b, d, c}, P= {x, 2} 

Gp is the initial state, z, is initial stack symbol. 

The transition function 6 is given by, 

8(dp, b, 2%) = (Gy. 2) 
5(qy, b,x) = (qq, x) 

8(q,.d, 2%) = (Gy 2) 

8(q,,d,x) = (qx) 

5(qa. b,%9) = Qo» XZ) 
5(q,,b,x) = (qo, Xx) 

5(q,c,x) = (qs) 

5(q,,¢,x) = (q3,€) 

53, £,Zo) = (3) Accept through empty stack. 

    

  

Q.3 Design a PDA for detection of even palindrome 
over {a, b}. 

Dec. 2005, May 2006, May 2007, May 2016 

Ans. : 
R 

An even palindrome will be of the form ww 

iba, aa, aa aaa es a 
wiw w 1 w ow {w 

Centre Centre Centre 

If the length of w is n then a palindrome of even length is : 

First n characters are equal to the last n characters in the 

Teverse order, 

— 
G@s EER BS Pee 

  

  

The character immediately before the middle position will be 

identical to the character immediately after the middle position. 

Algorithm : 

There is no way of finding the middle position by a PDA; 

therefore the middle position is fixed non-deterministically. 

1. First n characters are pushed onto the stack. n is non- 

deterministic. 

2. The n characters on the stack are matched with the last n 

characters of the input string. 

3. nis decided non-deterministically. Every character out of first 

n characters, whose previous character is same as itself 

should be considered for two cases : 

(a) It is first character of the second half. 

- Pop the current stack symbol using the transitions: _ 

5(qy,a,a) = (q,,8) 

5(ayb.b) = ,,€) 

Must be identical 

(b) It belongs to first half. - 

- Push the current input ~ 

5(qy a £) => (Gy a) 

(qyb,£) => (qy.b) 

4. — nis decided non-deterministically. Every character out of first 

n characters, whose previous character is not same as itself 

should be pushed onto the stack. 

- Push the current symbol using the transitions : 

8(q, a,b) => (q,, ab) 

(qq, b, a) | => (qy, ba) 

The transition table for the PDA is given below : 

B(dy 2) => {(qg, a%)} 
54) b, 2%) => {Gy bz)} 

Sy aa) => {(qy, aa) (GQ, ©} 

By a,b) => ((q, ab)} 

Bqy bya) => {(qy, ba)} 

5(qy bb) => {(q,, bb), (q,.£)} 

5q,aa) = (q,®)} 
Sq. b,b) => {(q,,£)} 

By €. %) => {(q, €)} [Accept through an empty stack] 
Where, , 

the set of statesQ = (q,.q,} 
the set of input symbols & = {a,b} - 
the set of stack symbols T = {a,b, Zo} 

Starting state = % 

Initial stack symbol = Zo 
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Q.4 Construct a PDA equivalent to the following CFG. 

S$ —> 0BB 

> 0811810 
Test If 010° Is In the language 

Me Way 2006, May 2011, May 2012 

Ans. : 

The equivalent PDA, M is given by 

M = ({q},{0, 1},{0, 1,8, B}, 5, q, S, 4), 

where 6 is given by 

&q.e,S) = {(q,0BB)} For each production 

  &q,,B) => {(q, 0S), (q, 1S), (q, 0)} 

5(q,0,0) => {(q,®)} 

§@1,1) => {@©)} 

in the given grammar 

  For each terminal 

Acceptance of 010° by M: 

8(q, 010000, $) —8(q, e, S) = (q, OBB) 

Q.6 

————_—__——> (4, 0, 0) 

5(q, 0, 0) = (q, e) 

——————— (4, €, e) 

Thus the string 010° is accepted by M using an empty stack. 

. 010 EL 

Construct a PDA accepting { anbman|m,n2 1} by 

null store. 

Dec. 2006, Dec. 2010. May 2012. May 2013 

Ans. : 

Algorithm : 

1. The sequence of a’s should be pushed onto the stack in state 

o 

5(dy» &% Zo) 

5(q, aa) = 

(dp, 2p) 

(qq; 22) 

    
  

2. On first b, the machine moves to q, and remains there for b’s. 

———_ (a, 010000, 0BB) b’s will have no effect on the stack. 

59, 0, 0) = (q, €) 3. For every ‘a’, an ‘a’ is erased from the stack. 

—————_ (4, 10000, BB) The PDA accepting through empty stack is given by 

8(q, €, B) = (q, 18) M = ({4 Gy 4,}, {a,b}, {a 29}, 5, dys ZO ) 

————__ (q, 10000, 1$B) Where the transition function 8 is : 

&(q, 1, 1)=(q,€) ; 1. 8. a %) = (Gy, 2%) [First ‘a’ is pushed] 

———> _ (4, 0000, SB) 2. 8(qya, a) = (q2a) [Subsequent a’s are pushed] 
8(q, €, $) = (9, 0BB (q ; ) = (q, OBB) 3. 8(q). b, a) = (q,, a) [Input symbols b’s are skipped] 
————————— > (9, 0000, 0BBB , 

& 4, 8(q,.b, a) = (q,, a) 
3(q, 0, 0) = (q, €) 5. 8q.a.a)=(a,8) 

. q,- 4 a) = (q,, € Anai ed , (a, 000, 8B) 1 2 [An ais erased on first a of last a’s] 

6. 8(q,,a,a) =(q, : sg” 8 (a, €, B) = (a, 0) (Qa a) = y €) [An a is erased on subsequent a’s 

: of last a’s] 
——— (4,000, 0BB) 5 

7. 8(Q,. & 29) = (q,, ©) [Accepting thro’ 8(4,0,0)= (4) Pung through empty stack] 

———_ (4, 00, BB) . 0.6 Design a PDA to accept (ab)"(cd)", 
Ans. : 

8(q, é, B) 5 (q, 0) . 

(4,00, 08) re ote this feolieay, we can take a stack symbol x. For 
every ‘ab’, one x will be pushed on top of the stack. After reading 

8(q, 0, 0) = (q, €) (ab), the stack should contain n number of x's. These x's will be - 
—_——_——»_ 40,8) matched with (¢d)", For every. ‘ed’ one x will be popped. 

The transitions for the PDA accepting through an empty stack 
5(q, e, B) = (4, 0) are given in Fig. 6.2. i 

oe . @sGHEIMITN 
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Fig. 6.2 

PDA accepts through the final state q,. 

The PDAM = {Q,2,T, 5,qo, 2, F} 

‘Where, : 

Q = {dp Gi Go G3, Ig} 

x = {a,b,c,d} 

P= {x,2Z} 

The transition function 6 is given by, 

5(do a, Zo) = (Gy, 2) 
~ yx) = (GX) 
5qy. b. Zo). = do» X Zo) 
&(q,.b.x) = (dy. xx) 

5g, ¢,x) = (G2, X) 

5(q,,4,x) = (q,®) 

5(q3,¢,x) = (Gy, X): 

54a» €%) = (Gyr Zp) 
p is initial state, 
Zp is initial stack symbol. 

Set of final states F = {q,)} 
  

Q.7 Design a PDA for detection of odd palindrome 

over {a,b}. 
” Ans.: 

An odd palindrome will be of the form : 

1, waw* 
a, a cain, goa e008 By 

w ww we 

2 wow : 
: [ab, b ba, aba, baba, aa b aa, 

Ww w Ww Ww Ww W 

Gs Tr 
  
  

If the length of w is n then a palindrome of odd length is : 

First n characters are equal to the last n characters in reverse 

order with middle character as ‘a’ or ‘b’. 

Algorithm :; 

There is no way of finding the middle position of a string bya 

PDA, therefore the middle position is fixed non-deterministically. 

1. First n characters are pushed onto the stack, where n is non- 

deterministic. 

2. The n characters on the stack are matched with the last n 

characters of the input string. 

3. nis decided non-deterministically. Every character out of first 

n characters should be considered for two cases : 

(a) It is not the middle character — push the current 

character using the transition : 

(qo a £) => (dy a) 

5(qyb,£) => (Gy b) 

(b) It is a middle character — go for matching of second half 

with the first half. . 

5(qya,£) => (q,-®) 

5(qy b,£) => (q, &) 

The status of the stack and the state of the machine is shown 

in the Fig. 6.3. Input applied is ababa. 

Left child — current input is taken as the middle character 

Right child — current input is not a middle character. 

——_—> 
After first 
Input ‘a’ 

  

After second 
input b       
  

——_ Zq 
After third : 

Input a | 

fal 

         

Uy   

  
  —_——_—> 

After fourth 
Input b 

  

        
        

oo 
After tifth 
input a 

: fall 
Fig. 6.3 : Processing of string by the PDA. String is taken as 

“ababa” 
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Tho tranaition table for the PDA 1s given below, 

B qy te) => (Cds 8s Cy ad) 

G = Indicates that frrespectlve of the current 

stack symbol, porform tho transition, 

=> ((y C)s (yy b)) 

=> {(q,8)) 

=> {(q,e)) 

=> {(q,,e)) [Accept through an emply stack] 

5(qy be) 

5(q,. a 0) 

5(q,.b, b) 

BCA. 6%) 
Where, The set of states Q = {qo q)) 

Tho set input alphabet % = (a, b) 

The set of stack symbols P= (a, b, 2) 

Starting stato = q) , 

“ Tnitlal stack symbol = z 
  

Q.8 Give the CFG generating the language accepted 
by the following PDA : M = ({ qo, 44}, {0, 1}, {Zo X}s 

& Go Z» ) when 6& Is given below : 

(dor 1, Zo) = {(Gor XZo)} 84a, 1, x) = (Go, xx)} 
8(qo 0, x) = ((q1, x)} 5(qo, g, 2) & {(Go; e)} 

5(qyy 1, x) = {(qy, &)} 8(Qy, 0, Zp) = {(4o, Zo)} 

Dec. 2007 

Ans. : 

Step1: Add productions for the start symbol 

% 
S > [do “4 

1, 
S > [dq °a) 

Step2: Add productions for 8(qy, 1, 2) = (dos XZy)} 

Z, Z 

[qo * a) > 1 [a9 * dol [4 ° ol 

Z, x Zz 

[do ao) 9 Vg” aI Lay ° ao) 
ZL Z, 

[a ° ay] 9 1 E40 * Go) [dg ° ay) 

[dg ‘° 41] > 1 [49 * ql (a rn) 

Step3: Add productions for 5(qo, 1, x) => {do XX)} 

[4 * dg) 1 Uy * aol Ey“ dg) 
(4a * do) 9 1 Edy” a4) fu * ol 

“Ea” Gs) 1 Eay™ Gol Eo * 4 
(4) q)) 1 fo * 4,1 £4, * a) 

Step4: Add productions for 5(q, 0, x) => ((qys x)) 

[49 Gg) -» 0 £44” Go] 

lay * ay) > Ofq, * ay] 

Gas YT 3 Ee 

TCS49 

Step 5: Add productions for 8(do: & Zo) = {Cy ©) 

% 
[Iq de 

Step 6: Add production for 8(q,, 1.x) => {i ©} 

(a * ail i 

Step 7: Add productions for 8(q,, 9, 2g) = {o> Z)} 

Z, Zz 

(a; "dol = [40 ° dol 
ZL, Z, 

[41 "qd = Old ° 4) 

Q.9 Design a PDA for accepting a language 

L={wew'l We {a, b}* } 

May 2008, May 2010, May 2011 

Ans. : . 
T 

w' stands for reverse of W. A string of the form WeW is an 

odd length palindrome with the middle character as c. 

Algorithm : 

If the length of the string is 2n + 1, then the first n symbols 

should be matched with the last n symbols in the reverse order. A 

stack can be used to reverse the first n input symbols. 

Status of the stack and state of the machine is shown in 

Fig. 6.4, Input applied is abbcbba. ‘ 

+— Input 
  

    

            t| | 20] [20] +— stack 
+— State 

  

  

4 G2 

Fig. 6.4: A PDA on input abbcbba 

The PDA accepting through final state is given by 

M = ( (4 4p 4.) (4, b,c}, (a, b, Zo}, 5, Gy, Zs {4,}) 

Where the transition function 5 is given below : 

5(qy, a, €) = (yy a) | First n symbols are pushed onto 

5(qy, b, €) = (do, b) the stack 

8(dy. ¢, €) = (q,. €) 

8(qy a, a) = (q,, €) 
5(q,, b, b) = q,, €) | 
5(q,: €, 29) = (Gy. 2p) [Accepted through final state] * 

A transition of the form 8(q), a, &) = (do. a) implies that 
always push a, irrespective of stack symbol. 

(State changes on c] 

Last n symbols are matched with 

first n symbols in reverse order 

A
w
a
 

Y
N
 

= 

    Q.10 Convert the following expression grammar to 
PDAI>albllalIbIIOIMEOIIE*EIE*E! 

(E) 
Ans. ; 

The equivalent PDA, M is given by, 
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See RRR IIR UU UU Ta 

Me (a {0, 1, a, b, *, +, ( )}{0, 1, a, b, *, +, ( \, |, E}, 5, qa E, 0) 

where, 5 is given by, 

&q.6,E) = {(q,D, (q, E * B), (q, +B), (q, &))} 

5@,&1) = {(q,a), @, b), (q, Ib), (q, Ia), (q, 10), (q, 11) 

80,0) = {qe} 
8q@1,1) = {(q,©) 

&qa,a) = {(q,£)} 

5(q,b,b) = {(q,£)} 

8q++) = {(q,e)) 

&q,*,*) = {(q,£)} 

84GQ = {(q,e)} 

5q,),)) = {(q, €)} 

Rule 7 
————-— 

Rule 5 
———— 

Rule 8 
— 

Rule 7 
——— 

Rule 9 
—_——> 

(dr 1), (2p) 

(dq 1): [( 29) 

(dy» )s (Zp) 

(doy &+ Zp) 

(dp € 29) 
  

  

Q.11 Design a PDA for CFL that checks the well 
.  formedness of parenthesis i.e. the language L of 

all “balanced” string of two types of parenthesis 

say “()” and “[]”. Trace the sequence of moves | 

made corresponding to input string (([ ])[ ]). 

Ans. : 

. The transition function of the PDA is given below : 

1. 5(dy, 6 2) = (Gos (Zp) 

2 Faye GO =@.©O 

Push the opening bracket ‘(’ 

3. 86D = Gy) 

4, 5p [, 20) = Gy [Zo Push the opening bracket ‘[’ 

5. yl O= Gy lO 

6. Sq, [-L)=(@, (1) 

POP an opening bracket for a   7. 8qy).)) = (ay) 

closing bracket. 

8. Sqy 1,1) = Gy &) 

9, Sy &,2) = Op 2) ] Accept through a final state. 

Simulation of PDA for the input string (([])1]) 

le 1 

(ay, (DD, 2)? yy CVD, 2) 

Rate? Cay (Ds (20) 

Rates (ay DD: (20) 
Rule 8 
———— dy ) 1 (C26) 

Q.12 Consider the PDA with the following moves : 
5(qos @, Zo) = {(4os AZp)} (qq, a, a) = {(Qo, 28)} 5(4o; 

b, a) = {(q1, &)} S(q, b, a) = {(as5 €)} 5(G1, € Zo) 
= {(q;, &)} Obtain CFG equivalent to PDA. 

  

  

Ans. : 

Step1: Add productions for the start symbol. 

Zo : 
S— [do © ol 

Zp: 
S> [qd 41 

Step2: Add productions for (qp, a, a) = {(qg, 2a) } 
a a a 

[do dol ldo dol [do Aol 
a a a 

[qo Gol > aldo alla: dl 

a a a 
[qo dil—aldo dol ldo 4 

a a a 
Iq a)—aldg alla 4) 

Step 3: Add productions for 5(qp, b, a) = {(q,, &)} 

a 
[q a]—-b 

Step4: Add productions for 5(q,, b, a) = {(q,, ©)} 

a 
(Iq; a)—>b 

Step5: Add productions for 3(q,, &, 2) > {(q,, ©)} 
. 25 

Iq, a)—-e 

Q.13 Write short note on DPDA. Dec. 2009 

Ans. : 

DPDA 

In a DPDA there is only one move in every situation. A 

DPDA is less powerful than NPDA. 

Every context free language cannot be accepted by a DPDA. 
For example, a string of the form ww" can not be processed by a 

DPDA. 

The class of a language a DPDA can accept lies in between a 

regular language and CFL. 

A DPDA is defined as : 

M = (Q,2,9,8,q,2,F), where 

5(q, a, x) has one move for any qe Q, XE Pandae X. 

    
a | 
@Teasy-soiutions] 

\ 
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Q.14 Design a PDA for detection of palindromes over 
{a, b}. elem 4 

Ans. : 

_ A palindrome will be of the form : 

1 wit - even palindrome 

2. waw* 

3. wbw* - odd palindrome 
If the length of w is n then a palindrome is: 

First n characters are equal to the last n characters in the 
reverse order with the middle character as : 

(1) a [ For odd palindrome ] 

(2) b [ For odd palindrome] 

(3) .¢ [ For even palindrome] 

The transition table for the PDA is given below : 

, 5g 2%) => (4G), 2) (Gy 229)} 

5(dy, b, %) => {(q,, Zp)s (dy, bz)} 

5d, a, a) 

5(q,, a, b) 

5(q,, b, a) 

5(q,, b, b) 

8(q,, a, a) 

5(q;, b, b) 

5(q:, €, Z) 

= (@, aa) @,, a), (q,, €)} 

=> {(dy ab), (G,,b)} 
=> {(q,, ba), (q, 4)} 

=> {(q,, bb), (q,, b), (q,, &)} 

=> (@, 8} 

= {G8} 

= (@,,©)} 

[Accept through an empty stack]. 

Details of important transitions : 

The transaction, (q9,8,a) => { (Qo,84), (44.4), (44.2) } 

Input 
‘a’ is part 

of w 

Input 'a' is middle 
point of odd palindrome 

Input 'a' Is first 

character of wi 
of even palindrome 

The transition rule for 5(qp, a, a), must consider the three cases : 

1. Input ‘a’ is part of w of the palindrome. 

2. Input ‘a’ is middle character of waw* 

3. Input ‘a’ is the first character of wt 

TCS-42 

The transaction, 5(q9,4,b) => { (dg» ab), (4b) ) 

- | 
Input ‘a' is Input ‘a’ is 
part of w middle point 

of waw" 
  

rae Q.15 Write application of PDA. 

Ans. : 

Applications of PDA 

PDA is a machine for CFL. 

A string belonging to a CFL can be recognized by a PDA. 

PDA is extensively used for parsing. 

PDA is an abstract machine; it can also used for giving proofs 

of lemma on CFL. 
  

  

Q.16 areas a AA to accept language 

fa n2 1} 
Ans. : 

For every ‘a’ in the input, 2 b’s are pushed onto the stack. 

For the first ‘b’ in the input, 2 b’s are pushed onto the stack. 

For every ‘b’ in the input, 1 ‘b’ is popped out from the stack. 

Finally the stack should become empty. 

Transitions 

8(dp, a 2) = (dg, bb zy) 

(dp, a,b) = (dg, bbb) 

5 dob, 2) = (q,, bbz) 

5p b,b) = (q,, bbb) 

8q,,b.b) = (q,€) 

5(qy €,%>) = (q,€) 

[Accept using empty stack] 

Q.17 Design PDA to check even palindrome over 
== {0, 1} 

Ans. : 

An even palindrome will be of the form ww* 

010 Pr 242, 210,,00, 2% 
Ww tw" Ww we w we 

Centre Centre Centre 

If the length of w is n then a palindrome of even length is : 
First n characters are equal to the last n characters in the = reverse order. 

The character immediately before the middle position will be. identical to the character i immediately after the middle position. 

  

GENEID 
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Algorithm : 

There is no way of finding the middle position by a PDA; 
therefore the middle position is fixed non-deterministically, 

1, First n characters are pushed onto the stack. n is non- 
‘ deterministic. 

2. The n characters on the stack are matched with the last n 
characters of the input string. 

3, _ nis decided non-deterministically. Every character out of first 
n characters, whose previous character is same as itself 
should be considered for two cases : . 

(a) _Itis first character of the second half. 

- Pop the current stack symbol using the transitions : 

5(q, 0,0). => @,.e) 

8q. 1.1) >@,2) 
Must be identical 

(b) It belongs to first half. 

- Push the current input 

5(qy,0,€) => (q,, 0) 

Sy le) => (q, 1) 

. 4. nis decided non-deterministically. Every character out of first 
n characters, whose previous character is not same as itself 

' should be pushed onto the stack. 

- Push the current symbol using the transitions : 

8(q,0,1) => (q, 01) 

S(qy 1,0) => (q, 10) 

The transition table for the PDA is given below : © 

5(ag. 0,29) => {(Ay, 02,)} 
5(qy. 1,2) = {(dy 12))} 

5(q,,0,0) = {(do, 00) (q,. €)} 

5(q,9,1) = {(qy. 0D} 

S(q, 1,0) => {Cy 10)} 

Sq) 1.1) = {Cy 1), G,.©)) 

&(q,.0,0) = (() ©} 

&q, 1,1) = {G@, ©} 

5(q,,&%) = {(q,€)) 

[Accept through an empty stack] 

Where, 

, = {dy 4,} 

the set of input symbols © = {0, 1) 

the set of stack symbols I" = {0, 1,29) 

Starting state = q) 

Initial stack symbol = Zp 

the set of states Q 

TCS-43 

Q.18 Design DPDA to accept language L = {x € {a, b}* 
N,(x) > N,(x)}, Ng(x) > N,(x) means number of a’s 
are greater than number of b’s In string x. 

TARE 

Ans. : , 

The PDA is being designed to accept the string using final 

state. The stack is being used to store excess of a’s over b’s or 

excess of b’s over a’s out of input seen so far. 

Transitions 

1. 8 (qq a, Zp) = (dg, a Zp) (Extra ‘a’ is pushed] 

2. 8 (qo, b, Z) = (Gg, b Zp) [Extra ‘b’ is pushed] 

3. 8 (dg, a, a) = (qq, aa) [Excess a’s are pushed] 

4. 8 (qg, a, b) = (Gy, €) [Excess b’s decreased by 1] 

5. 8 (qb, b) = (qy bb) [Excess b’s are pushed] 

6. - 5 (dp. b, a) = (dp, €) [Excess a’s decreased by 1] 

7. 8 (qo, €, a) =(q;, €) [Input ends with excess a’s on 

the stack] 

The PDA is given by: 

M = ({qo- 41} {a,b}, {a, b, 2}, 8, dg. Z {q,) 
  

Q, 18 Construct PDA accepting the language 
L= {a’ "bi n> QO}. 

Ans. : 

Algorithm : 

1. Forevery pair of leading ats, one X is inserted in the stack. 

2. X’son the stack are matched with trailing b’s. 

The PDA is given by 

M = ( {4 4,4). 43} {a,b} (X, Z,},8,q,, Zo) 

where the transition function & is 

1 5(qy.a,Z,) = (q,,2,) 

2. 8(q,..Z,) = XZ) 
3 5q,.a,X) = (q,.X) 
4: 8q,.a,X) = (q,, XX) 

5 ~ BG@,bX) = |e) 
6 5(q,.b,X) = (q,,€) 

7 5q,.€,Z)) = (q,€) 

Accept through empty stack. 
    Q.20 Design a PDA-corresponding to the grammar : 

S-> aSAle 

A + bB 

Bb 
Ans. ; 

The equivalent PDA, M is given by : 

    

—e - |=» esis 
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iq 

TCS-44 | 

M = ({q), {a,b}, {a,b, S, A, B}, 5, q, S, 4) 
‘where 6 is given by : 

5(q, €, S)=> ((q, aSA), (q. 6)} 

5(q.€, A) > ((q, bB)) 

5(q, €, B)= ((q, b)} 

5(q.a,a)= ((q,€)) 

5(q.b, b) = {(q, €)}   

Q. 21 Design a PDA to accept language 
{a"~ pnt! In>=1 } 

-Ans. : 

1. 84g. a, Zp) => (Gy 84Zp) « 

2. 8(q,,a,8) => (Gy 24) 

3. 8(q,,b,a) > (qa) 

4. &(q,,b,a) => (dy €) 

5 5(qy €, Zp) => (d €) 

Accept through empty stack. 

Chapter 7 : Turing Machine (TM) 

Q.1 Write short note on : Universal TM. 

Dec. 2005, May 2007. Dec. 2007, May 2008. Dec. 2008, 

May 2009, May 2010, Dec. 2011, May 2012, 

Dec. 2012, Dec. 2015 

Ans.: 

Universal TM 

A general-purpose computer can be programmed to solve 

different types of problems. A TM can also behave like a general- 
purpose computer. A general purpose computer solves a problem 

as given below : 

1. A program is written in a high level language and its 
machine-code is obtained with the help of a complier. 

2. Machine code is loaded in main memory. 

Input to the program can also be loaded in memory. 

4. Program stored in memory is executed line by line. Execution 
involves reading a line of code pointed by IP (instruction 
pointer), decoding the code and executing it. 

- We can follow a similar approach for a TM. Such, a TM is. 
known as Universal Turing Machine. Universal Turing Machine 
(UTM) can solve all sorts of solvable problems. 

A Turing machine M is designed to solve a particular 
problem p, can be specified as : 

1. The initial state qy of the TM M. 

2. The transition function 5 of M can be specified as given : 

If the current state of M is q, and the symbol under the head is 
a; then the machine moves to state q, while changing a, to a,. The 

move of tape head may be : ' , 

1. To-left, 

2.  To-Right or 

Neutral 

Such a move of TM can be represented by tuple 

{Gp Gp2 9M) = udp Q 5 aya,E Tr; m, € (To- left, To- 

Right, Neutral) } 

Gs easy-solutions 

  

UTM should be able to simulate every turing machine. 

Simulation of a Turing will involve : 

1. Encoding behaviour of a particular TM as a program. 

2. Execution of the above program by UTM. 

A move of the form (q;,a;,q,,a;,m,) can be represented as 10 

10'10°*' 10' 10%, 

Where K = 

K = 

K = 

State q, is represented by 0, 

State q, is represented by 00, 

State q, is represented by 0}. 

I+ 1 

1, if move is to the left 

2, if move is to the right 

3, if move is ‘no-move’ 

First symbol can be represented by 0, 

Second symbol can be represented by 00 and so on. 

Two elements of a tuple representing a move are separated by 1. 

Two moves are separated by 11. . 

Execution by UTM : 

We can assume the UTM as a 3-tape turing machine. 

1. Input is written on the first tape. 

2. Moves of the TM in encoded form is written on the second 
tape. 

The current state of TM is written on the third tape, 
The control unit of UTM by counting number of 0's between 

1’s can find out the current symbol under the head. It can find the 
Current state from the tape 3. Now, it can locate the appropriate 
move based on current input and the Current state from the tape 2. Now, the control unit can extract the following information from’ 
the tape 2: 

l. Next state 

3. Move of the head. 

2. Next symbol to be written 

Based on this information, the control unit can take the 
appropriate action. Ts 
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Q.2 Design a TM which recognizes palindromes over 
alphabet {a,b} 

May 2006, May 2009, May 2014, Dec. 2017 

Ans. : 

A palindrome can have one of the following forms : 

1. oo 

2, aaoa® 

aba® 

Where @ is a string over {a,b} with 1a 120 

Algorithm : 

1. Algorithm requires n cycles, where | o | =n. 

2. In each cycle, first character is matched with the last 

character and both are erased. 

  

Fig. 7.1(a) : Transition diagram 

If the leftmost character is ‘a’ the machine takes a path 

through qy —> 4; > 43 > 4s — >, looking for last character as ‘a’. 

If the leftmost character is ‘b’, the machine takes a path 

through | 
a> 74,7 6 4 q>. looking for last character as ‘b’. 

The Turing machine M is given by : 

M = (Q,2,T,5,q).B.F) 

Where, Q = {hop Gi» Gor s+ Gar Q5» Ies rr a} 

z= {a,b} 

r = {a,b,B) 

The transition function 6 is given in Fig. 7.1(a) 

G = _ initial state 

B = blank symbol 

F = {q,}, halting state 

Working of TM for input abbabba is shown in Fig. 7.1(a) : 

> : @EnETImMnND 

BabbablsB}BBbbebbas HHBbsabbaBl-BebabbaP 

qo 4 q % 
|-Bbb abbaB|-BbbabbaB|-BbbabbaB rpbhabba® 

A) ‘ 3 

| BbbabbaBl BbbabbBBt Bbb oe PBbpAree 

qr 
|-BbbabbB|-B bbabb B|-BbbabbB/|- BbbabbB 

t t t t 
a h h % 

-BB babies + BusubEPBbePOB pete. 

t 
2 qa ’ Ws Ns 

|-BbabbB} BbabbB} BbabBB}BbabB 
t 1 
GN Gs dD 

-BbabB} BbabB} BbabB} BBabB 
tt t 

G Co qo ‘ 2 

+ BabB|-BabB|BabB} BaBB | BaB 
t ~ tft + ft 
ds % 4 dh % 

}+-BaB} BBB} BBB 

£ a 4 
Fig. 7.1(a) 

  

  
Q.3 Design a TM to compute multiplication of two 

unary numbers. May 2007 

Ans. : 

Multiplication algorithm is being explained with the help of 

an example. . 

  

      

  

  

  

  

  

3x 5 will require three cycles. 

Initial |B000-# 00000 # B 
rT 
3 5 Product will be 

stored here 

Cycle 1 | BX00.# 00000 # 00000B = 1x5=5 
—” 

1x5 =5 

Cycle2 | BXX0 # 00000 # 000000000B 2x5=10 
—~” 

2x5=10 

Cycle 3 | BXXX # 00000 # 00000 00000 00000 B | 3x5 = 15       
3x5 = 15 

To calculate 3 x 5, three times, 5 zero’s are appended. 

Unary representation of 3 is 000. 

Unary representation of 5 is 00000. 

3, 5 and the result, are separated by #. 

Inside each major cycles (three cycles for 3), there will be a 

number of minor cycles (5 minor cycles for 5) to append 0’s one at 

atime. 
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WAR 
0/0.R 0/0,.R 

OfR a WR’ KR        

Fig. 7.2 : Transition diagram for TM 

Let us assume that the two numbers to be multiplied are.x, and x,. 

X, is represented by w,, where 0, is a string of 0’s. 

X, is represented by @,, where 0, is a string of 0's. 

X, * X, is represented by w,, where (, is a string 0’s. 

# separates @, and 0),, ®, and @. 

In the TM shown in Fig. Ex. 7.3.6, there are two cycles. 

The cycle qg > q,; > 4, — Gs Mp appends , to w, for 

every zero in w,, with the help of cycle q, — q, > q, > q, 

Working of TM for 2 x 2 is shown in Fig. 7.2(a) : 

B00#004B | Bx0#00#B | Bx0#00#B |-Bx0 #00#B 

t t t t 
D qh hh : & 

-LBx0#x0#4B LBx0#x0#B 

t + 
4s 4s 

-LBx0#x0#B | Bx0#x0#0B 

t t 
45 de 

-LBx0 #x0#0B LBx0#x0#0B 

t t 
% q 

-LBx0 #00#0B LBx0#0x#0B 

t t 
% % 

t-Bx0 #0x#0B FBx0#0x#0B 

t t 
qs q3 

-Bx0#0x#00B -Bx0#0x#00B 

t t 
Py qa 

+ Bx0#0x#00B L Bx0#00#00B 

t ft 
% 2 

-Bx0#00#00B +} Bx0#00#00B |}-Bx0#00#00B 

t t t 
qs qs ds 

+Bx0#00#00B + Bx10#00#008 |-B00 #00#005 

tT t t 
qs % qo 

-LBOx#00#00B } BOx#00#00B x 

t t 
qq Ar 

Fig. 7.2Contd... 

TCS-48 

LBOx#x0#00BL-BOx#x0#00B 
t 

4 q 
LBOx#x0#00BLBOx#x0#00B 

4 4 
LBOx#x0#00BELBOx#x0#000B 

4 d 
LBOx#x0#000BLB 0x #x0#000B 

qu du 
-BOx#x0#000BLB 0x #x0#000B 

t 

d 4 
+BOx#00#000BLB 0x #0x#000B 

t t 
h % 

+ BOx#0x#000BEB Ox #0x #000B 

t t . 
Gs % 

-BOx#0x#000B/ B Ox 40x #000B 

t t 
qs cr) 

FBOx#0x#0000B]B0x#0x#0000B 

t t 
% % 

FBOx#0x#0000BLBO0x#0x#0000B 

t t 
4 4a 

1BOx#0x#0000BLB0x#00#0000B 
t t 
% au 

EF BOx#00#0000B]}L BOx#00#0000BLB0x#00#0000B 

t t t 
qs qs 4s 

FBOx#00#0000BELB00#00#0000BLB00#00#0000B 

7 Tt t 
Qs % Gs 

Fig. 7.2(@) 

Tesalt 

  

  
Q.4 Design a TM to find the value of log.(n), where n is 

any binary number. 

Ans. : 

by n. 

ie. if 2"<n<2"*' then log,(n) =n 

Let us consider the case of a number 

n = 36 

2 < 36<2° 

log,(36) = 5 

36 can be written as 100100. 

Therefore, 

Any number n satisfying the condition 2° < n < 2° can be 
written as IXXXXX (where X stands for either 1 or 0). log, — 

(1XXXXX) can be calculated by erasing the most significant bit 1 
and renaming other bits as ‘0°, Unary representation of 5 is 00000. 

    5 , Teasy-soluions 
———— 

| 

log,(n) of any number n lying between 2° and 2"*! is given 

  

    1 
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0/0,R 
O/B.R 10.R 

( VB () BIB. , 

=~ G)_“@© 
Halting 

state 

Fig. 7.3(a) : Transition diagram 

lo 41 5 
9 | oB.R) BR) - 

qi (q:,0,R) (q,,0,R) (q,,B,L) 

qa | & % % 

Fig. 7.3(b) : Transition table : 

Working of TM for (36),9 is shown in Fig. 7.3(c) : 

< Halting state 

(36) = (0100100), 

B0100100B}B100100B -B00100B 

tT t tT 
. Io qo q) 

+B00100B/800100B} B00000B 

Tt t t 
qh cof q) 

-B00000BELB00000B/-B00000B 

t t + 
qh h q2 

Fig. 7.3(0) 
  

Q.5 Designa Turing machine to compute n!. 

Ans: : ~ 

It is assumed that n is represented in unary system. , 

Factorial of n can be calculated through repeated application of : 

1.. Multiplication 

2. Copy — 

Operations. 

Algorithm is being explained with the help of example. 

Algorithm for [3 . 

Initial configuration |O#OOO#BB... 
=— 

Cycle 1: n 

O#OOOHOOOB... 
= 

Product 

1. Multiplication 

2. Copyn=l,ie.2 | O0#000#000#00 
SS ay 

n nxt n-1 

Cycle 2: 

1. Multiplication 

  

O#OOOHOOO#HOO#OO000N 
Ss 

n nxt n-1— nx(n-1) 

  

2. Copyn-2,i.€. 119 4000#000800#000000#0 

n nx1 

  Sa + 
nits nx(n-1)_—n-2 

Cycle 3: 
  

1. [0#000#000#00#000000#0#00000084 
  

So 
n 1xn 

— 

nx(n-1) n-2 nx(n-1)(n-2)- 

©) 

n-1 
  

Subroutine for 
multiplication, 

  

          

  

Subroutne to 
ye Copy N=1       

Fig. 7.4(a) 

O/0,R 

  

Fig. 7.4(b) 

Subroutine to copy n—1: 

  
Fig. 7.4(c)   

  

® - 
@s easy-solutions 
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Q.6 Write note on ‘Multiple Turing machine’. 

Ans. : 

Multiple Turing machine 

1. A Turing Machine with Multiple Heads 

A turing machine with single tape can have multiple heads. 

Let us consider a turing machine with two heads H, and H,. Each 

_ head is capable of performing read/write /move operation 

independently. 
BabaabbaBBB 

H, 4H, 

Fig. 7.5 : A Turing machine with two heads 

The transition behavior of 2-head one tape Turing machine 

can be defined as given below : 

5 (State, Symbol under H, Symbol under H,) = (New state, 

(S;, M,), (S2, M,)) 

Where, 

S, is the symbol to be written in the cell under H,. 

M, is the movement (L, R, N) of H,. 

S, is the symbol to be written in the cell under H,. © 

M, is the movement (L, R, N) of H,. 

2 Miulti-Tape Turing Machine 

Multi-Tape turing machine has multiple tuples with each tape 

having its own independent head. Let us consider the case of a two 

tape turing machine. It is shown in Fig. 7.6. 

Tapel: [Bla] blalalo[b]a[B]B[B —| 
  

  

Tape 2: | B| a [alo]o] alb|[a[B | B | — 

Fig. 7.6 : A two-tape turing machine 

The transition behavior of a two-tape Turing machine can be 

defined as : 

5(q).4;,2,) =(q2,(S,.M,),(S2.M,)) 

Where, 

_ q, is the current state, 

g, is the next state, 

a, is the symbol under the head on tape 1,   

a, is the symbol under the head on tape 2, 

S, is the symbol written in the current cell on tape 1, 

S, is the symbol written in the current cell on tape 2, 

M, is the movement (L, R, N) of head on tape 1, 

M, is the movement (L, R, N) of head on tape 2. 

Q.7 Design a TM which recognizes words of the form 

   
  

a’b’c" | n21. . 

ones yyR bbR 
w/a zwzR 

cf2,L 

w2L 
b/b,L. 
yyL 
a/a,L 

yyR 

w2,R BBN 

Fig. 7.7(a) : Transition diagram 

| a b ¢ x y z B 

240] (41.%R) = - = (ay,R) = - 

qh (q1,a,R) (q2y,R) - = (a1,y,R) _ _ 

@} -  (Gab,R) (432A) - — (ez) - 

Qs} (Qs.a,L) (qabl)  -  (daXR) (dsy,L) (qa.2,L) 

Gl - - - — — (qsy,R) (q4.2,R) (as,B,N) 

a5] ds qs a5 Qs 95. Gs qs 

Fig. 7.7(b) : Transition table 

The Turing machine M is given by : 

M = (Q3,7.8,q,B.F) 
= {o> Qs Gas Qs Gas Os} » 

= {ab,c} 

Where, 

= {a,b,c,x, y,z, B} 

The transition is given Fig. 7.7(a, b) 

= Initial state 

= Blank symbol 

= {q5}, Halting State n
m
w
e
P
F
f
o
a
 

s
a
s
M
 
©
 

" 

  

(as easy-solutions 
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“Algorithm : | 

For a string a’b"c’, the TM will need n cycles. In each cycle : 

1. Leftmost ais written as x 

2.  Leftmost b is written as y 

3. Leftmostc is written as z 

At the end of n cycles, the tape should contain only x’s, y’s 
and z's. 

Working of the TM for input abc? is shown in Fig. 7.7(c) : 

. BAanbbeeoni=Bayehbt cccB] BxaabbbeccB 
* 

h 1 . qa 

FBxaabbbcccB} Bxaay bbcccB} BxaaybbcccB 
t tT T 
Gh ab) & 

PBxeey ibs ceBir axauybhz ccB|-BxaaybbzccB 
t 

% qs & 

- FBxaaybbzccB}] BxaaybbzccB|-BxaaybbzccB 
te t t 
G3 - & 43 

-BxaaybbzccB] BxaaybbzccB|-BxxaybbzccB 

t+ et | 
qs D qi 

FBxxaybbzccB}/ BxxaybbzccB/L BxxayybzccB 
+ | t ot 
i qa - Oy 

-BxxayybzccB} BxxayybzecB} BxxayybzzcB 
t t 
[2 i) 43 

EBxxayybzzeBl-BxxayybzzeB Bxxa ybzzcB 

t f ‘d 
FBxxayybzzcB|-BxxayybzzcB} BxxayybzzcB 

t 
qo 

FBxxxy ybzzcB]}-BxxxyybzzcB}/BxxxyybzzcB 
+. t 
qh qi - Wh 

-BxxxyyyzzcB|-BxxxyyyzzcB|-BxxxyyyzzcB 
* t t 

q2 : % s)) 

FBxxxyyyzz =BPBxxxyyys22BB xxxyyyzzzB 
‘ 7? 
b & 4 

FBxxxyyyzzzB PRxaxpyy2z28 PBxxtyyyz2zB 
tT 
qs qs 

Fig. 7.7(c) 

TCS-49 

  

Fig. 7.8(a) : State transition diagram 

  

  

Q.8 Design a turing machine to check whether a 

string over {a,b} contains equal number of a’s and 

b’s. Dec. 2009, May 2008, Dec. 2015 

Ans.: . 

Algorithm : 

1. Locate first a or first b. 

2. If itis ‘a’ then locate ‘b’ rewrite them as x. 

3. If itis ‘b’ then locate ‘a’ rewrite them as x. 

4. Repeat steps from I to 3 till every a or b is re-written as x. 

® (Teasy-solutions 
  

  

a b . x . B. 

9p | Qy-XR) (@).X,R) (dgpX.R) (q,,.B.N) 

% | GpaR) -G@sXL) @XR)  - 

q | (43-X.L) (q,,b.R) (GX R) - 

G3 | (q;,a,L) (q3.b,L) (q3-X,L) — (qo,B.R) 

a |G % a © Hahing 
state 

Fig. 7.8(b) : Transition table - 

The turing machine M is given by : 

M = (Q,3,°,8,q9,B,F) 

Where, Q = {4g Gis Gar Gy Gy} 

z= {a,b} 

T = {a,b,X,B} 

Qo = Initial state 

B = Blank symbol 

F = {q,) 

Working of machine for an input abba is shown in Fig. 7.8(c) 

-+BabbaB|-BxbbaB}] BxxbaB} BxxbaB 
t t te 
qo oh 3 3 

.|-BxxbaB|-BxxbaB} BxxbaB} BxxxaB 
t t _ ft t 
qo qo do OF) 

Fig. 7.8(c) Contd.... 

Scanned by CamScanner



2 

WF Theory of Comp. Sct (MU-Sem.§-Comp) 
-BxxxxB- BxxxxB|-BxxxxB -BxxxxB 

t t t t 
qs 93° 3 o 

|-BxxxxB} BxxxxB|-BxxxxB -BxxxxB t t t t 

  

  

qo qo qo D 
|-BxxxxB}- BxxxxB 

Fig. 7.8(c) 

Q.9 What Is Turing machine ? 

Ans. : 

Turing machine : Formal Definition of Turing Machine 

A Turing machine M is a 7-tuple given by : 

M = (Q%,T,8, a, B, F) 

where 

Qis finite set of states 

~ is finite set of input alphabet not containing B. 

Tis a finite set of tape symbols. Tape symbols include B. 

Gp € Qis the initial symbol. 

B & Iisa special symbol representing an empty cell. 

S
w
 

F
Y
 

DN 

F c Qis the set of final states, final states are also known as 

halting states. 

7. The transition function 6 is a function from 

QxPtoQxPx LRN) 

A transition in turing machine is written as, 

&(dg, a) = (q,, b, R), which implies, when in state Qy and 

scanning symbol a, the machine will enter state q,, it will rewrite a 

as b and move to the right cell. 
A transition 5(qp, a) = (q;, a, R), implies that the machine will 

enter state q,, it will not change the symbol being scanned and 

move to the right cell. 

Movement of Read / Write head is given L, R or N 

L => Move to left cell 

R — Move to right cell 

N ->: Remain in the current cell (No movement) 
  

Q.10 Design a TM to compute proper subtraction of 

two unary numbers. The proper subtraction 

function f Is defined as follows : 

m-n ifm>n 
f(m, n) = { 0 otherwise 

May 2009, Dec. 2009 

Ans. : 

The working of the TM is being explained with subtraction of 

3 from 5. 

In unary system, 5 is represented as 00000,   
  

In unary system, 3 is represented as 000. | 

In unary system, 0 is represented by a blank tape. 

Subtraction will require several cycle. In each cycle : 

1. Leftmost 0 is erased 

2. Rightmost 0 is erased. 

Situation of tape after each cycle is shown below : 

‘Initia ([B]Ol0 0 0 0 # 0 0 0 BI 

  

After I cycle [B]B] 000 0 0 # 0.0} B|B]—| 

  

After 2™ cycle [B/B]B] Oo. oo # o]B|B}B|-] 

  

After3“cycle [B]B]B] Blo 0 # /[B[ BI =-=] 

Transition diagram and transition table are given ‘in 

Fig. 7.9(a) and (b). 

HR 
0,R 

OBR R BBL ~~ 
wy 2      

    

  

men ——=$ m>n won 

#AL 

OBR ((% _ © 

Fig. 7.9(a) : Transition diagram 

Lo 8 3 
3% | @.BR) GBR - 

ai | GOR) (@ttR)  (@.BL) 
2 | (4yB,L)  (q50,N) - 

M3 | (@.0.L) (qy#L) — (qg.B.R) 

a] GBR) - — @,BN) 
qa; | 4% Ws qs < Halting state 

Fig. 7.9(b) : Transition table 

The Turing machine M is given by : , 

M = Q30,3,q,B,F 
where, 

Q = (4p Gi da» G5; Is 45) 
z= (0, 8} 

r= (01,48) 

The transition function 8 is given in Fig. 7.9(a) and (b) 

initial state, % = 

  

qeasy-solutions   Scanned by CamScanner
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B = blank symbol 

F = {q,}, Halting state | 

The working of TM is being simulated for 5-3 is shown in 

Fig. Ex. 7.3(c) : ‘ 

89000 0#000BF-BB900G#O0OR-BBODDOHOOOB 

qd hh 
‘BB 0000#000B/-B BoOoO O#000B|-BB0000#000B Tt t / a hd a 
-BB C000FSOOBEBBO00 OnOO0B FBBOOOO#000B 

: t 
h 1 

t ; hh 
LBB 0000#000B} B0000#000B}B0000#00BB 

+B0000#00B}B0000#00B}B0000#00B}-B0000#00B 
t t t t 

. & a3 & % 

-B0000#00B +B 0000#00B}B0000#00B}-B00 00#00B 

t t t t 
h i) G q 

+BB000#00B}BB000#00B}BB000#00B]-B000#00B 

t tT: . 7 . 
q 4 4 

+B000#00B}-B000#00B}/B000#00B}B0G0#00B 

ft t t t 
q qi qi h 

-BO000#0BBLBO000#0B]-BO00#0BLBO00#0B 

g ¢ ¢ 4 
-B000#0B}B000#0B PB SORUBE BB orO® 
tt ' 
4 & % q 

+B00#0B}B00#0B}B00#0B} B00#0B}-B00#0B 

t t t t t 
q G 4 4 h 

B0O#BB}-BOO0#B}-BO0#BLBO0#B 

" t " + ft fT 
4 & % & 

- FBOO#BEBBOFBEBBOFB 
if 

4 

-BO#B}BO#B}- BOOB 
{ - 

H h 

Fig. 7.9(c)   

TCS-51 

Q.11 Write short note on Variants of TM. 

Dec. 2006, Dec. 2008, Dec. 2009, Dec. 2010. 

May 2014, May 2015, May 2017 

Ans. : 

1. Two-way Infinite Turing Machine 

In a standard turing machine number of positions for leftmost ; 

blanks is fixed and they are included in instantaneous description, 

where the right-hand blanks are not included. 

In the two way infinite Turing machine, there is an infinite 

sequence of blanks on each side of the input string. In an 

instantaneous description, these blanks are never shown. 

2. ATuring Machine with Multiple Heads 

A turing machine with single tape can have multiple heads. 

Let us consider a turing machine with two heads H, and H,. Each 

head is capable of performing read/write /move operation 

independently. 

BabaabbaBBB 

H, #H, 
Fig. 7.10 : A Turing machine with two heads 

The transition behavior of 2-head one tape Turing machine 

can be defined as given below : 

5 (State, Symbol under H,, Symbol under H,) = (New state, 

(S,, M,), (S,, M,)) : : 

Where, 

S, is the symbol to be written in the cell under H,. 

M, is the movement (L, R, N) of H,. 

S, is the symbol to be written in the cell under H,. 

M, is the movement (L, R, N) of H,. 

3. Multi-Tape Turing Machine 

Multi-Tape turing machine has multiple tuples with each tape 

having its own independent head. Let us consider the case of a two 

tape turing machine. It is shown in Fig. 7.11. 

Tape 1: | a [> | a| a lb | b}a |B/ BIB. = 
  

  Tape2: [Bl afalb]ofalo[a[B]B] — | 

Fig. 7.11 : A two-tape turing machine 

The transition behavior of a two-tape Turing machine can be 

defined as : 

5(q).4,:,) = (q,,(S,.M,)(S,M,)) 

Where, , 
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Q, is the current state, 

q, is the next state, 

a, is the symbol under the head on tape 1, 

a, is the symbol under the head on tape 2, 

S, is the symbol written in the current cell on tape 1, 

S, is the symbol written in the current cell on tape 2, 

M, is the movement (L, R, N) of head on tape 1, 

M, is the movement a, R, N) of head on tape 2. 

4. - Non-deterministic Turing Machine 

Non-deterministic is a powerful feature. A non-deterministic 

TM machine might have, on certain combinations of state and 

symbol under the head, more than one possible choice of 

behaviour. 

Non-deterministic does not make a TM more powerful. 

For every non-deterministic TM, there is an equivalent. 

deterministic TM. 

It is easy to design a non-deterministic TM for certain class of 

problems. 

A string is said to be accepted by a NDTM,, if there is at least 

one sequence of moves that takes the machine to final state. 

An example of non-deterministic move for a TM is shown in 

Fig.7.12. 

alaR 

B © 
Fig. 7.12 : A sample move for NDTM 

afkR 

The transition behaviour for state Qo for'TM of Fig. 7.12 can 

be written as 

8 (do 2) = {(Gy- a, R) (qy, x R)) 
  

Q.12 Design a turing machine to replace string 110 by 

101 in binary Input string. 

Ans. : 

The turing machine will Jook for every occurrence of the 

string 110. 

State q, is for previous two symbols as 11. 

Next symbol as 0 in state q,, will initiate the replacement 

process to replace 110 by 101.   

  

Replacement cyl? 

Fig. 7.13 

The turing machine M is given by : 

M = (Q,2%,T,8, gy, B, F) 

Where, Q = {qo Gd: I Uy Is} 

x = {0,1} 

r= {0,1,B} 

6 = Transition function is shown using the transition 

diagram 

B = Blank symbol for the tape 

F = {qs}, halting state 

Working of the machine for input 0101101 is shown in 
Fig. 7.13(a): 

0101101B F 0101101 fF 0101101B F 0101101 

qo qo hh 40 

f0101101B F 01011018 

q Cord} 57 

fF 0101111B F 01010118 

qs | Qa 

F010111B 010111B- 01011148 

0 4 

Fig. 7.13(a) 
5 (halt) 

Q.13 Design Turing machine as generator to add two 
binary numbers and he or “1104-10”, nce simulate f 4 

Ans, : 

This problem can be solved using a 3-tape Turing machine. 
First machine T1 Stores the 

machine T2 stores the second bin 
stores the result. 

first binary number. Second 

ary number. Third machine T3’” 

  

(@s EEL 
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4 
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The Turing machine will have 3 states : | 
p — previous carry as 0 

; — Previous carry as 1 

q2 — Halting state 

(0, 0, L) (0, 0, L) @, 0, L) 
(1, 1, L) (0, 0, L) @, 1, L) 

(0, 0, L) (1, 1, L) (B, 1, L) 

(B, B, L) (0, 0,L) @B, 0, L) 
(0, 0, L) @, B, L) B, 0, L) 

@, B, L) (1, 1, L) , 1, L) 

(1, 1, L) @, B, L) @, 1, L) 

(1, 1, L) (0, 0, L) (B, 0, L) 

(1, 1,L) B, B, L) B, 0, L) 
(0, 0, L) (1, 1, L) @B, 0, L) 

(B, B, L) (1, 1, L) B, 0, L) 

(1, 1, L) (1, 1, L) B, 1, L) 

    
    

  

       

    

(B.8,R) (8,B,R) (B,0,R) 

(1,1,L) (1,1,L) (B,0,L) 

(0,0,L) (0,0,L) (B,1,L) 
(0,0,L) (B,B,L) (B,1,L) 
(B,B,L) (0,0,L) (B,1,L) 

   
(B,8,R) (B,B,R) (B,1,R) 

Fig. 7.14 

Simuiation for 116 + 10 
  

  

  

                

  

  

  

              
  

  

  

  

o
l
o
l
o
 
|
&
 

  

  

  

                
  

  

  

  

  

                
t 

q, (Halt) 
  

Q.14 Design a Turing machine as acceptor for the 

language {a" b™ | n, m>0 and m2 n}. 

Ans. : ‘ 

ala,R 

  

Fig. 7.15 
  

  
Q.15 Construct turning machine that accepts the string 

over Z = {0, 1} and converts every occurrence of 

111 to 101. May 2015 

Ans. : 

  

1/0,R 

Fig. 7.16 

The turing machine M is given by : 

M = (Q3,0.8,.B.P) 

Where, Q = (40 is Ga» GU 45} 
B= (0,1) 

Tr = (0,1,B} 

8 = Transition function is shown using the transition 

diagram 

B = Blank symbol for the tape 

F = {qs}, halting state 
  

® : 
@GsGbEYIInes 
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Q.16 Construct a TM for checking well for medness of 

parentheses. 

Ans. : 

May 2012, May 2015, May 2017 

In each cycle, the left-most ‘)’ is written as X, then the head 

moves left to locate the nearer ‘(’ and it is changed to X. 

The cycles of computation are shown below. 

Input string is assumed to be (QO)0. 

Cycle No. Tape 

Initial B(QO)0B 

1. B (XX0)0B 

2. B(XXXX)0B 

3. B XXXXXX()B 

4. BXXXXXXXKB 
xR 

    BBR 
7 Halt state 

Fig. 7.17(a) : State transition diagram 

  

| ( ) x B 

Go| GoGR)  @uxL) ox) BL) 

aq |GxR) - @xl) - 
% - a (q2,x,L)  (q3,B,R) 

a3 qs 45 qs qs 

Halting 

state 

Fig. 7.17(b) : State transition table 

The Turing machine M is given by : 

M = (Q,2,7,5,4)B, FP 

where, Q = {4442-45} . 

Z= {G)} 

r= {(,)%B) 

    

  

TCS-54 

§ is given in Fig. 7.17(a) or 7.17(b) 
% = Initial state 

B = Blank symbol 

F = {q;}, halting state 

Making of the machine for input (()))0 is given in Fig. 7.17(c) : 

B(()Q)OBEB(OO) OBE B(QO)O 
7 t t 
qo ce) ® 

-B((x())Q BEB(xxQ))OBEB( xxQ)OB 
t t 1 
% qo qo 

EB(xx())OBEB(xx{%) OBEB( xxxX)OB 

. qh 40 

HBC xxx) BEB(xxxex(BEB(xxexx0 B 

qo qo 1 

| B(xxxxx()B|-B(xxxxx()B}B(xxxxx()B 

t t ft 
Ud seh TT 

|-Bxxxxxx()BEBxxxxxx()B]-Bxxxxxx()B 

0 

|-Bxxxxxx()B/- Bxxxxxx()BEBxxxxxx()B 

t tT t 
qo % qo 

}--Bxxxxxx()B}Bxxxxxx(xB 

% eT 

|-BxxxxxxxxB|-BxxxxxxxxB 

qo qo 

-BxxxxxxxxB-BxxxxxxxxB|-BxxxxxxxxB 

qa G e 

FBxxxxxxxxB]/-BxxxxxxxxB|-BxxxxxxxxB 

d d 
/BxxxxxxxxB-EBx xxxxxxxBL BxxxxxxxxB 

qa 2 ¢ 

-BxxxxxxxxB 

3 
Fig. 7.17(c) 

Q.17 Design a turing machine to check whether 4 
string over {a,b} contains equal number of | 
a’s and b’s. Dec. 2009, May 2008. Dec. 2015 

Ans. : 

Algorithm : 

1. Locate first a or first b. 

2. — Ifitis ‘a’ then locate ‘b” rewrite them as x, 
3. — Ifitis ‘b’ then locate ‘a’ rewrite them as x, 
4. Repeat steps from 1 to 3 till every a or b is re-written as x. 

  

@s easy-Solutions 
—— 
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Fig. 7.18(a) : State transition diagram 

  

  

a b x B 

qo | GiXR) (GR) (XR) (4,.B.N) 

q, } @paR) (GX) (q,-%-R) - 

XL) (q,b.R) (G,%R) - 

sal) (sbL) (XL) (dyB.R) 

a] & % dG 4%  € Halting 
State 

Fig. 7.18(b) : Transition table 

The turing machine M is given by : 

M = (Q2,7,8,4,B.PF) 

Where, Q = {Gor i» er Gs, Ga} 

z= = {a,b} 

Tr =. {a,b, X, B} 

qo = Initial state 

B = Blank symbol 

F = {q} 

Working of machine for an input abba is shown in 

Fig. 7.18(c) : 

|-BabbaB|-BxbbaB|-BxxbaB|-Bxx baB 

t t t t 
qo qo q3 qs 

+BxxbaB|-BxxbaB F BxxpaBl Buxxan 

4, ‘ d, qo q2 

Fig. 7.18(c) Contd.... 

I-BxxxxB}E Bx xxBLBxxxxB}BxxxxB 
t t 4 t 
os 3 qs & 

PB axxxBE BxsxxBhBxxexB +B <= 

qo 0 do 

  

   

|-BxxxxB/- BxxxxB 

Fig. 7.18(c) 

Q.18 Design a Turing machine as an acceptor for the 

language 

{a"b"In, m20 and m2 n) 

Ans. : , 
ala,R 
b/b,R 

b/Y,L 

b/b,L 
a/a,L 

B/B,L 

Halting state 
(Final state) 

Fig. 7.19 

M = (Q2.0.8.4)B,F) 

Where, Q = = {dy q+ Gas G3» G4) 

x = {a,b} 

r = {a,b,X, Y, B} 

dy = initial state 

B = Blank symbol 

F= {a4} 
  

Q.19 Design a TM to add two unary numbers. 

Ans. : 

Addition of two unary numbers can be performed through 

append operation. To add two numbers 5 (say @,) and 3 (say @,) 

" will require following steps : 

1. Initial configuration of tape : 

[Blofofofolo[#[olofo[s..] 
  

5(@,) 3(@4)   
  

50) : : 
Gs basy-solutions 
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2. — @, is appended to o.. . 

 Blelofolopepojopoelap.y 
@2 

  

While every ‘0’ from 0), is getting appended to w,, ‘0’ from 
0, is erased. @, contains 8 0's, which is sum of 5 and 3. 

#4R 
0/0,.R 

  

  

  

The turing machine M is given by : ie 

M = (Q,2,T.5, qo BF) 

Where Q = (44-4 4h 

XZ = {0,#} 

T = {0,#,B} 

8 = Transition function is given in 

Fig. Ex. 7.3.10 (a), (b) 

dy =. initial state , 

B = blank symbol 

F = {q,), halting state. 

  

Q. 20 Write short note on: Church-Turing Thesis. 

  

May 2017 

Ans. : 

Church-Turing Thesis 

Fig. 7-20(a) : tion diag The Turing machine is a general model of computation. Any — 

| 0 # B algorithmic procedure can be solved by G computer can also be 

solved by a TM. Problems computed by a computer or a TM are | 

4p | (GBR)  (q;B.R) - also known as partial recursive functions. Some enhancements to - 

q: | G0,R) (q,#4R) — (q,,0,L) TM made the Church-Turing thesis acceptable. These 

hi its are : 
| @0L) GL) oBR) enencemen 

‘ 1. Multi-tape 2. Multi-head 

a; qs qs 4,  -< Halting state ; : 
3. Infinite tapes 4. Non-determinism. 

Fig. 7.20(b) : Transition table Since the introduction of TM, no one has suggested an 

algorithm than can be solved by a computer but cannot be solved 

by a TM. 

Chapter 8 : Undecidability 

Q.1. Write short note on : Recursive and Recursively | Every Turing decidable language is Turing acceptable. 
Enumerable Languages. 

Dec. 2005. Dec. 2009, Dec. 2010, May 2014, Dec. 2014. 

May 2015, Dec. 2015, May 2016, Dec. 2016, 

Dec. 2017 

Ans. : 

Recursive and Recursively Enumerable Languages 

There is a difference between recursively enumerable (Turing 

Acceptable) and recursive (Turing Decidable) language. 

Following statements are equivalent : 

1. The language L is Turing acceptable, 

2. The language L is recursively enumerable. 

Following statements are equivalent 

1. The language L is Turing decidable. 

2. The language L is recursive. 

3. There is an algorithm for recognizing L.   

Every Turing acceptable language need not be Turing decidable. 

Turing Acceptable Language 

A language L ¢ =* is said to be a Turing Acceptable. 
language if there is a Turing machine M which halts on every 

® € L with an answer ‘YES’. However, if @ ¢ L, then M may not 
halt, , 

Turing Decidable Language 

A language L ¢ 2* is said to be turing being decidable if _ 
there is a turing machine M which always halts on every  € £*. If 
@ € L then M halts, with answer ‘YES’, and if w € L then M halts, 
with answer ‘NO’. 

A set of solutions for any problem defines a language. 

A problem P is said to be decidable /solvable if the language 
L ¢ &* representing the problem (set of solutions) is turing ~ 

decidable. i 

  

Teasy-solutions] 
\ 
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If P is solvable / decidable then there is an algorithm for 

recognizing L, representing the problem. It may be noted that an 

algorithm terminates on all inputs. 

Following statements are equivalent : 

1, The language Lis Turing decidable. 

2. The language L is recursive. 

3.° There is an algorithm for recognizing L. 

Every turing decidable language is turing acceptable. 

Every turing noceptable language need not be turing 

decidable, 

A language L ¢ =* many not be turing acceptable and hence 

not turing decidable. Thus we cannot design a turing machine / 

algorithm which halts for every w € L. 
  

Q.2 Two recursive languages L, and L, is recursive : 

Luk 
Ans. : 

L, UL, Is recursive 

Let the turing machine M, decides L, and M, decides L,. 

If a word @ € L, then M, retums “Y” else it retumms “N”. 

Similarly, if a word w € L, then M, retums “Y” else it returns “N”. 

Let us construct a turing machine M, as shown in Fig. 8.1. 

  

  

Fig. 8.1 : A turing machine for L, UL, 

Output of machine M, is written on the tape of M,. 

Output of machine M, is written on the tape of M3. 

The machine M, returns “Y” as output, if at least one of the 

outputs of M,, or of M, is “Y”. 

, It should be clear that M, decides L, U L. As both L, and L, 

are turing decidable, after a finite time both M, and M, will halt 

with answer “Y” or “N”. The machine M, is activated after M, and 

M, are halted. The machine M, halts with answer “Y” if w € L, or 

0 € L,, else M, halts with output “N”. 

Thus L, U L, is turing decidable or L, U L, is recursive. 

  

Q@3 ‘Prove that there exists no algorithm for deciding 

whether a given CFG is ambiguous. | 

May 2006, Dec. 2007, Dec. 2008 

Ans. : 

The post correspondence problem can be used to prove the 

un-decidability of whether a given CFG is ambiguous. 

Let us consider two sequences of strings over > 

A = {0,,Uy Us + Unt 

fa-“leasy-solutions 
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B = (Vj, Va V3 «0s Vn} 

Let us take a new set of symbols a,, a, ... a,, such that 

{a,,a,... a }ALD=od. 

Symbols a;, a, ... a, are being taken as index symbols. The 

index symbol a, represents a choice of u; from A and v, from the 

list B. 

A string of the form u, u, u, ... a a a. Over alphabet 

LU {a,, a, ... a,,} can be defined using the set of productions : 

G = Patil) 
A vita ve te Be an 

Similarly a string of the form v; v, v, ... aa; a, over alphabet 

Lv {a,, a ...a,)} can be defined using es set of productions : 

— peas ts Amal tate | 
B, Vv, a, lv, a,1...1v,, a, 

Finaily, we can combine the languages and grammars of two 

lists to form a grammar Gy, : 

A new start symbol S is added to Gy 

Two new productions are added to G,, 

Sv7~ A 

s—-B 

All productions of Ga and Gg are taken. 

Now, we will show that G,, is ambiguous if and only if an 

instance (A, B) of PCP has a solution. 

Assumption : 

Suppose the sequence i,,i,, ..., i, is a solution to this instance 

of PCP. Two derivations for the above string in G4, is : 

SS>A>ujAa > uu Aaam..> 

Uy Yin ==> Uh iy Aig ++ Fin 

S>B->v,Ba,>v,, Vj, Ba, a, > 

Vit Vig +++ Vin iy ig +++ Fim ; 

Consequently, if G,, is ambiguous, then the post 

correspondence problem with the pair (A, B) has a’ solution. 

Conversely, if G,, is unambiguous, then the post correspondence 

cannot have a solution. 

If there exists an algorithm for solving the ambiguous 

problem, then there exists an algorithm for solving the post 

correspondence problem. But, since there is no algorithm for the 
Post correspondence problem, the ambiguity of CFG problem is 
unsolvable. 

  

Q.4 ‘Write short notes on post correspondence 
problem and Greibach Theorem. 

May 2006, Dec. 2006, May 2007, Dec. 2007, May 2008, 

Dec. 2008. May 2009, May 2010. Dec. 2010. 

May 2011, Dec. 2011. May 2012, May 2016 
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Ans. : Q.5 Write short notes on : Halting problem. 4 
Post correspondence problem CML ae a a aoe a — - . i 

; 1 , Dec. 5 c u Definition : Let A and B be two non-empty lists of strings over >. eM MMO eM eh 2011, Dec | 

A and B are given as below : Ans. : 

A= (X, Xyy XQ.) Halting Problem of a Turing Machine 

B= (na Ya Yi) The halting problem of a Turing machine states : 
There is a post correspondence between A and B if there is a Given a Turing machine M and an input w to the machine M, 

Sequence of one or more integers i, j, k ...m such that : determine if the machine M will eventually halt when it is given 

The string x; Xj +++ Xp is equal to y,y, «+ Yuu input 0. ; 

Example : Does the PCP with two lists : Halting problem of a Turing machine is unsolvable. 
A = {a,aba’, ab} and Proof : 

B = {a'ab,b} Moves of a turing machine can be represented using a binary 
have a solution ? number. Thus, a Turing machine can be represented using a string 

; lained i 
So to find a sequence using which when the elements of A | OV =*(0,1). This concept has already been exp in 

and B are listed, will produce identical strings. chapter. 

The required sequence is (2, 1, 1 , 3) Insolvability of eee of a Turing machine can be 

on. A, ALA Ay = aba’aaab=aba’b proved through the me! of contradic ' x 

_ 3.3, 1 6 Step1: Let us assume that the halting problem of a Turing 
B,B,B,B, = aba a b=aba b machine is solvable. There exists ‘ 

Thus, the PCP has solution. 1. Astring describing M. 

So accept the un-decidability of post correspondence problem 2. An input w for machine M. 

without proof. , H, generates an output “halt” if H, determines that M stops 
Example : on input @; otherwise H outputs “loop”. Working of the machine 

Determining the solution for following instance of PCP. Hi is shawn-below. 

a halt 
w fy 
— -—> loop 

0 Step2: Let us revise the machine H, as H, to take M as both 
110010 0 , inputs and H, should be able to determine if M will 

; _ halt on M as its input. Please note that a machine can 
be described as a string over 0 and 1. 

4 11 01 
; ' M H.} halt 

The PCP has a solution. The required sequence is (1, 3, 2, 4, 4, 3) as = 

,0,0,0,0,0, = 01111001011111 : 4030.00.00, 7 Step3: — Let us construct a new Turing machine H, that takes Xj Xp X_Xq%Xz3 = 011110010111 output of H, as 
2.48 input and does the following : 

Greibach Theorem 

The Theorem states that I+ Ifthe output of H2 is “loop” than H3 halts, e Theorem : ; 
2. If the output of H, is “halt” than H, will loop- 

“Let o be a class of Janguages that is effectively closed under forever. 

concatenation with regular sets and union, and for which L = &* is M 

un-decidable for any sufficiently large fixed 2. Let P bs any non- | cH ot -— halt —+ Machine Hg loops forever 
trivial property that is true for all regular sets and that is preserved ——!—> loop —» Machine Hg halts 
under a, where a is single symbol in Z. Then P is un-decidable for ee 

o”. 
7 ly Will do the Opposite of the output of H,. 

Greibach theorem can be used to prove that many problems P4: Lotus give H; itself as inputs to H,. 
related to CFG are un-decidable, Hg ;     
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If H, halts on H, as input then H, would loop (that is how we 

constructed it). If H, loops forever on H, as input H, halts (that is 

how we constructed it). 

In either case, the result is wrong. 

Hence, 

H, does not exist. 

If H, does not exist than H, does not exist. 

If H, does not exist than H, does not exist. 
  

Q.6 Does PCP with following two list: A = (10, 011, 
101) and B = (101, 11, 011) have a some ? 

___ Justify your answer. 

Ans. : 

. A, and A, differ from B, and B, at the first of place. 

Therefore, we must pick A, and B, 

Sequence String 
(1) (A; = 10) @, = 101) 

The next string to be picked up must be A, and B,. Ay of other 

sequence will not lead to a solution. 

Sequence String 

(1, 3) (A,A, = 10101) (B,B, = 101011) 

The next string to be picked up must be A, and B,. Any other 

sequence will not lead to a solution. 

Sequence String 

d,3,3) (A,A,A, = 10101101) (B,B,B, = 101011011) 

There is only choice of next string. This choice is A, and B,. 

This does not lead to a solution. The PCP has no solution.   

TCS-59 WwW Theory of Comp. Sci. (MU-Sem. 5-Comp.) : = 

Q.7 Write short note on : Rice Theorem 

  

B Dec. 2012, May 2013, May 2014, May 2015, Dec. 2015. 

May 2016, Dec. 2016, May 2017, Dec. 2017 

  

Ans. : 

Rice Theorem 

“very property that is satisfied by some but not all 

recursively enumerable language is un-decidable”. Any property 

that is satisfied by some recursively enumerable language but not 

all is known as nontrivial property. We have seen many properties 

of RE. languages that are un-decidable. These properties include : 

1. Given aTM M, is L(M) nonempty ? 

2. GivenaTM M, is L(M) finite ? 

3. Given aTM M, is L(M) regular ? 

4. GivenaTMM, is L(M) recursive ? 

The Rice’s theorem can be proved: by reducing some other 

unsolvable problem to nontrivial property ‘of recursively 

enumerable language. ‘ 

  

Qo00 
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eo easy-solutions) 

Scanned by CamScanner



     Chapter 1 27.5 Marks 10 Marks 
  

Chapter 2 12.5 Marks 20 Marks 
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Dec. 2018 

    

Chapter 1 : Introduction [Total Marks — 27.5] 
aero aan 

Q.1(a) Explain Chomsky Hierarchy. (5 Marks) 

Ans.: Chomsky hierarchy . 

A grammar can be classified on the basis of production rules. Chomsky classified grammars into the following types : 

1. Type 3: Regular grammar 

2. Type 2: Context free grammar 

3. Type 1 : Context sensitive grammar 

4. Type 0: Unrestricted grammar - 

Type 3 or regular grammar 

— A grammar is called Type 3 or regular grammar if all its productions are of the following forms: 

A 7 E 

A 7a 

A — 2B 

A — Ba 

Where,a Dand A,Be V. \ 
“A language generated by Type 3 grammar is known as regular language. 

  

\ 
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Type 2 or context free grammar 

A grammar is called Type 2 or context free grammar if all ts productions are ofthe following form A -» a: where A € V and 

ae (VUT)*. 

— Vis aset of variables and T is a set of terminals. 

y The language generated by a Type 2 grammar is called a context free Ianguage, a regular language but not the reverse.” 

Type 1 or context sensitive grammar 

»— A grammar is called a Type 1 or context sensitive grammar if all its productions are of the following form: 

a >, 

— Where, B is atleast as long as a. 

Type 0 or unrestricted grammar ~ 

Productions can be written without any restriction in an unresticted grammar. If there is production of the a > 8, then length of a 

could be more than length of B. 

Every grammar also is a Type 0 grammar 

A Type 2 grammar is also a Type I grammar 

A Type 3 grammar is also a Type 2 grammar 

Q.3(b) Consider the following grammar 

soictslictsesla 
Cob 
For the string ‘ibtaeibta’ find the following : 
() Leftmost derivation 
(il) Rightmost derivation, 

(ill) Parse tree . 

(lv) Check If above grammar is ambiguous. . (10 Marks) 

Ans. : ; : : 

@)_ Left most derivation : . 

S— ictSeS [using S —> iCtSeS] 

> ibeseS [using C — b] 

— ibtaeS [using S — a] 

— ibtaciCtS [using S— iCtS] 

— ibtaeibts [using C > b] 

— ibtaeibta 

  oa 7 ; 
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Gi) Rightmost derivation : 

S — iCtSeS [using S > iCtSeS] 

— iCtSeiCtS [using S > iCtS] 

— iCtSeiCta [using S > a] 

— iCtSeibta [using C > b] 

— iCtaeibta [using S ~ a] 

— ibtaeibta [using C > b] 

ii) Parse tree as shown in Fig. 1-Q. 3(b). 

o
o
 

  

  

Aol. i Lv 

: a b- “Tg 

Fig. 1-Q. 3(b) 

_ Gy) The grammar can be shown to be ambiguous by drawing two different derivation trees for the string ibtibtaea as shown in 

Fig. 2-Q. 3(b). 

i Cc. t S ae A a 

: i ots @ § 

Dinca ee b ('} 

Fig. 2-Q. 3(b) 

Q. 5(b) Construct Mealy and Moore Machine to convert each occurrence of 100 by 101. (10 Marks) 

Ans. : 

1. Mealy Machine 

  

Fig. 1-Q. 5(b) 
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2. Moore Machine 

  

Fig. 2-Q. 5(b) 

  
Q. 6(d) Write short note on Mealy and Moore Machine. . (2.5 Marks) 

Ans. : , 

Final state machines are characterised by two behaviours: 

1. State transition function (8) : 

2. Output function (A) 

State transition function (8) is also known as STR."°«-"" 

/ Output function (A) is also known as machine function (MTF). 

6:=2xQ> Q 

4:2xQ-— O [for Mealy machine] 

4: Q-—> 0 [for Moore machine] 

There are two types of automata with outputs : 

L Mealy machine : Output is associated with transition 

A:2xQ>O0 

Set of output alphabet O can be different from the set of input alphabet =. 

2. Moore machine : Output is associated with state , 

4:Q730 

Chapter 2 : Finite Automata [Total Marks — 12.5]     

Q.2(a). Designa Finite State machine to determine whether ternary number (base 3) is divisible by 5. 

Ans. : 

= A temary system has three alphabets 

(10 Marks) 

x = {0,1,2) 

- Base of a ternary number is 3. 

~ The running remainder could be : 

(0), = 0 -+ associated state, qy 

® 
faTyeasy-solutions 
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r " 1 — associated state, q 

(2), = 2 —>+associated state, a 

(10), = 3—>+ associated state, q, 

"(IDs = 4+ associated state, q, , 

Tt tT 

Temary Decimal 

  

Fig. 1-Q. 2(a) 

  

  

Q. 6(a) Write short note on Closure properties of Context Free Language. 

Ans. : 

Closure properties of context free language 

3. 

A context free language is closed under following operations : 

1. Union 2. Concatenation 3. _. Kleene star 

Context free language is closed under intersection. 

The intersection of a context-free language with a regular language is a context free language. 

The CFL is closed under complementation. 

The CFL is closed under reversal. 

CFL is closed under union © 

If L, and L, are context-free languages, then L, U L, is a context free language. 

CFL is closed under concatenation 

If L, and L, are context-free languages, then L,L, is a context-free language. 

CFL is closed under Kleene Star , 

If L is a context-free language, then L* is a context-free language. 

CFL Is not closed under Intersection 

Context-free languages are closed under intersection. 

CFL [s not closed under complementation 

The set of context-free languages is closed under complementation. 

Intersection of CFL and AL ‘ 

If L is a CFL and R is a regular language, then R ML is a CFL. 

CFL Is closed under reversal 

‘If Lis a context-free language, then so is L*, 

Z 

Pieasy-solutions 

(2.5 Marks) 
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Chapter 3 : Regular Expreasions and Languages [Total Marks — 27. 5] | 

Q.1(c) Define Regular Expression and glve regular expression for: 

(I) Set of all strings over {0, 1} that end with 1 has no substring 00 _ (6 Marks) 

Ans. : . 

Regular expression 

An expression written using the set of operators (+, -, *) and describing a regular language is known as regular expression. 

— The transition graph is shown in Fig. 1-Q. 1(c). 

  

Fig. 1-Q. 1(c) 

- +. RE. can be written from the transition graph. The required R. E. = 1 (1 + 01)* 

  

Q.2(b) Give and explain formal definition of Pumping Lemma for Regular Language and prove that following 

language is not regular. L = {a"b™~'| m> 0} . (10 Marks) 

-Ans. = 

Pumping Lemma for Regular Language 

— Some languages are regular. There are other languages which are not regular. One can neither express a non-regular language using 

regular expression nor design finite automata for it. 

— Pumping lemma gives a necessary condition for an input string to belong toa regular set. 

— Pumping lemma does not give sufficient condition for a ianguage to be regular. 

— Pumping lemma should not be used to establish that a given language is regular. 

— Pumping lemma should be used to establish that a given language is not regular. 

— ‘The pumping lemma uses the pigeonhole principle which states that if n pigeons are placed into less than n holes, some holes have to 

have more than one pigeon in it. Similarly, a string of length > n when recognized by a FA with n states will see some states 

repeating. 

Definition of Pumping Lemma 

Let L be a regular language and M = (Q, Z, 5, qo, F) be a finite automata with n-states, Language L is accepted by m. Let w € Land | 

col 2 n, then w can be written as xyz, where 

@) lyI>0 

(ii) = IxyIsSn 

Gi) xy’ z EL for all i> 0 here y denotes that y is repeated or pumped i times. 

  

@OSEM 
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Proving that the language L = {a b™~"|m > 0} Is not regular: 

Step 1: Let us assume that the given language L(a" b"~' |n > 0) is regular and L is accepted by an FA with n states. 
Step 2: 2 Let us choose a string 

Qo = 

lo| = 

at pa-l 

2-1 5n forn>0 

Let us write w as xyz, with 

ly] > 

and|xy] < 

since,|xy| < 

since|xy| < 

0 

n 

n, y must be of the form a‘ | r> 0. 

n, X must be of the form a’. 

Now, a” b"~! can be written as 

  

| 
z 

Fig. 1-Q. 2(b) 

Step 3: Let us check whether xyz for L = 2 belongs to L. 

2 
XyZ 

Sincer > 

S gta? 
aS (ay a n—-s—rpn-1 

a3 a2r an —s—rbn—1 

an+rbn-1 

Oat ple L, 

, Hence, by contradiction, we can say that the given language is not regular. 

  

@.5(a) Convert (0 + 1) (10)*(0 + 1) into NFA with €-moves and obtain DFA. 

Ans. : 

R. E. to NFA 

  

Fig. 1-Q. 5(a) 

(10 Marks) 

  

(as easy-solulians 
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NFA to DFA using direct method 

Fig. 2-Q. 5(a) 

Q.6(b) Write short note on : Applications of Regular expression and Finite automata. (2.5 Marks) 

Ans. : 

1. Applications of regular expression 

(a) R.E. in Unix 

The UNIX regular expression lets us specify a group of characters using a pair of square brackets [ ]. The rules for character classes 

are : : : 

1. [ab] Stand fora+b 

2 [0-9] Stand fora digit from 0 to 9 

3. [A-Z] Stands for an upper-case letter 

4. [a-—z] Stands for a lower-case letter 

5. [0-—9A-Za — z]Stands for a letter or a digit. 

The grep utility in UNIX scans a file for the occurrence of a pattern and displays thoue lines in which the given pattern is found. 

For example : 

$ grep president emp.txt 

It will list those lines from the file emp.txt which has the pattern “president”. The pattern in grep command can be specified using 

+ regular expression. 
: 

. ® matches zero or more occurrences of previous character. 
‘ 

6 

7. @ matches a single character. 

8. [pqr] Matches a single character which is not a p.qorr. 

9. pat Matches pattern pat at the beginning of a line 

10. pat $ Matches pattern at end of line. 

Example : . 

(a) The regular expression [aA] g [ar] [ar] wal stands for either “Agarwal” or “agrawal”. 

(b) g* stands for zero of more occurrences of g. 

(c) $grep “A - * thakur” emp.txt will look fora pattern starting with A. and ending with thakur in the file emp.txt. 

(b) Lexical analysis 

Lexical analysis is an important phase of a compiler. The lexical analyser scans the source program and converts it into a steam of 

tokens. A token is a string of consecutive symbols defining an entity. 
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For example a C statement x = y +z has the following tokens : 

x — Anidentifier 

= - Assignment operator 

y = Anidentifier 

+ —- Arithmetic operator + 

z — Anidentifier 

Keywords, identifiers and operators are common examples of tokens. 

‘The UNIX utility lex can be used for writing of a lexical analysis program. Input to lex is a set of regular expressions for each type of 
token and output of lex is a C program for lexical analysis. 

2 Applications of Finite Automata 

Finite automata are used for solving several common types of computer algorithms. Some of them are : 

@) Design of digital circuit 

(i) String matching 

(iii) Communication protocols for information exchange. 

(iv) Lexical analysis phase of a compiler. 

Finite automata can work as an algorithm for regular language. It can be used for checking whether a string weL, where L is a 

regular language. 

Chapter 6 : Regular Grammar [Total Marks - 25] 

Q.1(b) Differentiate between PDA and NPDA. (5 Marks) 

Ans. : 

erence! between PDA and NPDA is as follows: 
  

  

  

  

  

1. |Always a single move on a new input Multiple moves are possible on a new input 

2. |Less powerful than NPDA More powerful than a PDA 

3. [Algorithms related to PDA are simple Algorithms related to NPDA are complex ; 
        4. |Algorithms related to PDA do not require backtracking|Algorithms related to NPDA require backtracking 
    

2n an 
Q.3(a) Construct PDA accepting the language L = {a°"b | n20}. (10 Marks) - 

| 

Ans. : 

| 

1, For every pair of a’s one x is pushed on to the stack 

2, Forevery b, one x is popped out from the stack. 
: 

3. Finally the stack should contain the initial stack symbol Zo. 

    

Gs Pri ee ed 
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Transition table (5) 

1. &Go. a, Zo) = (qi, Zo) 

&q1.8,Zo) = (Go x Zo) 

8@o.a,x) = (qx) 

2 

3 

4 S(qi.ax) = (qo, xx) 

5 Sob, x) = (G2, €) 

6. S@.b.x) = (ne) 

7. Xq2z.€,Zo) = (p,€) 

- Accepting through empty stack 

~ Thus, the PDA M =({qo, qi» @}, {a, b}, {x, Zo}, 5, do, Lo, {o}) 

Q. 4(>) Convert following CFG to CNF (10 Marks) 

S -— ASAIAb 

A => BIS 

B > bk 

Ans. : a 

1. Nullable set of symbols = (B, A) 

Re-writing grammar after removing €-production, 

we get, 

S — AS|SAJASA|aBla 

A — BIS 

Bob 

2. Re-writing grammar after removing unit productions (A > B, A — S), we get 

S —» ASISA JASA |aB la 

A > b1AS|SAIASA |aB la 

B— b 

3. Every symbol in a, in production of the form A — 0. where |a|22 should be a variable. This can be done by adding the production 

GQ a 

The set of productions become, 

s + AS ISA |ASA 1C;B la 

A > b|AS|SA 1ASA 1GBla 

B > b 
“GQ >a 

Mo Seasy-solutions 
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4 Finding an equivalent grammar in CNF. 

S — AS |SA JAC, |C,B |a [Replacing SA by C,] 

CG. -> SA 

A — blas Isa |Ac, |c,8 la 

Bb 

GQ-a 

    

_Chapter 7 : Turing      

Q.4(a) Construct TM to check well-formedness of parenthesis. 

Ans. : 

achine (TM) [Total Marks — 12.5] 

In each cycle, the left-most *)’ is written as X, then the head moves left to locate the nearer ‘(’ and it is changed to X. 

The cycles of computation are shown below. 

Input string is assumed to be (()())0. 

ene 

  

  

  

  

  

Initial B(@QO)0B 

1. B (KX())0 B 

“ 2. B (XXXX)Q) B 

3. B XXXXXX() B 

4. | BXXXXXXXXB       
  

  

  
  

  

  

  

  

  

  

                   

net xh ( ) x B 
: Go| wR) | Gust) | Gar) | BL) 

1 (quX,R) - (qyux.L) - 

a - = | @xL) |-@,B.R) 
3 a %G % % 

\ 

wx ( 1%) -m Halting 
Halt state state 

Fig. 1-Q. 4(a)(a) : State transition diagram Fig. 1-Q. 4(a)(b) : State transition table 
      
    

(10 Marks) 

  

Gs CERES 
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The Turing machine M is given by : 

M = (21,5, qo B,F) 

where, Q = . {dy 4144} 

z= (W 
T= (6)x,B) 

_ 5 is given in Fig. 1-Q. 4(a)(a) or Fig. 1-Q. A(a)(b) 

Go = Initial state 

B = Blanksymbol 

F = {q,}, halting state 

Making of the machine for input (00)0O is given in Fig. 1-Q. 4(a)(c): 

B(OQ)OBEB(OO)OBEB(QO)O 

qo = : = : cu i 

FB(CKO)OBEB(xxQ)OBEFBCxxOQ)OB 

qi do os Qo : 

xx())()BEB(xx(x) OBE BC xxxx)OB 
— Pe fase 
coe Gp qh Qo - : 

eee 

ae Go qi q) 

I-B(xxxxx()B|-B(xxxxx()BEB(xxxxx()B 

ao An 

HB 

ah a a 
|}-Bxxxxxx()B} Bxxxxxx()B/]-Bxxxxxx()B 

: 7 F ; 

|-Bxxxxxx()B} Bxxxxxx()BEBxxxxxx()B 

qo EDs Go 

EB reer ORE BEE 

% 1 

[BAxER CHEXBL BREXEEX HER 

qo. qo 

D(18) - 12 
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eh
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|-Bxxxxxxx xB 

   
   

    

Bx xxxxxx xB/-Bx xxxxxxxB[-Bx xxxxxX 

L/-Bxxxxxxx xBLBx xxxxxxxB[- Bx xxxx 

a Po de mo a 

|-BxxxxxxxxB_ 
at 
edges 

  

Fig. 1-Q. 4a)(c) 

Q.6(e) Write short note on : Universal Turing Machine. (2.5 Marks) | 

Ans. : 

Universal turing machine 

A general-purpose computer can be programmed to solve different types of problems. A TM can also behave like a general-purpose 

computer. A general purpose computer solves a problem as given below : 

1. A program is written in a high level language and its machine-code i is obtained with the help ofa sompler: 

2 Machine code is loaded in main memory. 

3. Input to the program can also be loaded in memory. 

4. Program stored in memory is executed line by line. Execution involves reading a line of code pointed by IP (instruction pointer), 

decoding the code and executing it. . 

We can follow a similar approach for a TM. Such a TM is known as Universal Turing Machine. Universal Turing Machine (UTM) 

can solve all sorts of solvable problems, 

A Turing machine M is designed to solve a particular problem p, can be specified as : 

1. The initial state q, of the TM M. 

, 2. The transition function 5 of M can be specified as given : 

If the current state of M is q; and the symbol under the head is a; then the machine moves to state qj while changing a, to a,. The move 

of tape head may be : 
- 

1. To-left, 

2. To-Right or 

3. Neutral 

Such a move of TM can be represented by tuple. 

{(G)s84oG5p2 ,) | Gpy€ Qi aa,€ I; m,é {To- left, To-Right, Neutral} } 

‘TM should be able to simulate every turing machine. Simulation of a Turing will involve : 

  

    easy-solutions 
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_ 1. Encoding behaviour of a particular TM as a program. 

2. Execution of the above program by UTM. 

A move of the form (q,,2)4)8,,m,) can be represented as 10! 10' 10'*' 10 10%, 

‘Where K = 1,if move is to the left 

K = 2, if move isto the right 

K = 3, if move is ‘no-move’ 

State p is represented by 0,. 

State q, is represented by 00, 

State q, is represented by 0"). 

First symbol can be represented by 0, 

Second symbol can be represented by 00 and so on. 

Two elements of a tuple representing a move are separated by 1. 

Two moves are separated by 11. . 

Execution by UTM : We can assume the UTM as a 3-tape turing machine. 

1. Input is written on the first tape. 

2. Moves of the TM in encoded form is written on the second tape. 

3. The current state of TM is written on the third tape. - ‘ 

The control unit.of UTM by counting number of 0’s between 1’s can find out the current symbol under the head. It can find the current 
state from the tape 3. Now, it can locate the appropriate move based on current input and the current state from the tape 2. Now, the 
control unit can extract the following information from the tape 2 : 

1. Next state 2. Next symbol to be written 

3. Move of the head. 

Based on this information, the control unit can take the appropriate action. 

. Chapter 8 : Undecidability and Recursively Enumerable Languages 
[Total Marks — 7.5] 

     

- Q.1(d) Explain Halting Problem. 

Ans. : ‘ 

Halting problem 

The halting problem of a Turing machine states - 

Given a Turing machine M and an input @ to the machine M, determine if the machine M will eventually halt when it is given 
input co, 

Halting problem of a Turing machine is unsolvable. 

  =-__ 

@GQH BIT 
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Proof : 

— Moves of a turing machine can be represented using a binary number. Thus, a Turing machine can be represented using a string over 

=*(0,1). 

— _ Insolvability of halting problem of a Turing machine can be proved through the method of contradiction. 

Step 1: Let us assume that the halting problem of a Turing machine is solvable. There exists a machine H,(say). 

H, takes two inputs : 

1. A string describing M. 

2. An input @ for machine M. 

H, generates an output “halt” if H, determines that M stops on input w; otherwise H outputs “loop”. Working of the machine H, is 

shown below. 

  

  

      

Step 2: Let us revise the machine H, as H, to take M as both inputs and H, should be able to determine if M will halt 

on Mas its input. A machine can be described as a string over 0 and 1. 

, —>halt 
loop   

  

Step 3: Let us construct a new Turing machine H, that takes output of H, as input and does the following : 

1. If the output of H, is “loop” then H; halts. 

"2. Ifthe output of H, is “halt” than H, will loop forever. 

: M      > halt —> Machine H, loops forever 

loop —» Machine H, halts 

H, will do the opposite of the output of H,. 

Step 4: Let us give H, itself as inputs to H,. 

a 

If H, halts on H, as input then H, would loop (that is how we constructed it). 

  

  

If H, loops forever on H, as input H, halts (that is how we constructed it). 

In either case, the result is wrong. 

Hence, 

H, does not exist. 

If H, does not exist then H, does not exist. 

If H, does not exist then H, does not exist. 

    
Gs Ts ee 
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“Every property that is satisfied by some but not all recursively enumerable languages is un-decidable”, Any property that is satisfied 

by some recursively enumerable language but not all is known as non-trivial Property. We have seen many properties of R-E. languages 

that are un-decidable. These properties include : 

1. Given a TM M, is L(M) nonempty ? 

2. Given aTMM, is L(V) finite ? 

3. Given a TM M, is L(M) regular ? 

4. Given a TM M, is L(M) recursive ? 

The Rice’s theorem can be proved by reducing some other unsolvable problem to non-trivial property of recursively enumerable 

language. 
  

‘g00 
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. Chapter 1 : Introduction [Total Marks - 10] ee 4 

Q. 5(b) Convert the following grammars 6 the Chomsky normal form (CNF) 

S—0A0 | 1B1] BB 

AC   B-=SIA 
| 

CaSle (10 Marks) — 

Ans. : : 

Step 1: Elimination of € —production. 

The symbols (A, B, C, S) are nullable and hence the given granular leads to the following granular : 

$—0OAO/00! 1B11111BIBB Granular G, 

A~C,B—>SIA,C7S 

Step 2: Resolving 2 unit productions from G, and also receiving non-reachable symbol C, 

We get, , 

S— OAO 1001 1B11111BB 

A-—>0OAO!0011B11111BB Granular G, 

B— OAO!001B11111BB’ 

Step3: AH the three variables are identical and hence, the granular becomes : 

S— OSO10011S11111SS Granular G; 

Step 4: Substituting A; for 0 and A; for 1, we get, 

S— A,SA,1 A,;A;1A2S Az1 Az A2/SS 

A, 0 

Ao? 1 

Step 5 : Writing productions in CNF 

S—>A:B, 8B,—-SA; 

S—A;A; 

 S—>AB, . » Bi->SAz 

S—>A,A; 

S— SS | | 

Ai->90 | 

A,—>1 : . : : | 
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at Chapter 2 : Finite Automata a [Total Marks - ~20) 3 

Q. 1(a) Differentiate DFA and NFA. ‘ : (5 Marks) 

Ans.: The difference between DFA and NFA Is as follows: 

UAC BARE Soe e 

  

  

  

            

  

1, DFA stands for deterministic finite automata. | NFA stands for non-deterministic finite satis 

2. The transition is deterministic. The transition is non-deterministic. 

3. A deterministic finite automata is a quintuple, | A non-deterministic finite automata is a 5-tuple, 

M=(Q.28.q.F) M=(Q, 2X, 5, q,, F) 

4. The number of states is finite. NFA can be in several states at a time. 

Q.1(6) Design a DFA to accept string of 0s and 1s ending with the string 100. (5 Ma 3) 

Ans. : 

The substring ‘abb’ should be at ‘the end of the string. Transitions from q, Should be modified to handle the condition that the string . 

has to end in ‘abb’. 

  

(a) State transition diagram (b) State transition table 

Fig. 1-Q. 1(b) : Final DFA . ‘ 

q, to q, on input a: An input of a in q, will make the previous four characters as ‘abba’. Out of the four characters as ‘abba’ only the last 

character ‘a’ is relevant to ‘abb’. 

q, to q, on input b: An input of b in q, will make the previous four characters ‘abbb’. Out of the four characters ‘abbb’, nothing is 

relevant to ‘abb’. , 
  

Q. 2(a) Design NFA for recognizing the strings that end in “aa” over > = {a,b} and convert NFA to DFA. -(10 Marks) 

Ans. : 

@ NFA for strings ending in “aa” is given below : 

    
(ii) NFA to DFA using the direct method 
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Chapter 3 : Regular Expressions and Languages [Total Marks - 15] 

  

Q.1(c) Explain the applications of regular expressions. (5 Marks) 
Ans.: Please refer Q. 6(b) of Dec. 2018. ‘ 

Q.3{a) Obtain a regular expression for the FA shown below : (10 Marks) 

Ans. : Given FA: 

    

Step 2: Receiving the loop among qo, q; and qp, we get    
Required R. E. = (b + ab + aaa*b)* aaa* 

@EREDLULLe 

Scanned by CamScanner



Theory of uter Science (MU 
“ _M9)-4 

Chapter 5 : Pushdown Automata (PDA) [Total Marks - 10] , 

Q. 4(b) State and explain pumping lemma for context free languages. . (10 Marks). 

Ans. : . ae 

Let G be a context free grammar. Then there exists a constant n such that any string 

weL(G) with | w/>ncan be rewritten as w = uvxyz, subject to the following conditions : 

1. | yxy I <n, the middle portion is less than n. 

2. vy #€, strings v and y will be pumped. 

3. Foralli> 0, uv'xy'z is in L. The two strings v and y can be pumped zero or more times. 

Proof: 

Let us assume that the grammar 

Gis given by wv, T, P, S). 

@(G) denotes that largest number of symbols on the right-hand side of a production in P. 

In pumping lemma, it is a requirement that the constant n should satisfy the following 

condition 

n2>(G)'v-™! 

Let us take a-string w eL (G), such that | w | n. Let us construct a parse tree T with 

root as S. The parse tree T generates w with smallest number of leaves. 

The tree T will have a path length of at least | V-Tl+ 1. This path will have 

IV -—T 142 nodes with the last node labelled as terminal and remaining non-terminals. 

Fig. 1-Q. 4(b) shows paths in detail. 

  

  

+—U—— V— 9 —— x ey — 2 

Fig. 1-Q. 4(b) : Paths in the parse tree 

x is generated by Tz 

v is generated by T1 

u is generated by T 

T, excluding T, can be repeated any number of times. 

This will yield a string of the form uv'xy'z where i > 0 
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Cha ter 6: Re ular Grammar [Total Marks - 10] 
    

Q. 5(a)’ Design PDA for the following language : 

L(M) = {wew | w {a,b}*} where w" Is reverse of w & c Is a constant. (10 Marks) 

Ans. : | 

W* stands for reverse of W. A string of the form WeW* is an odd length palindrome with the middle character as c. 

Algorithm : 

If the length of the string is 2n + 1, then the first n symbols should be matched with the last n symbols in the reverse order. A stack 

can be used to reverse the first n input symbols. 

Status of the stack and state of the machine is shown in Fig. 1-Q. 5(a). Input applied is abbcbba. 

  

      
  

  

Qo qo qo qo 4 4 4 4 

Fig. 1-Q. 5(a) : A PDA on input abbcbba 

The PDA accepting through final state is given by 

M=( {q,.4,-4,}, {a b,c}, {a, b, Zp}, 5. dy. Zo {9,}) 

Where the transition function 8 is given below : 

1. 5@yae) = Ga) | First n symbols are pushed onto the stack 
2. Sdyb,e) = (qb) 

3, &qyc,£) = (,&) . [State changes on c] 

4. &q,4a) = (4,8) ] _ Last n symbols are matched with first n symbols in 
5. q,.b,b)= (q,,e) reverse order 

6. 5G,&%)= (G,.2%) . [Accepted through final state] 

At transition of the form 5(qg, a, &) = (dg. a) implies that always push a, irrespective of stack symbol. 

Chapter 7 : Turing Machine (TM) [Total Marks - 20] 

Q.3(b) Explain the types of Turing machine in detalll (10 aarics) 
Ans. : . 

The types of Turing machine are as follows : 

L. Two-way infinite Turing machine 

In a standard turing machine number of positions for leftmost blanks is fixed and they are included in instantaneous description, 
where the right-hand blanks are not included. . 

(In the two way infinite Turing machine, there is an infinite sequence of blanks on each side of the input string. In an. instantaneous 

description, these blanks'‘are never shown. 

@EBELLILIG : , viii euugaeeriasnion 
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2. Turing machine with multiple heads 

A turing machine with single tape can have multiple heads. Let us conser ating machine with two heads Hand Hi, Each head is 

capable of performing read/write /move operation independently. 

BabaabbaBBB’ 

H, #H, 

Fig. 1-Q. 3(b) : A Turing machine with two heads 

The transition behavior of 2-head one tape Turing machine can be defined as given below : 

5 (State, Symbol under H,, Symbol under H,) = (New state, (S,, M,), (S_.M,)) 

Where, 

S, is the symbol to be written in the cell under H,. 
M, is the movement (L, R, N) of H,. 

_ &, is the symbol to be written in the cell under H,. 

M, is the movement (L, R, N) of H,, 

3. Multi-tape Turing machine 

Multi-tape turing machine has multiple tuples with each tape having its own independent head. Let us consider the case of a two tape 

turing machine. It is shown in Fig. 2-Q. 3(b). 

  

Tape 1: 
  

      FEEEER 

“Fig. 2-Q. 3(b) : A two-tape turing machine 

Tape 2: 

The transition behavior of a two-tape Turing machine can be defined as : 

541-41) = (d)(S,M)),(S,M,)) 

Where, 

q, is the current state, 

@ is the next state, 

a, is the symbol under the head on tape 1, 

a, is the symbol under the head on tape 2, 

S, is the symbol written in the current cell on tape 1, 

S, is the symbol written in the current cell on tape 2, 

M, is the movement (L, R, N) of head on tape 1, 

M, is the movement (L, R, N) of head on tape 2. 
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4, Non-deterministic Toring machine 

— -.. Non-detenministic is a powerful feature. A non-deterministic TM machine might have, on certain combinations of state and 

symbol under the head, more than one possible choice of behaviour. 

- Non-deterministic does not make a TM more powerful. 

- For every non-deterministic TM, there is an equivalent deterministic TM. 

- It is easy to design a non-deterministic TM for certain class of problems. 

—  Astring is said to be accepted by a NDTM, if there is at least one sequence of moves that takes the machine to final state. 

- An example of non-deterministic move for a TM is shown in Fig. 3-Q. 3(b). 

aaR 

  

Fig. 3-Q. 3(b) : A sample move for NDTM 

The transition behaviour for state qy for TM of Fig. 3-Q. 3(b) can be written as 

- 8@,a) = {(@o,a, R) Gx, R)} 

Universal Turing machine 

A general-purpose computer can be programmed to solve different types of problems. A TM can also behave like a general-purpose 

computer. A general purpose computer solves a problem as given below : 

1. A program is written in a high level language and its machine-code i is obtained with the help of a complier. 

2. Machine code is loaded in main memory. 

3. Input to the program can also be loaded in memory. 

4. Program stored in memory is executed line by line. Execution involves reading a line of code pointed by IP (instruction pointer), 
decoding the code and executing it. 

‘We can follow a similar approach for a TM. Such a TM is known as Universal Turing Machine. Universal Turing Machine (UTM) 
can solve all sorts of solvable problems. 

A Turing machine M is designed to solve a particular problem p, can be specified as : 

1. The initial state qy of the TM M. 

2. The transition function 5 of M can be specified as given : 

If the current state of M is q, and the symbol under the head is a, then the machine moves to state q; while changing a a; to a. The move 
of tape head may be : 

‘1. To-left, 

2. To-Right or 

3. Neutral 

Such a move of TM can be represented by tuple 

{(g,,2,,9,,4,m,) : 4,9,€ Q;a,,a,€ I; m,€ {To- left, To-Right, Neutral} } 

UTM should be able to simulate every turing machine. Simulation of a Turing will involve : 

1. Encoding behaviour of a particular TM as a program. 
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2. Execution of the above program by UTM. 

A move of the form (q;.8,,),8,m,) can be represented as 10°! 10! ot! 10 10, 

Where K = 1. if move is to the left 

K 2, if move is to the right 

K = 3,if move is ‘no-move’ 

State q, is represented by 0, 

State q, is represented by 00, 

State q, is represented by 0°"! 

First symbol can be represented by 0, 

Second symbol can be represented by 00 and so on. 

Two elements of a tuple representing a move are separated by 1. 

Two moves are separated by 11. 

  

Q. 4(a) Design a turing machine that computes a function f(m,n) = m+n i.e. addition of two integers. (10 Marks) 

Ans. : 

Addition of two unary numbers can be performed through append operation. To add two numbers 5 (say w,) and 3 (say @,) will 

require following steps : : 

1. Initial configuration of tape : 

  

2. @, is appended to w,. 

  

  

  

While every ‘0’ from «, is getting appended to ,, ‘0’ from @, is erased. @, contains 8 0°s, which is sum of 5 and 3. 

Chapter 8 : Undecidability and Recursively Enumerable Languages 
[Total Marks - 25] 

Q.1(d) What are recursive and recursively enumerable languages? 

Ans. : 

Recusive language 

(5 Marks) 

A language over an alphabet & can be described recursively, A recursive definition has three Steps : 

1. Specify some basic objects in the set. 

2. Specify the rules for constructing more objects from the objects already known. 
3. Declaration that no objects except those constructed as given above are allowed in the set. 

ore asy-solulons 
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Recursively enumerable language , 

There is a difference between recursively enumerable (Turing Acceptable) and recursive (Turing Decidable) language. 

Following statements are equivalent : 

1. The language L is Turing acceptable. 

2. The language L is recursively enumerable. 

Following statements are equivalent 

1. The language L is Turing decidable. 

2. The language L is recursive. 

3. There is an algorithm for recognizing L. 

Every Turing decidable language is Turing acceptable. 

. Every Turing acceptable language need not be Turing decidable. 

Q.6 Write detailed note on (any two):- 

(a) Post correspondence problem 

(b) Haltingproblem . 
(c) Rice's theorem - (20 Marks) 

Ans. : . 
.(a) Post correspondence problem 

Let A and B be two non-empty lists of strings over }. A and B are given as below : 

A = {Xp Xp Ky --- Kh . 

B {Yo ¥3 --- Yih / 

We say, there is a post correspondence between A and B if there is a sequence of one or more integers i, j, k ...m such that : 

The string X, X; ... X, is equal to Y; Yj --- Yur 

Example : To check whether 

A = {a,aba’, ab} and 

B..= {a’,ab,b} 

has a solution. 

We will have to find a sequence using which when the elements of A ond B are listed, will produce identical strings. 

The required sequence is (2, 1, 1,3) | 

A, A, A, Ay aba’ a aab = aba’ b 

B,B,B,B, = aba’a’b=aba’b 

" 

Thus, the PCP has solution. 

We are accepting the un-decidability of post correspondence problem without proof. 
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‘(®) Halting problem 

The halting problem of a Turing machine states : 

| Given a Turing machine M and an input «to the machine M, determine if the machine M will eventually halt when itis given 

input ow. 

: Halting problem of a Turing machine is unsolvable. 

Proof : 

Moves of a turing machine can be represented using a binary number. Thus, a Turing machine can be represented using a string over 

=*@,1). 
. 

Insolvability of halting problem of a Turing machine can be proved through the method of contradiction, 

Step 1: Let us assume that the halting problem of a Turing machine is solvable. There exists a machine H, (say). H, takes two inputs : 

1. A string describing M. 

2. An input w for machine M. 

H, generates an output “halt” if H, determines that M stops on input «; otherwise H outputs “loop”. Working of the machine H, is 

shown below. 

  

Step 2: Let us revise the machine H, as H, to take M as both inputs and H, shonld be able to determine if M will halt on M as its imput. 

A machine can be described as a string over 0 and 1. 

  

Step 3: Let us construct a new Turing machine H, that takes output of H, as input and does the following : 

1. If the output of H) is “loop” than H; halts. 

2. If the output of H, is “halt” than H, will loop forever. 
M      halt —® Machine Hs, loops forever 

loop —» Machine Hg halts 

H, will do the opposite of the output of H). 

Step 4: Letus give H, itself as inputs to H,. 

  

If H, halts on H, as input then H, would loop (that is how we constructed it), 

If H, loops forever on H, a8 input H, halts (that is how we constructed it). 

In either case, the result is wrong. 

Hence, 

H, does not exist. 

If H, does not exist than H, does not exist. — 

“If H, does not exist than H, does not exist \ 
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(c) Rice’s theorem 

Every property that is satisfied by some but not all recursively enumerable language is un-decidable. Any property that i, ae, 

some recursively enumerable language but not all is known as nontrivial property. We have seen many properties of R.E. languages 

are un-decidable. These properties include : 

1. Given a TM M, is L(M) nonempty? 

2. Given a TM M, is L(M) finite? 

3. Given a TM M, is L(M) regular? 

4. Given a TMM, is L(M) recursive? 

The Rice’s theorem can be proved by reducing some other unsolvable problem to nontrivial property of recursively enumerable 

language. 
  

000 

  ®VE 

r 

Scanned by CamScanner



Wr Theory of Computer Science (MU) a Q-+ 

  

Q.14 > (a) Explain Chomsky Hierarchy. bo (5 Marks) 

(6) Differentiate between PDA and NPDA. : ' (5 Marks) 

~ (c) Define Regular Expression and give regular expression for : 

(i) Set ofall strings over {0, 1} that end with 1 has no substring 00 (5 Marks) 

(d) Explain Halting Problem. _ (5 Marks) 

Q.2 (a) Design a Finite State machine to determine whether ternary number (base 3) is divisible by 5. 

(10 Marks) 

(b) Give and explain formal definition of Pumping Lemma for Regular Language and prove that — 
following language is not regular. L = {a"b™~ ‘| m > 0} (10 Marks) 

Q.3 (a) Construct PDA accepting the language L = {a™"b"| n>0}. (10 Marks) 

(b) Consider the following grammar 

S> ictslictSeSla 

C—> »b 

For the string ‘ibtaeibta’ find the following : 
(i) _ Leftmost derivation 

(ii) Rightmost derivation 

(iii) Parse tree 

. _ (vy) Check if above grammar is ambiguous. (10 Maris) 

Q.4 (a) Construct TM to check well-formedness of parenthesis. (10 Marks) 

(b) Convert following CFG to CNF (10 Marks) 

S —°— ASAIAb 

A > BIS 

B + ble 

Q.5 (a) Convert (0 + 1) (10)*(0 + 1) into NFA with «-moves and obtain DFA. (10 Marks) 

(b) Construct Mealy and Moore Machine to convert each occurrence of 100 by 101. (10 Marks) 

"@.6 Write short note on (any four) | . (10 Marks) 
(a) Closure properties of Context Free Language. 

(b) Applications of Regular expression and Finite automata. 

(c) Rice's Theorem. 

(d) Mealy and Moore Machine 

(e) Universal Turing Machine 

@ OES 
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Q.1 (a) _ Differentiate DFA and NFA. (5 Marks) 

~* (b) *Design a DFA to accept string of 0's and 1's ending with the string 100. (5 Marks) 

(c) Explain the applications of Regular Expressions. ‘(5 Marks) 

(d) What are Recursive and Recursively Enumerable Languages? (5 Marks) 

Q.2 (a) Design NFA for recognizing the strings that end in “aa” over £ ={a,b} & convert above NFA to DFA. 

(10 Marks) 

~ (0) Design moore mic for. following : 

- Hf input ends in ‘101’ then output should be A, if input ends in ‘110’ output should be B, otherwise 

output should be C and convert it into mealy m/c. (10 Marks) 

Q.3 (a) Obtain a regular expression for the FA shown below : (10 Marks) 

  

Fig. 1Q. 3(a) 

(b) Explain the types of Turing machine in detail. ; (10 Marks) 

Q.4 (a). Design a turing machine that computes a function f(m,n) = m + n i.e. addition of two integers. 

(10 Marks) 

(b) State and explain pumping Lemma for Context Free Languages. Find out whether the language 
L= {x"y"Z" | n 21} is context free or not. (10 Marks) 

Q.5 (a) Design PDA for the following language : 

L(M) = {wew* | w {a,b}*} where w’ is reverse of w & c is a constant. (10 Marks) 

(6) Convert the following Grammars to the Chomsky normal form (CNF). 

S —0A0 | 1B1| BB 

A—C 

B-S|A 

CSc oe "(10 Marks) 
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Q.6 Write detailed note on (any two) : 

(a) Post Correspondence Problem 

(b) Halting Problem. 

, (c) ‘ Rice’s Theorem. 

ETS 
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