es
 Casy-solutions

Mumbai University Paper Solutions

Strictly as per the New Revised Syllabus (Rev-2016) of Mumbai University w.e.f. academic year 2018-2019 (As per Choice Based Credit and Grading System)

THEORY OF COMPUTER SCIENCE

Semester V - Computer Engineering

Chapterwise Paper Solution upto May 2019.

TechKnowledgé
Publications

easy - solutions

MU

Theory of Computer Science

Semester V - Computer Engineering

Strictly as per the Choice Based Credit and Grading System (Revise 2016) of Mumbai University w.e.f. academic year 2018-2019

Theory of Computer Sclence

Semester V - Computer Engineering (MU)

Copyright © with TechKnowledge Publications. All rights reserved. No part of this publication may be reproduced, copied; or stored in a retrieval system, distributed or transmitted in any form or by any means, including photocopy, recording, or other electronic or mechanical methods, without the prior written permission of the publisher.

This book is sold subject to the condition that it shall not, by the way of trade or otherwise, be lent, resold, hired out, or otherwise circulated without the publisher's prior written consent in any form of binding or cover other than which it is published and without a similar condition including this condition being imposed on the subsequent purchaser and without limiting the rights under copyright reserved above.

Edition 2019

This edition is for sale in India, Bangladesh, Bhutan, Maldives, Nepal, Pakistan, Sri Lanka and designated countries in South-East Asia. Sale and purchase of this book outside of these countries is unauthorized by the publisher.

Printed at : 37/2, Ashtvinayak Industrial Estate, Near Pari Company,
Narhe, Pune, Maharashtra State India,
Pune-411041

Published by
TechKnowledge Publications

Head Office : B/5, First floor, Maniratna Complex, Taware Colony, Aranyeshwar Corner, Pune - 411 009. Maharashtra State, India

Ph: 91-20-24221234, 91-20-24225678.
Email : info@techknowledgebooks.com,
Website : www.techknowledgebaoks.com

INDEX

Chapter 1: Introduction

Chapter 2 : Finite Automata
Chapter 3 : Regular Expressions and Languages

Chapter 4 : Context Free Grammars (CFG)
Chapter 5 : Pushdown Automata (PDA)
Chapter 6: Regular Grammar (RG)
Chapter 7 : Turing Machine (TM)
Chapter 8 : Undecidability and Recursively Enumerable Languages

Table of Contents

- Index
- Syllabus
- Chapter 1 : Introduction

TCS-01 to TCS-01

- Chapter 2 : Finite Automata TCS-02 to TCS-13
- Chapter 3 : Regular Expressions and Languages TCS-14 to TCS-22
- Chapter 4 : Context Free Grammars (CFG) TCS-23 to TCS-25
- Chapter 5 : Pushdown Automata (PDA)

TCS-25 to TCS-36

- Chapter 6 : Regular Grammar (RG)

TCS-36 to TCS-44

- Chapter 7 : Turing Machine (TM)

TCS-44 to TCS-56

- Chapter 8 : Undecidability and Recursively Enumerable Languages

TCS-56 to TCS-59

- Dec. 2018
$D(18)-01$ to $D(18)-16$
- May 2019
$M(19)-01$ to $M(19)-11$
- University Question Papers

$$
Q-1 \text { to } Q-3
$$

SYLLABUS

Module No.	Unit No.	Topics
1.0		Basic Concepts and Finite Automata
	1.1	- Alphabets, Strings, Languages, Closure properties. - Finite Automata (FA) and Finite State machine (FSM).
	1.2	Deterministic Finite Automata (DFA) and Nondeterministic Finite Automata (NFA) : Definitions, transition diagrams and Language recognizers - NFA to DFA Conversion - Equivalence between NFA with and without ε - transitions - Minimization of DFA - FSM with output: Moore and Mealy machines, Equivalence - Applications and limitations of FA
2.0		Regular Expressions and Languages
	2.1	- Regular Expressior (RE) - Equivalence of RE and FA, Arden's Theorem - RE Applications
	2.2	- Regular Language (RL) - Closure properties of RLs - Decision properties of RLs - Pumping lemma for RLs ,
3.0		Grammars
	3.1	- Grammars and Chomsky hierarchy.
	3.2	- Regular Grammar (RG) - Equivalence of Left and Right linear grammar - Equivalence of RG and FA
	3.3	Context Free Grammars (CFG) - Definition, Sentential forms, Leftmost and Rightmost derivations, Parse tree, Ambiguity. - Simplification and Applications. - Normal Forms: Chomsky Normal Forms (CNF) and - Greibach Normal Forms (GNF). - CFLs - Pumping lemma, Closure properties

Theory of Computer Science

Chapter 1 : Basic Concepts and Finite Automata

Q. 1 Write note on Chomsky Hierarchy.
 MU - Dec. 2009, Dec. 2012, May 2013, May 2014, Dec. 2014, May 2015. Dec. 2016. May 2017, Dec. 2017

Ans. : Chomsky Herarchy

A grammar can be classified on the basis of production rules. Chomsky classified grammars into the following types:

1. Type 3 : Regular grammar
2. Type 2 : Context free grammar
3. Type 1: Context sensitive grammar
4. Type 0 : Unrestricted grammar.
5. Type 3 or Regular Grammar

A grammar is called Type 3 or regular grammar if all its productions are of the following forms :

$$
\begin{aligned}
& \mathrm{A} \rightarrow \varepsilon \\
& \mathrm{~A} \rightarrow \mathrm{a} \\
& \mathrm{~A} \rightarrow \mathrm{aB} \\
& \mathrm{~A} \rightarrow \mathrm{Ba}
\end{aligned}
$$

Where, $a \in \sum$ and $A, B \in V$.
A language generated by Type 3 grammar is known as regular language.

2. Type 2 or Context Free Grammar

A grammar is called Type 2 or context free grammar if all its productions are of the following form $A \rightarrow \alpha$ where $A \in V$ and $\alpha \in(V \cup T) *$.

V is a set of variables and T is a set of terminals.
The language generated by a Type 2 grammar is called a context free language, a regular language but not the reverse.

3. Type 1 or Context Sensitive Grammar

A grammar is called a Type 1 or context sensitive grammar if all its productions are of the following form.

$$
\alpha \rightarrow \beta
$$

Where, β is atleast as long as α.

4. Type 0 or Unrestricted Grammar

Productions can be written without any restriction in a unrestricted grammar. If there is production of the $\alpha \rightarrow \beta$, then length of α could be more than length of β.

Every grammar also is a Type $\mathbf{0}$ grammar.
A Type 2 grammar is also a Type 1 grammar
A Type 3 grammar is also a Type 2 grammar.

Q. 2 State applications of Finite Automata in brief.

May 2010
Ans. :

Applications of Finite Automata

Finite automata are used for solving several common types of computer algorithms. Some of them are :
(i) Design of digital circuit
(ii) String matching
(iii) Communication protocols for information exchange.
(iv) Lexical analysis phase of a compiler.

Finite automata can work as an algorithm for regular language. It can be used for checking whether a string $w \in L$, where L is a regular language.

Q. 3 What is Finite Automata?

Dec. 2012
Ans. :

Finite Automata

Finite automata are also called a finite state machine.
A finite state machine is a mathematical model for actual physical process. By considering the possible inputs on which these machines can work, one can analyse their strengths and weaknesses.

Finite automata are used for solving several common types of computer algorithms. Some of them are :

1. Design of digital circuits.
2. String matching.
3. Communication protocols for information exchange.
4. Lexical analyser of a typical compiler.

Q. 4 `Define the term: Unrestricted grammar

May 2013

Ans. :

Unrestricted grammar

Productions can be written without any restriction in a unrestricted grammar. If there is production of the $\alpha \rightarrow \beta$, then length of α could be more than length of β.

Every grammar also is a Type 0 grammar.
A Type 2 grammar is also a Type 1 grammar
A Type 3 grammar is also a Type 2 grammar.

Chapter 2 : Finite Automata

Q. 1 Write short note on Mealy machine.

Dec. 2005
Ans. :

Mealy Machine

Fig. 2.1 : State diagram of a Mealy machine
State transition function (δ) (or STF) :

	a	b
$\rightarrow \mathrm{q}_{0}$	q_{0}	q_{1}
q_{1}	q_{0}	q_{2}
q_{2}	q_{0}	q_{3}
q_{3}	q_{3}	q_{3}

Fig. 2.2 : State transition function for Mealy machine of Fig. 2.1

Output function (λ) (or MAF) :

	a	b
$\rightarrow \mathrm{q}_{0}$	0	0
q_{i}	0	0
q_{2}	1	0
q_{3}	0	0

Fig. 2.3: Output function for mealy machine of Fig. 2.1
State table for both δ and λ (both STF and MAF) :

$$
\begin{array}{r|cc}
& \mathrm{A} & \mathrm{~b} \\
\hline \rightarrow \mathrm{q}_{0} & \mathrm{q}_{0} / 0 & \mathrm{q}_{1} / 0 \\
\mathrm{q}_{1} & \mathrm{q}_{0} / 0 & \mathrm{q}_{2} / 0 \\
\mathrm{q}_{2} & \mathrm{q}_{0} / 1 & \mathrm{q}_{3} / 0 \\
\mathrm{q}_{3 .} & \mathrm{q}_{3} / 0 & \mathrm{q}_{3} / 0 \\
& \\
& \\
& \text { Output }
\end{array}
$$

Fig. 2.4 : State table depicting both transition and output behavior of mealy machine of Fig. 2.1

An arc from state q_{i} in a mealy machine is associated with:

1. Input alphabet $\in \boldsymbol{\Sigma}$
2. An output alphabet $\in \mathbf{O}$.

An arc marked as 'a/0' in Fig. 2.1 implies that:

1. a is in input
2. $\mathbf{0}$ is an output.

State transition behavior and output behavior of a mealy machine can be shown separately as in Fig. 2.2 and 2.3; or they can be combined together as in Fig. 2.4.

Formal Definition of a Mealy Machine

A mealy machine M is defined as :
$M=\left\{Q, \Sigma, O, \delta, \lambda, q_{0}\right)$
Where, $\mathrm{Q}=\mathrm{A}$ finite set of states.
$\Sigma=$ A finite set of input alphabet
$\mathrm{O}=\mathrm{A}$ finite set of output alphabet
$\delta=A$ transition function $\Sigma \times Q \rightarrow Q$
$\lambda=$ An output function $\Sigma \times \mathrm{Q} \rightarrow \mathrm{O}$
$q_{0}=q_{0} \in Q$ is an initial state.
Q. 2 Distinguish between NFA and DFA.

MUS:May 2007, Dec. 2009, May 2011, May 2014. May 2015, May 2016, May 2017, Dec. 2017
Ans. :

Difference between NFA and DFA

Parameter	NFA	DFA
Transition	Non-deterministic.	Deterministic
No. of states.	NFA has fewer number of states.	More, if NFA contains Q states then the corresponding DFA will have ≤ 2 states.
Power	NFA is as powerful as a DFA	DFA is as powerful as an NFA
Design	Easy to design due to non-determinism. -	Relatively, more difficult to design as transitions deterministic. are
Acceptance	It is difficult to find whether w \in L as there are several paths. Backtracking required to is explore several parallel paths.	It is easy to find whether w \in L as transitions deterministic. are

Q. 3 Define DFA.

May 2010

Ans. :

Definition of DFA

A deterministic finite automata is a quintuple.

$$
M=\left(Q, \Sigma, \delta, q_{0}, F\right), \text { where }
$$

Q is a set of states.
Σ is a set of alphabet.
$\mathrm{q}_{0} \in \mathrm{Q}$ is the initial state,
$F \subseteq \mathrm{Q}$ is the set of final states, and δ, the transition function, is a function from $\mathrm{Q} \times \Sigma$ to Q .
Q. 4 Obtain a grammar to generate the language $\left.L=\left\{0^{n} 1^{2 n} \mid n \geq 0\right)\right\}$.

May 2010
Ans. :
Productions for the required language are as follows.

$$
P=\{S \rightarrow 0 S 11 \mid \varepsilon\}
$$

CFG for the above language is ($\{\mathbf{S}\},\{0,1\}, P, S$)
Q. 5 Give deterministic finite automata accepting the following languages over the alphabet $\{0,1\}$
(a) Number of 1 's is even and number of 0 's is even.
(b) Number of 1's is odd and number of 0's is odd.

May 2010
Ans. :
(a) Number of 1 's is even and number of 0 's is even.

At any instance of time, we will have following cases for number of 0 's and number of 1 's seen by the machine.

Situations		State
Number of 0 's	Number of 1 s	
Even	Even	q_{0}
Even	Odd	q_{1}
Odd	Even	q_{2}
Odd	Odd	q_{3}

An input 0 in state q_{0}, will make number of 0 's odd.

$$
\delta\left(q_{0}, 0\right) \Rightarrow q_{2}
$$

An input 1 in state q_{0}, will make number of 1 's odd.

$$
\delta\left(q_{0}, 1\right) \Rightarrow q_{1}
$$

An input 0 in state q_{1}, will make number of 0 's odd.

$$
\delta\left(q_{1}, 0\right) \Rightarrow q_{3}
$$

An input 1 in state q_{1}, will make number of 1 's even.

$$
\delta\left(q_{1}, 1\right) \Rightarrow q_{0}
$$

An input 0 in state q_{2}, will make number of 0 's even.

$$
\delta\left(q_{2}, 0\right) \Rightarrow q_{0}
$$

An input 1 in state q_{2}, will make number of 1 's odd.

$$
\delta\left(q_{2}, 1\right) \Rightarrow q_{3}
$$

An input 0 in state q_{3}, will make number of 0 's even.

$$
\delta\left(q_{3}, 0\right) \Rightarrow q_{1}
$$

An input 1 in state q_{3}, will make number of 1 's even.

$$
\delta\left(q_{3}, 0\right) \Rightarrow q_{2}
$$

q_{0} is the starting state. An empty string contains even number of 0 's and even number of 1 's. q_{0} is a final state. q_{0} stands for even number of 0 's and even number of 1 's.

(a) Transition diagram

	0	1
$\rightarrow \mathrm{q}_{0}$	q_{2}	q_{1}
q_{1}	q_{3}	q_{0}
q_{2}	q_{0}	q_{3}
q_{3}	q_{1}	q_{2}

(b) Transition table

Fig. 2.5: Final DFA for Q.5(a)
(b) Number of 1 's is odd and number of 0 's is odd.

In solution of $Q .5(a)$, the state q_{3} stands for odd number of 0 's should be declared as final state.

(c) Transition diagram

	0	1
$\Rightarrow q_{0}$	q_{2}	q_{1}
q_{1}	q_{3}	q_{0}
q_{2}	q_{0}	q_{3}
q_{3}^{*}	q_{1}	q_{2}

(d) Transition table

Fig. 2.5 : Final DFA for for Q.5(b)
Q. 6 Give the finite automation M accepting ($\mathrm{a}, \mathrm{b})^{*}$ (baaa). Dec. 2012
Ans. :
The R.E. $=(\mathrm{a}, \mathrm{b})^{*}$ (baaa), represents strings ending in baaa.
The FA is given below

Fig. 2.6
Q. 7 Glve applications of Finite Automata. May 2014

Ans. :

Applications of Finite Automata

Finite automata are used for solving several common types of computer algorithms. Some of them are :
(i) Design of digital circuit
(ii) String matching
(iii) Communication protocols for information exchange.
(iv) Lexical analysis phase of a compiler.

Finite automata can work as an algorithm for regular language. It can be used for checking whether a string $w \in L$, where L is a regular language.
Q. 8 Design a DFA to accept strings over the alphabet
set $\{a, b\}$ that begin with 'aa' but not end with 'aa'.

Dec. 2014
Ans. :

Fig. 2.7
A string not starting with aa will reach the dead state q_{ϕ}.
A string starting with aa will reach the state q_{2}.
A string starting with aa and not ending in aa will be either in q_{4} or q_{s}.

The DFA is given by,

$$
M=\left(\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}, q_{5}, q_{\phi}\right\},\{a, b\}, \delta, q_{0},\left\{q_{4}, q_{5}\right\}\right)
$$

Q. 9 Design a MOORE and MEALY machine to decrement a bínary number.
Ans. :
One can decrement a binary by adding $11 \ldots 1$ (all 1 's is 2 's complement of 1) to the given number. The addition should start from the least significant digit.

Mealy machine

Fig. 2.8

$$
\left(\mathrm{q}_{0}-\text { Previous carry as } 0, \mathrm{q}_{1}-\text { Previous carry as } 1\right)
$$

i.e., all trailing 0 's are written as 1 and the first 1 is written as 0 .

Moore machine :

Fig. 2.9
Q. 10 Design minimized DFA for accepting strings ending with 100 over alphabet (0, 1). May 2015
Ans.:
All strings ending in 100 :
The substring ' 100 ' should be at the end of the string. Transitions from q_{3} should be modified to handle the condition that the string has to end in ' 100 '.

$$
\begin{array}{r|cc}
& 1 & 0 \\
\hline \rightarrow \mathrm{q}_{0} & \mathrm{q}_{1} & \mathrm{q}_{0} \\
\mathrm{q}_{1} & \mathrm{q}_{1} & \mathrm{q}_{2} \\
\mathrm{q}_{2} & \mathrm{q}_{1} & \mathrm{q}_{3} \\
\mathrm{q}_{3}^{*} & \mathrm{q}_{1} & \mathrm{q}_{0}
\end{array}
$$

(a) State transition diagram
(b) State transition table

Fig. 2.10
q_{3} to q_{1} on input 1 :
An input of 1 in q_{3} will make the previous four characters as '1001'. Out of the four characters as ' 1001 ' only the last character ' 1 ' is relevant to ' 100 '.
q_{3} to q_{0} on input 0 :
An input of 0 in q_{3} will make the previous four characters ' 1000 '. Out of the four characters ' 1000 ', nothing is relevant to ' 100 '.
Q. 11 Design Moore Machine t generate output A If string is ending with abb, B if string ending with aba and C otherwise over alphabet (a, b). and convert it to mealy machine.

Ans. :

Design of Moore machine

Fig. 2.11

Conversion Into Mealy machine :

Step 1 : Construction of a trivial Mealy machine by moving output associated with a state to transition entering into that state.

	a	b
q_{0}	$\mathrm{q}_{1}, \mathrm{C}$	$\mathrm{q}_{0}, \mathrm{C}$
q_{1}	$\mathrm{q}_{1}, \mathrm{C}$	$\mathrm{q}_{2}, \mathrm{C}$
q_{2}	$\mathrm{q}_{1}, \mathrm{~B}$	$\mathrm{q}_{3}, \mathrm{~A}$
q_{3}	$\mathrm{q}_{1}, \mathrm{C}$	$\mathrm{q}_{0}, \mathrm{C}$
q_{4}	$\mathrm{q}_{1}, \mathrm{C}$	$\mathrm{q}_{2}, \mathrm{C}$

Step 2 : Minimization
The two states q_{1} and q_{4} can be merged into a single state, say q_{1}.

	a	B
q_{0}	$\mathrm{q}_{1}, \mathrm{C}$	$\mathrm{q}_{0}, \mathrm{C}$
q_{1}	$\mathrm{q}_{1}, \mathrm{C}$	$\mathrm{q}_{2}, \mathrm{C}$
q_{2}	q_{1}, B	$\mathrm{q}_{3}, \mathrm{~A}$
q_{3}	$\mathrm{q}_{1}, \mathrm{C}$	$\mathrm{q}_{0}, \mathrm{C}$

The two state $\mathrm{q}_{0}, \mathrm{q}_{3}$ can be merged into a single state, say q_{0}.

	a	b
q_{0}	q_{1}, C	q_{0}, C
q_{1}	q_{1}, C	q_{2}, C
q_{2}	q_{1}, B	q_{0}, A

The final Mealy machine is

Fig. 2.12
Q. 12 Convert following \in-NFA to NFA without ϵ.

Dec. 2015

Fig. 2.13
Ans. :
To convert \in-NFA to NFA without ϵ
Step 1: To remove \in transition from q state to r state, we do following
(a) Duplicate transitions of r state on q state
(b) Since r is the final state, we make q as well as the final state.

Step 2: To remove \in transition from p state to q state do following :
(a) Duplicate the transitions of q state on p state
(b) Since q is a final state we make p as well as the final state.

Thus, the NFA is :

Fig. 2.14
Since all 3 states in the NFA are final states, we can merge all 3 states
\therefore NFA - without ϵ is

Fig. 2.15
Q. 13 Design the DFA to accept the language containing all the strings over $\sum=\{a, b, c\}$ that starts and ends with different symbols.

Ans. :
$M=\left\{Q, \Sigma, \delta, q_{0}, F\right\}$
$Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}, q_{5}, q_{6}, q_{7}\right\}$
$\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
$\mathbf{q}_{0}=$ initial state
$F=\left\{q_{3}, q_{5}, q_{7}\right\}$

Fig. 2.16
$\delta=$ Transitions are :

$\delta\left(q_{0}, a\right) \Rightarrow q_{2}$	$\delta\left(q_{6}, c\right) \Rightarrow q_{6}$
$\delta\left(q_{0}, b\right) \Rightarrow q_{4}$	$\delta\left(q_{3}, a\right) \Rightarrow q_{2}$
$\delta\left(q_{0}, c\right) \Rightarrow q_{6}$	$\delta\left(q_{3}, b\right) \Rightarrow q_{3}$
$\delta\left(q_{2}, a\right) \Rightarrow q_{2}$	$\delta\left(q_{3}, c\right) \Rightarrow q_{3}$
$\delta\left(q_{2}, b\right) \Rightarrow q_{3}$	$\delta\left(q_{5}, a\right) \Rightarrow q_{5}$
$\delta\left(q_{2}, c\right) \Rightarrow q_{3}$	$\delta\left(q_{5}, b\right) \Rightarrow q_{4}$
$\delta\left(q_{4}, a\right) \Rightarrow q_{5}$	$\delta\left(q_{5}, c\right) \Rightarrow q_{5}$
$\delta\left(q_{4}, c\right) \Rightarrow q_{5}$	$\delta\left(q_{7}, a\right) \Rightarrow q_{7}$
$\delta\left(q_{4}, b\right) \Rightarrow q_{4}$	$\delta\left(q_{7}, b\right) \Rightarrow q_{7}$
$\delta\left(q_{6}, a\right) \Rightarrow q_{7}$	$\delta\left(q_{7}, c\right) \Rightarrow q_{6}$

Q. 14 Convert the following grammar into finite automata.
$s \rightarrow a X I b Y|a| b$
$X \rightarrow a S I b Y \mid b$
$\mathbf{Y} \rightarrow \mathrm{aX} \mid \mathrm{bS}$
Ans. :
The above grammar can be converted to FA as follows :

- For every non terminating symbol we consider it as a different state

$$
\begin{aligned}
\mathrm{M} & =\{\mathrm{Q}, \mathrm{\Sigma}, \delta, \mathrm{~S}, \mathrm{~F}\} \\
\mathrm{Q} & =\{\mathrm{S}, \mathrm{X}, \mathrm{Y}\} \\
\mathbf{\Sigma} & =\{\mathrm{a}, \mathrm{~b}\} \\
\mathrm{S} & =\text { initial state } \\
\mathrm{F} & =\{\mathrm{X}, \mathrm{Y}\}
\end{aligned}
$$

Fig. 2.17

$$
\begin{aligned}
& \delta(\mathrm{X}, \mathrm{a}) \Rightarrow \mathrm{S} \\
& \delta(\mathrm{X}, \mathrm{~b}) \Rightarrow \mathrm{Y} \\
& \delta(\mathrm{Y}, \mathrm{a}) \Rightarrow \mathrm{X} \\
& \delta(\mathrm{Y}, \mathrm{~b}) \Rightarrow \mathrm{S}
\end{aligned}
$$

Q. 15 Design the DFA to accept all the binary strings over $\Sigma=\{0,1\}$ that are beginning with 1 and having its decimal value multiple of 5. May 2016

Ans.:
Running remained is maintained through the states q_{0}, q_{1}, q_{2}, $\mathrm{q}_{3}, \mathrm{q}_{4}$. If the number start with 0 , it is rejected.

Fig. 2.18

Reminder calculation for finding the next state

State	Binary value of the state	$\delta\left(\mathrm{q}_{2}, 0\right)$	$\delta\left(\mathrm{q}_{2}, 1\right)$
q_{0}	0	$00 \div 5=0\left(\mathrm{q}_{0}\right)$	$01 \div 5=1\left(\mathrm{q}_{1}\right)$
q_{1}	1	$10 \div 5=2\left(\mathrm{q}_{2}\right)$	$11+5=3\left(\mathrm{q}_{3}\right)$
q_{2}	10	$100 \div 5=4\left(\mathrm{q}_{4}\right)$	$101 \div 5=0\left(\mathrm{q}_{0}\right)$
q_{3}	11	$110 \div 5=1\left(\mathrm{q}_{1}\right)$	$111 \div 5=2\left(\mathrm{q}_{2}\right)$
q_{4}	100	$1000 \div 5=3\left(\mathrm{q}_{3}\right)$	$1001+5=4\left(\mathrm{q}_{4}\right)$

The operator + is for reminder.

Q. 16 Design mealy machine to find out 2's complement

 of a binary number.Ans. :

2's complement of a binary number

2 's complement of a binary number can be found by not changing bits from right end till the first ' 1 ' and then complementing remaining bits. For example, the 2's complement of a binary number 0101101000 is calculated as given below :

Fig. 2.19
$\delta(\mathrm{S}, \mathrm{a}) \Rightarrow \mathrm{X}$
$\delta(\mathrm{S}, \mathrm{b}) \Rightarrow \mathrm{Y}$

The required mealy machine is given below.
The input is entered from right to left.

Fig. 2.20
Q. 17 Convert the following NFA to an equivalent DFA

State	a	b	$=\in$
$\rightarrow q_{0}$	$\left\{q_{0}, q_{1}\right\}$	$\left\{q_{1}\right\}$	$\}$
q_{1}	$\left\{q_{2}\right\}$	$\left\{q_{1}, q_{2}\right\}$	$\}$
${ }^{*} q_{2}$	$\left\{q_{0}\right\}$	$\left\{q_{2}\right\}$	$\left\{q_{1}\right\}$

Ans. :
The transition graph of the given NFA is :

Fig. 2.21
ϵ-closure of states :

$$
\begin{aligned}
& \mathrm{q}_{0} \rightarrow\left(\mathrm{q}_{0}\right) \\
& \mathrm{q}_{1} \rightarrow\left(\mathrm{q}_{1}\right) \\
& \mathrm{q}_{2} \rightarrow\left(\mathrm{q}_{1}, \mathrm{q}_{2}\right)
\end{aligned}
$$

NFA to DFA using direct method.

Fig. 2.22
Q. 18 Design a DFA over an alphabet $\Sigma=\{a, b\}$ to recognize a language In which every ' a ' is followed by 'b'

Dec. 2016
Ans. :

Fig. 2.23

If ' a ' is followed by ' a ' then the machine enters the failure state q_{ϕ}

A ' b ' immediately after ' a ' takes the machine to the accepting state q_{0}
Q. 19 Design a mealy machine to determine the residue mod 3 of a blnary number.
Ans. :

Fig. 2.24
소
State q_{0} is for the running reminder as 0 .
State q_{1} is for the running reminder as 1 .
State q_{2} is for the running reminder as 2 .
Output 1 indicates divisibility by 3
Output 0 indicate that the number is not divisible by 3 .
\therefore Required R.E. $=\left(0+1(1+01)^{*} 00\right)^{*}$
Q. 20 Convert the following NFA to an equivalent DFA

State	a	b	ε
$\rightarrow q_{0}$	$\left\{q_{0}, q_{1}\right\}$	q_{1}	$\}$
q_{1}	$\left\{q_{2}\right\}$	$\left\{q_{1}, q_{2}\right\}$	$\}$
${ }^{*} q_{2}$	$\left\{q_{0}\right\}$	$\left\{q_{2}\right\}$	$\left\{q_{1}\right\}$

Ans. :
ϵ - closure of states

State	\in-closure
q_{0}	$\left\{\mathrm{q}_{0}\right\}$
q_{1}	$\left\{\mathrm{q}_{1}\right\}$
q_{2}	$\left\{\mathrm{q}_{1}, \mathrm{q}_{2}\right\}$

Constructing DFA using the direct method
Step 1 : Transitions for the state $\left\{\mathrm{q}_{0}\right\}$

Step 2: Writing transitions for the state $\left\{q_{1}\right\}$

Step 3 : Writing transitions for the state $\left\{q_{0}, q_{1}\right\}$

Step 4: Writing transitions for the states $\left\{\mathrm{q}_{1}, \mathrm{q}_{2}\right\}$ and $\left\{q_{0}, q_{1}, q_{2}\right\}$

Q. 21 Draw DFA for the following language over $\{a, b\}$:
(a) All strings starting with abb.
(b) All strings with abb as a substring i.e., abb anywhere in the string.
(c) All strings ending in abb.

May 2017
Ans. :
(a) All strings starting with abb

First input as ' b ' will take the machine to a failure state.
First two inputs as 'aa' will take the machine to a failure state.
First three inputs as 'aba' will take the machine to a failure state.
First three inputs as 'abb' will take the machine to a final state.

(a) State transition diagram
(b) State transition table

Fig. 2.25 : Final DFA for Q. 21(a)

A DFA without explicit failure state is given in Fig. 2.25(a)

(a) State transition diagram
(b) State transition table

Fig. 2.26 : Final DFA for Q. 21(a), without a failure / dead state
(b) All strings with abb as a substring

The machine will have fours states :
State q_{0}-It is the starting state and indicates that nothing of relevance to complete 'abb' has been seen.
State q_{1} - preceding character is ' a ' and ' $b b$ ' is required to complete 'abb'.
State q_{2}, - Preceding characters are ' $a b$ ' and ' b ' is required to complete 'abb.'
State q_{3}, - Preceding characters are 'abb' and the substring 'abb' has been seen by the machine.

(a) State transition diagram
(b) State transition table

Fig. 2.27 : Final DFA for Q. 21(b)
q_{0} to q_{0} on input 'b' :
First character in 'abb' is a.
q_{0} to q_{1} on input ' a ':
q_{1} is for preceding characters as ' a ', first character of $a b b$. q_{1} to q_{1} on input ' a ' :

An input of ' a ' in state q_{1} will make the preceding two characters as 'aa'. Last ' a ' will still constitute the first ' a ' of abb.
q_{1} to q_{2} on input ' b ':
q_{2} is for preceding two characters as 'ab' of 'abb'.
q_{2} to q_{1} on input ' a ' :
An input ' a ' in q_{2} will make the preceding three characters as
'aba'. Out of the three characters 'aba', only the last character ' a ' is relevant to 'abb'.
q_{2} to q_{3} on input b :
q_{3} is for preceding three characters as ' $a b b$ '.
q_{3} to q_{3} on input a or b :
The substring 'abb' has been seen by the machine and a new input will not change this status.

(c) All strings ending in abb

As the substring 'abb' should be at the end of the string. Transitions from q_{3} should be modified to handle the condition that the string has to end in 'abb'.

(a) State transition diagram
(b) State transition table

Fig. 2.28 : Final DFA for Q. 21(c)
q_{3} to q_{1} on input a :
An input of a in q_{3} will make the previous four characters as
'abba'. Out of the four characters as 'abba' only the last character ' a ' is relevant to ' $a b b$ '.
q_{3} to q_{0} on input b :
An input of b in q_{3} will make the previous four characters
'abbb'. Out of the four characters 'abbb', nothing is relevant to 'abb'.
Q. 22 Design a DFA which can accept a binary number divisible by 3.

Or
Design of a divisibility - by - 3-tester for a binary number. Dec. 2005, May 2014, May 2017
Ans.:
A binary number is divisible by 3 , if the remainder when divided by 3 will work out to be zero. We must device a mechanism for finding the final remainder.

We can calculate the running remainder based on previous remainder and the next input.

The running remainder could be :
$0 \rightarrow$ associated state, q_{0}
$1 \rightarrow$ associated state, q_{i}
$2 \rightarrow$ associated state, q_{2}
Starting with the most significant bit, input is taken one bit at a time. Running remainder is calculated after every input. The process of finding the running remainder is being explained with the help of an example.

Number to be divided : 101101.

Fig. 2.29
The calculation of next remainder is shown below,

Previous remainder	Next input	Calculation of remainder		Next mainde
$0\left(q_{0}\right)$	0	$00 \% 3 \quad \Rightarrow$		$0\left(q_{0}\right)$
$0\left(q_{0}\right)$	1	$01 \% 3 \quad \Rightarrow$		$1\left(q_{1}\right)$
$1\left(q_{1}\right)$	0	$10 \% 3 \quad \Rightarrow$		$10\left(\mathrm{q}_{2}\right)$
$1\left(q_{1}\right)$	1	$11 \% 3 \quad \Rightarrow$		$0\left(q_{0}\right)$
$10\left(\mathrm{q}_{2}\right)$	0	100\%3 3 \%		$1\left(\mathrm{q}_{1}\right)$
$10\left(\mathrm{q}_{2}\right)$	1	$101 \% \cdot 3 \Rightarrow$		$\begin{gathered} 10\left(q_{2}\right) \\ 1 \end{gathered}$
Binary		Binary decimal	Binary	
		-	0	1.
		$\rightarrow q_{0}^{*}$	q_{0}	q_{1}
\rightarrow	1	$-q_{2} \sim_{1} q_{1}$	q_{2}	. q_{0}
		q_{2}		. q_{2}
(b) State transition diagram (c)			ran	nsition ta

Fig. 2.30 : DFA for Q. 22
Q. 23 Design a DFA for a mod 5 tester for ternary input.

Dec. 2017
Ans. :
A ternary system has three alphabets

$$
\Sigma=\{0,1,2\}
$$

Base of a ternary number is 3 .

The running remainder could be :
$(0)_{3}=0 \rightarrow$ associated state, q_{0}
$(1)_{3}=1 \rightarrow$ associated state, q_{1}
$(2)_{3}=2 \rightarrow$ associated state, q_{2}
$(10)_{3}=3 \rightarrow$ associated state, q_{3}
$(11)_{3}=4 \rightarrow$ associated state, q_{4}
$\uparrow \uparrow$
Ternary Decimal

Fig. 2.31
Q. 24 Design DFA that accepts the following language :
(I) Set of all strings with odd number of 1 's followed by even number of 0 's $\Sigma=\{0,1\}$.
(ii) Set of all strings which begin and end with different letters $\Sigma=\{\mathbf{x}, \mathrm{y}, \mathrm{z}\}$.
(iii) Strings ending with 110 or 111.

Dec. 2006, Dec. 2009, Dec. 2010
Ans.:
(i)

Fig. 2.32(a)
(ii)

Fig. 2.32(b)
(III)

Fig. 2.33(c)
Q. 25 Construct the minimum state automata equivalent to given DFA.

May 2011

	0	1
$\rightarrow q_{0}$	q_{1}	q_{0}
q_{1}	q_{0}	q_{2}
q_{2}	q_{3}	q_{1}
q_{3}^{*}	q_{3}	q_{0}
q_{4}	q_{3}	q_{5}
q_{5}	q_{6}	q_{4}
q_{6}	q_{5}	q_{6}
q_{7}	q_{6}	q_{3}

Ans. :
Step 1: Finding 0 -equivalence partitioning of states by putting final and non-final states into independent block.
$P_{0}=\left(q_{0}, q_{1}, q_{2}, q_{4}, q_{5}, q_{6}, q_{7}\right)$
(q_{3})
block 1
block 2

Step 2: Finding 1-equivalence partitioning of states by considering transition on ' 0 ' and transition on ' 1 '.

On input 0 , block 1 is successor of $q_{0}, q_{1}, q_{5}, q_{6}, q_{7}$.
On input 0 , block 2 is successor of q_{2}, q_{4}.
$\therefore q_{2}, q_{4}$ are distinguishable from $q_{0}, q_{1} q_{5}, q_{6}, q_{7}$
 block 2
On input 1 , block 2 is successor of q_{7}.
On input 1 , block 1 is successor of $q_{0}, q_{1} q_{2}, q_{4}, q_{5}, q_{6}$.
q_{7} is distinguishable from $q_{0}, q_{1}, q_{2}, q_{4}, q_{5}, q_{6}$.
$P_{1}=\left(q_{0}, q_{1}, q_{5}, q_{6}\right)\left(q_{2}, q_{4}\right)\left(q_{7}\right)\left(q_{3}\right)$

Step 3: Finding 2-equivalence partitioning of states by considering transition on ' 0 ' and transition on ' 1 '.

On input 1 , block 11 is successor of q_{1}, q_{5}.
On input 1 , block 10 is successor of q_{0}, q_{6}.
q_{1}, q_{5} is distinguishable from q_{0}, q_{6}.

$$
P_{2}=\left(q_{0}, q_{6}\right)\left(q_{1}, q_{5}\right)\left(q_{2}, q_{4}\right)\left(q_{7}\right)\left(q_{3}\right)
$$

Step 4: Finding 3-equivalence partitioning of states by considering transition on 0 and 1.

Blocks can not be divided further.
$\therefore \mathrm{P}_{3}=\mathrm{P}_{2}=\left(\mathrm{q}_{0}, \mathrm{q}_{6}\right)\left(\mathrm{q}_{1}, \mathrm{q}_{5}\right)\left(\mathrm{q}_{2}, \mathrm{q}_{4}\right)\left(\mathrm{q}_{7}\right)\left(\mathrm{q}_{3}\right)$ which is final set of blocks of equivalent classes.
Step 5 : Construction of minimum state DFA.

	0	1
$\rightarrow\left(q_{0}, q_{6}\right)$	$\left(q_{1}, q_{5}\right)$	$\left(q_{0}, q_{6}\right)$
$\left(q_{1}, q_{5}\right)$	$\left(q_{0}, q_{6}\right)$	$\left(q_{2}, q_{4}\right)$
$\left(q_{2}, q_{4}\right)$	$\left(q_{3}\right)$	$\left(q_{1}, q_{5}\right)$
$\left(q_{3}\right)^{*}$	$\left(q_{3}\right)$	$\left(q_{0}, q_{6}\right)$
$\left(q_{7}\right)$	$\left(q_{0}, q_{6}\right)$	$\left(q_{3}\right)$

(a) State transition diagram for minimum-

(b) State transition diagram for minimum-state DFA state DFA Fig. 2.34
Q. 26 A language L is accepted by some NFA if and only if it is accepted by some DFA.

OR
For every NFA, there exists an equivalent DFA.
Dec. 2014
Ans.:

Proof

Given theorem has two parts :

1. If L is accepted by a DFA M_{2}, then L is accepted by some NFA M_{1}.
2. If L is accepted by an NFA M_{1}, then L is accepted by some DFA M ${ }_{2}$.
First part can be proved trivially. Determinism is a case of non-determinism. Thus a DFA is also an NFA.

Second part of the theorem is proved below :
Construct M_{2} from M_{1} using subset generation algorithm as explained earlier. We can prove the theorem using induction on the length of ω.

Base case : Let $\omega=\varepsilon$ with $|\omega|=0$, where $|\omega|$ is length of ω.
Starting state for both NFA and DFA are taken as q_{0}. When $\omega=\varepsilon$, both DFA and NFA will be in q_{0}. Hence, the base case is proved.

Assumption : Let us assume that both NFA and DFA are equivalent for every string of length n. We must show that the machines M_{1} (NFA) and M_{2} (DFA) are equivalent for strings of length $(n+1)$. Let $\omega_{n+1}=\omega_{n} a$, where ω_{n} is a string of length n and ω_{n+1} is a string of length $(n+1)$. 'a' is an arbitrary alphabet from Σ.
$\delta_{2}\left(q_{2}, \omega_{n}\right)=\delta_{2}\left(q_{0}, \omega_{n}\right)$, where δ_{2} is transition function of DFA $\left(\mathrm{M}_{2}\right)$ and δ, is transition function of NFA $\left(\mathrm{M}_{1}\right)$.

If the subset reached by NFA is given by
$\left\{p_{1}, p_{2}, \cdots p_{k}\right\}$

$$
\begin{align*}
& \text { k } \\
& \text { then, } \quad \delta_{2}\left(\mathrm{q}_{0}, \omega_{\mathrm{n}+1}\right)=\underset{\mathrm{i}=1}{\mathrm{U}} \delta_{2}\left(\mathrm{p}_{\mathrm{i}}, \mathrm{a}\right) \tag{i}\\
& \text { k } \\
& \text { or } \delta_{2}\left(\left\{p_{1}, p_{2}, \ldots p_{k}\right\}, a\right)=\mathbf{U}_{\mathrm{i}=1} \delta_{1}\left(p_{i}, a\right) \tag{ii}\\
& \text { also, } \quad \delta_{2}\left(q_{0}, \omega_{n}\right)=\left\{p_{1},{ }_{2}, \ldots p_{k}\right\} \tag{iii}
\end{align*}
$$

from (i), (ii) and (iii) we get,

$$
\begin{aligned}
\delta_{2}\left(q_{0}, \omega_{n+1}\right) & =\delta_{2}\left(\delta_{2}\left(q_{0}, \omega_{n}\right), a\right) \\
& =\delta_{2}\left(\left\{p_{1}, p_{2}, \cdots, p_{k}\right\}, a\right) \\
& =\underset{i=1}{\mathbf{U}} \delta_{1}\left(p_{i}, a\right)=\delta_{i}\left(q_{0}, s_{n+1}\right)
\end{aligned}
$$

Thus, the result is true for $|\omega|=n+1$, hence it is always true.

Q. 27 Convert the following NFA to a DFA and Informally describe the language it accepts.

Dec. 2011

	0	1
$\rightarrow p$	$\{p, q\}$	$\{p\}$
q	$\{r, s\}$	$\{t\}$
r	$\{p, r\}$	$\{t\}$
s^{*}	ϕ	ϕ
t^{*}	ϕ	ϕ

Ans. :

Step 1: $\{p\}$ is taken as the first subset.
0 -Successor of $\{p\}=\delta(\{p\}, 0)=\{p, q\}$
1 -Successor of $\{p\}=\delta(\{p\}, 1)=\{p\}$
Step 2: The new subsets $\{\mathrm{p}, \mathrm{q}\}$ is generated. Successors of $\{\mathrm{p}, \mathrm{q}\}$ are calculated.

$$
\begin{aligned}
\delta(\{p, q\}, 0) & =\delta(p, 0) \cup \delta(q, 0) \\
& =\{p, q\} \cup\{r, s\} \\
& =\{p, q, r, s\} \\
\delta(\{p, q\}, 1) & =\delta(p, 1) \cup \delta(q, 1)=\{p\} \cup\{t\} \\
& =\{p, t\}
\end{aligned}
$$

Step 3: Two new subsets $\{\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}\}$ and $\{\mathrm{p}, \mathrm{t}\}$ are generated. Their successors are calculated.
$\delta(\{\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}\}, 0)=\delta(\mathrm{p}, 0) \cup \delta(\mathrm{q}, 0) \cup \delta(\mathrm{r}, 0) \cup \delta(\mathrm{s}, 0)$

$$
\begin{aligned}
& =\{p, q\} \cup\{r, s\} \cup\{p, r\} \cup \phi \\
& =\{p, q, r, s\}
\end{aligned}
$$

$\delta(\{p, q, r, s\}, 1)=\delta(p, 1) \cup \delta(q, 1) \cup \delta(r, 1) \cup \delta(s, 1)$

$$
\begin{aligned}
& =\{q\} \cup\{t\} \cup\{t\} \cup \phi \\
& =\{p, t\} \\
\delta(\{p, t), 0) & =\delta(p, 0) \cup \delta(t, 0) \\
& =\{p, q\} \cup \phi=\{p, q\} \\
\delta(\{p, t), 1) & =\delta(p, 1) \cup \delta(\mathrm{t}, 1) \\
& =\{p\} \cup \phi=\{p\}
\end{aligned}
$$

No, new subset is generated. Every subset containing either s or t is marked as a final state.

Informal Description: Strings over $\{0,1\}$ with second digit from the end is 0 .

	0	1
$\rightarrow(p)$	$\{p, q\}$	$\{p\}$
$\{p, q\}$	$\{p, q, r, s\}$	$\{p, t\}$
$\{p, q, r, s\}^{*}$	$\{p, q, r, s\}$	$\{p, t\}$
$\{p, t\}^{*}$	$\{p, q\}$	$\{p\}$

a) State table

(b) State diagram

Fig. 2.35 : Final DFA for Q. 27
Q. 28 Construct a NFA that accepts a set of all strings over $\{a, b\}$ ending in aba. Use this NFA to construct DFA accepting the same set of strings.

May 2014
Ans. :

Fig. 2.36 (a) : Non-deterministic finite automata
Non-determinism should be utilized to full extent while designing an NFA. A string of length n, ending in aba can be recognized by the NFA given in Fig. 2.36(a). First $n-3$ characters can be absorbed by the state q_{0} by making a guess. On guessing the last three characters as aba, the machine can make a transition from q_{0} to q_{3}.

NFA to DFA conversion :
Step 1: $\quad\left\{\mathrm{q}_{0}\right\}$ is taken as first subset

$$
\text { a-successor of }\left\{q_{0}\right\}=\delta\left(q_{0}, a\right)=\left\{q_{0}, q_{1}\right\}
$$

b-successor of $\left\{q_{0}\right\}=\delta\left(q_{0}, b\right)=\left\{q_{0}\right\}$
Step 2: A new subset $\left\{q_{0}, q_{1}\right\}$ is generated. Successors of $\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\}$ are calculated.
$\delta\left(\left\{q_{0}, q_{1}\right\}, a\right)=\delta\left(q_{0}, a\right) \cup \delta\left(q_{1}, a\right)=\left\{q_{0}, q_{1}\right\} \cup \phi=\left\{q_{0} ; q_{1}\right\}$
$\delta\left(\left\{q_{0}, q_{1}\right\}, b\right)=\delta\left(q_{0}, b\right) \cup \delta\left(q_{1}, b\right)=\left\{q_{0}\right\} \cup\left\{q_{2}\right\}=\left\{q_{0}, q_{2}\right\}$
Step 3: A new subset $\left\{q_{0}, q_{2}\right\}$ is generated. Successors of $\left\{\mathrm{q}_{0}, \mathrm{q}_{2}\right\}$ are calculated.
$\delta\left(\left\{q_{0}, q_{2}\right\}, a\right)=\delta\left(q_{0}, a\right) \cup \delta\left(q_{2}, a\right)=\left\{q_{0}, q_{1}\right\} \cup\left\{q_{3}\right\}$

$$
=\left\{q_{0}, q_{1}, q_{3}\right\}
$$

$\delta\left(\left\{q_{0}, q_{2}\right\}, b\right)=\delta\left(q_{0}, b\right) \cup \delta\left(q_{2}, b\right)=\left\{q_{0}\right\} \cup \dot{\phi}=\left\{q_{0}\right\}$
Step 4: A new subset $\left\{q_{0}, q_{1} q_{3}\right\}$ is generated. Successors of $\left\{q_{0}, q_{1} q_{3}\right\}$ are calculated.

$$
\begin{aligned}
\delta\left(\left\{q_{0}, q_{1} q_{3}\right\}, a\right) & =\delta\left(q_{0}, a\right) \cup \delta\left(q_{1}, a\right) \cup \delta\left(q_{3}, a\right) \\
& =\left\{q_{0}, q_{1}\right\} \cup \phi \cup \phi=\left\{q_{0}, q_{1}\right\}
\end{aligned}
$$

$$
\begin{aligned}
\delta\left(\left(q_{0}, q_{1}, q_{3}\right), b\right) & =\delta\left(q_{0}, b\right) \cup \delta\left(q_{1}, b\right) \cup \delta\left(q_{3}, b\right) \\
& =\left\{q_{0}\right) \cup\left(q_{2}\right) \cup \phi=\left(q_{0}, q_{2}\right)
\end{aligned}
$$

No, new subset is generated. Every subset containing q_{3} is marked as a final state.

(b) State diagram of the DFA

	a	b
$\Rightarrow\left\{q_{0}\right\}$	$\left\{q_{0}, q_{1}\right\}$	$\left\{q_{0}\right\}$
$\left\{q_{0}, q_{1}\right\}$	$\left\{q_{0}, q_{1}\right\}$	$\left\{q_{0}, q_{2}\right\}$
$\left\{q_{0}, q_{2}\right\}$	$\left\{q_{0}, q_{1}, q_{3}\right\}$	$\left\{q_{0}\right\}$
$\left\{q_{0}, q_{1}, q_{3}\right\}^{*}$	$\left\{q_{0}, q_{1}\right\}$	$\left\{q_{0}, q_{2}\right\}$

(c) State table of the DFA

Fig. 2.36
Q. 29 Give Mealy and Moore machine for the following : From input Σ^{*}, where $\Sigma=(0,1,2)$ print the residue modulo 5 of the input treated as ternary (base 3).

May 2006. Dec. 2015
Ans. :
(a) Mealy machine

Fig. 2.37(a) : Mealy machine
Meaning of various states is:
q_{0} - Running remainder is 0
q_{1} - Running remainder is 1
q_{2}-Running remainder is 2 .
$\mathrm{q}_{3}-$ Running remainder is $3=(10)_{3}$

Fig. 2.37(b) : Moore machine
Q. 30 Design a mealy machine for a binary input sequence such that if the sequence ends with 100 the output is $\mathbf{1}$ otherwise output is $\mathbf{0}$.

Dec. 2006, May 2008, Dec. 2008
Ans. :

(a) State diagram

(b) State table

Fig. 2.38
Meaning of various states :
q_{0} - start state
q_{1}-previous symbol is 1
$\mathbf{q}_{2}-$ preceding two symbols are 10
A transition from q_{2} to q_{0} will make the preceding three symbol as 100 and hence the output 1 .

Chapter 3 : Regular Expressions and Languages

Q. 1 Write short note on Myhill-Nerode theorem.

Dec. 2005, May 2006, Dec. 2006, May 2007. May 2008, Dec. 2008, Dec. 2012, May 2013

Ans.:

Myhill-Nerode theorem

Given a language L, two strings x and y are said to be in the same class if for all possible strings z either both xz and yz are in L or both are not.

The Myhill-Nerode theorem says:

1. A language L divides the set of all possible strings into mutually exclusive classes.
2. If L is regular, the number of classes created by L is finite.
3. If the number of classes L creates is finite, then L is regular.

In finite automata, each state can be thought of as creating a class of strings. Two strings are said to be in the same class if they both trace a path from starting state q_{0} to some state q_{i} (say).

Number of strings is infinite.
Number ofstates in an FA is finite.
Many strings when applied to the FA will end up in the same state. Each state of FA can stand for a class of strings.

Q. 2 Show that

$$
\begin{aligned}
& \left(1+00^{*} 1\right)+\left(1+00^{*} 1\right)\left(0+10^{*} 1\right)^{*}\left(0+10^{*} 1\right)=0^{*} 1 \\
& \left(0+10^{*} 1\right)^{*}
\end{aligned}
$$

Ans.:

$$
\begin{aligned}
\text { L.H.S. } & =\left(1+00^{*} 1\right)+\left(1+00^{*} 1\right)\left(0+10^{*} 1\right)^{*}\left(0+10^{*} 1\right) \\
& =\left(1+00^{*} 1\right)\left[\varepsilon+\left(0+10^{*} 1\right)^{*}\left(0+10^{*} 1\right)\right] \\
& =\left(1+00^{*} 1\right)\left(0+10^{*} 1\right)^{*} \\
& =\left[\left(\varepsilon+00^{*}\right) 1\right]\left(0+10^{*} 1\right)^{*}=0^{*} 1\left(0+10^{*} 1\right)^{*} \\
& =\text { R.H.S. }
\end{aligned}
$$

Q. 3 Prove $L=\left\{(a b)^{n} a^{k}: n>k, k \geq 0\right\}$ is not regular.

May 2006
Ans. :
Step 1: Let us assume that L is regular and L is accepted by an FA with n states.

Step 2: Let us choose a string
$\omega=(a b)^{n+1} a^{n}$
$|\omega|=2(n+1)+n=3 n+2 \geq n$
Let us write ω as xyz , with

$$
|y|>0 \quad \text { and }|x y| \leq n .
$$

The string $x y$ will contain a maximum of n symbols from (ab) ${ }^{n}$.

Step 3: In the string $x y^{\prime} z$ with $i=0$, at least one ' a ' or atleast one ' b ' will be erased from (ab) ${ }^{n+1}$ of (ab) ${ }^{n+1} a^{n}$. This will lead to one of the following situations:

1. Number of $a^{\prime} s$ in (ab) ${ }^{n}$ is equal to number of $a^{\prime} s$ in a^{k} of $(a b)^{n} a^{k}$.
2. $\quad x y^{0} z$ will not be of the form (ab) ${ }^{n} a^{k}$.

Therefore, $x y^{0} z \in L$.
Hence, this is proved by contradiction.

Q. 4 Write short notes on closure properties of regular language.
 Dec. 2006, May 2013. Dec. 2014

Ans. :

Closure properties of regular language

If an operation on regular languages generates a regular language then we say that the class of regular languages is closed under the above operation. Some of the important closure properties for regular languages are given below.

1. Union
2. Concatenation
3. Complementation
4. Difference
5. Intersection
6. Kleene star
7. Transpose or reversal.
8. Regular Language is Closed under Union

Let $\quad \mathrm{M}_{1}=\left(\mathrm{S}, \Sigma, \delta_{1}, \mathrm{~s}_{0}, \mathrm{~F}\right)$ and
$M_{2}=\left(Q, \Sigma, \delta_{2}, q_{0}, G\right)$ be two given automata.
To prove the closure property; we must show that there is another machine M_{3} which accepts every string accepted by either M_{1} or M_{2} and no other string. The construction M_{3} is quite simple as shown in Fig. 3.1.

Fig. 3.1 : M_{3} is constructed such the $L\left(M_{3}\right)=\mathbf{L}\left(\mathbf{M}_{1}\right) \cup L\left(M_{2}\right)$

Machine M_{3} is constructed to accept $L\left(M_{1}\right) \cup L\left(M_{2}\right)$.
$M_{3}=\left(R, \Sigma, \delta_{3}, r_{0}, H\right)$ where r_{0} is a new start state. Two ε-moves, one from r_{0} to s_{0} and another from r_{0} to q_{0} are added.

$$
\begin{aligned}
& R=S \cup Q \cup\left\{r_{0}\right\} \\
& H=F \cup G \\
& \delta_{3}=\delta_{1} \cup \delta_{2} \cup\left\{\left(r_{0}, \varepsilon, s_{0}\right),\left(r_{0}, \varepsilon, q_{0}\right)\right\}
\end{aligned}
$$

Machine M_{3} can non-deterministically choose either M_{1} or \mathbf{M}_{2}. Therefore,

$$
L\left(M_{3}\right)=L\left(M_{1}\right) \cup L^{\prime}\left(M_{2}\right)
$$

2. Regular Language is Closed under Concatenation

Let $\quad M_{1}=\left(S, \Sigma, \delta_{1}, S_{0}, F\right)$
and $\quad M_{2}=\left(Q, \Sigma, \delta_{2}, q_{0}, G\right)$ be two given automata.
To prove that closure property under concatenation, we must show that there is another machine M_{3} such that $L\left(M_{3}\right)=L\left(M_{1}\right)$. $\mathrm{L}\left(\mathrm{M}_{2}\right)$. The construction of M_{3} is shown in Fig. 3.2.

Fig. 3.2: \mathbf{M}_{3} is constructed such that $\mathbf{L}\left(\mathbf{M}_{3}\right)=\mathbf{L}\left(\mathbf{M}_{1}\right) \cdot \mathbf{L}\left(\mathbf{M}_{2}\right)$
M_{3} is constructed by adding ε-move from every final state of M_{1} to start state of M_{2}.

Machine M_{3} is given by :

$$
\begin{aligned}
M_{3}= & \left(R, \Sigma, \delta_{3}, s_{0}, G\right) \text { where } \\
\delta_{3}= & \delta_{1} \cup \delta_{2} \cup\left\{\varepsilon \text {-move from every final state of } M_{1}\right. \\
& \text { to start state of } \left.M_{2}\right\}
\end{aligned}
$$

Machine M_{3} recognizes $L\left(M_{1}\right) \cdot L\left(M_{2}\right)$ by going nondeterministically fromshe final state of M_{1} to start state of M_{2}.

3. Regular Language ls Closed under Kleene Star

Let $M_{1}=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be the given automata. We can construct a non-deterministic finite automata M_{2} such that $L\left(M_{2}\right)=L\left(M_{1}\right)^{*}$. The construction of M_{2} from M_{1} is shown in Fig. 3.3.

Fig. 3.3 : M_{2} is constructed such that $L\left(M_{2}\right)=L\left(M_{1}\right)^{*}$
M_{2} is constructed as given below :
(a) A new start state s_{0} is added with an ε-move from s_{0} to q_{0}.
(b) A new final state f_{0} is added with ε-moves from every state of F to f_{0}, An ε-move is added from s_{0} to f_{0} as ε is a member of $\mathrm{L}\left(\mathrm{M}_{\mathrm{I}}\right)^{*}$.

$$
\text { Machine } M_{2}=\left(Q \cup\left\{s_{0}, f_{0}\right\}, \Sigma, \delta, s_{0},\left\{f_{0}\right\}\right)
$$

Machine can accept a string $\in L\left(M_{1}\right)$ and resume back from the start state q_{0} through the ε-move from f_{0} to q_{0}. Thus accepting $\mathrm{L}\left(\mathrm{M}_{1}\right)^{*}$.
4. Regular Language is Closed under Complementation
Let $M=\left\{Q, \Sigma, \delta, q_{0}, F\right)$ be the given automata. To prove the closure property under complementation, we must show that there is another machine \bar{M} which accepts $L(\bar{M})$ where

$$
\begin{gathered}
\overline{\mathrm{L}(\mathrm{M})}=\mathrm{L}(\overline{\mathrm{M}})=\Sigma^{*}-\mathrm{L}(\mathrm{M}) \\
\text { । } \\
\text { Given } \\
\text { Machine after } \\
\text { machine } \\
\text { complementation }
\end{gathered}
$$

If \mathbf{M} is a deterministic finite automata then $\overline{\mathrm{M}}$ can be constructed by interchanging final and non final states of M.

$$
\therefore \overline{\mathrm{M}}=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{Q}-\mathrm{F}\right)
$$

5. Regular Language is Closed under Intersection

If L_{1} and L_{2} are two regular languages, then

$$
\begin{aligned}
\mathrm{L}_{1} \cap \mathrm{~L}_{2} & =\left(\left(\mathrm{L}_{1} \cap \mathrm{~L}_{2}\right)^{\prime}\right)^{\prime}=\left(\overline{\mathrm{L}}_{1} \cup \overline{\mathrm{~L}}_{2}\right)^{\prime} \\
& =\Sigma^{*}-\left[\left(\Sigma^{*}-\mathrm{L}_{1}\right) \cup\left(\Sigma^{*}-\mathrm{L}_{2}\right)\right]
\end{aligned}
$$

Closeness under intersection follows directly from closeness under union and complementation.

6. Regular Languages are Closed under Difference

Let L_{1} and L_{2} are two regular languages. The difference $L_{1}-L_{2}$ is the set of strings that are in language L_{1} but not in L_{2}. Construction of a composite automata for $L\left(M_{1}\right)-L\left(M_{2}\right)$ is explained in Chapter 2. Thus regular languages are closed under difference.

7. Regular Languages are Closed under Reversal

Reversal of a language L is obtained by reversing every string in L. Reversal of a language L is represented by L^{R}.

For example,

$$
\text { if } L=\{a a b, a b b, a a a\} \text {, then } L^{R}=\{b a a, b b a, a a a\}
$$

Let $M_{1}=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be the given automata. To prove the closure property under reversal, we must show that there is another machine M_{2} which accepts $\mathrm{L}\left(\mathrm{M}_{1}\right)^{\mathrm{R}}$.
or $L\left(M_{2}\right)=L\left(M_{1}\right)^{R}$
M_{2} can be constructed from M_{1} by :

1. By reversing every transition in M_{1}.
2. Start state of M_{1} is made the only final state.
3. A new start state s_{0} is added with ε-move to every final state of M_{1}.

Q. 5 Design a NFA to accept $(a+b)^{*}$ aba convert it to a reduced DFA.
 May 2007

Ans. :
(a+b)* aba
RE to NFA

Fig. 3.4 : RE to NFA
NFA to DFA

Fig. 3.5 : NFA to DFA

Q. 6 Write RE for the following languages

(I) The set of all string over $\{0,1\}$ without length two.
(ii) $L=\left\{a^{n} b^{m} \mid(n+m)\right.$ ls even $\}$
(III) $L=\left\{\omega \in(a, b)^{*} \mid\right.$ (number of $a ' s$ in ω) mod $3=0\}$
(iv) $L=\left\{a^{n} b^{m} \mid n>=4, m<=3\right\}$

May 2006, Dec. 2007. May 2008
Ans.:
(i) The set of all strings over $\{0,1\}$ without length two.
$\varepsilon+(0+1)+(0+1)(0+1)(0+1)(0+1)^{*}$
(ii) $L=\left\{a^{n} b^{m} \mid(n+m)\right.$ is even $\}$
$\left((a \mathrm{a})^{*} \mathrm{ab}+\mathrm{bb}\right)(\mathrm{bb})^{*}$
(iii) $\mathrm{L}=\left\{\omega \in(\mathrm{a}, \mathrm{b})^{*} \mid\right.$ (number of $\left.\left.\mathrm{a} ' \mathrm{sin} \omega\right) \bmod 3=0\right\}$
$\left(b+a b^{*} a b^{*} a\right)^{*}$
(iv) $L=\left\{a^{n} b^{m} \mid n>=4, m<=3\right\}$
aaaaa* $[\varepsilon+b+b b+b b b]$
Q. 7 Prove $L=\left\{(a b)^{n} a^{k} \mid n>k, k>=0\right\}$ is not regular. May 2008
Ans.:
Step 1: Let us assume that L is regular and L is accepted by an FA with n states.

Step 2: Let us choose a string
$\omega=(a b)^{n+1} a^{n}$
$|\omega|=2(n+1)+n=3 n+2 \geq n$
Let us write ω as xyz , with
$|y|>0$
and $|x y| \leq n$
The string $x y$ will contain a maximum of n symbols from $(a b)^{n}$.
Step 3: In the string $x y^{i} z$ with $i=0$, at least one ' a ' or atleast one ' b ' will be erased from $(a b)^{n+1}$ of $(a b)^{n+1} a^{n}$. This will lead to one of the following situations:

1. Number of a^{\prime} s in $(a b)^{n}$ is equal to number of $a^{\prime} s$ in a^{k} of (ab) a^{n}.
2. $x y^{0} z$ will not be of the form (ab) ${ }^{n} a^{k}$,

Therefore, $x y^{0} z \in L$.
Hence, this is proved by contradiction.
Q. 8 Construct a NFA for the RE $\left(01^{*}+1\right)$ and convert it to DFA.

Dec. 2008
Ans.:
$\left(01^{*}+1\right)$
RE to NFA

Fig. 3.6(a) : RE to NFA

Fig. 3.6(b) : NFA to DFA
Q. 9 Construct an NFA with ε-moves for the RE $10(0+01+0110)^{*}$

May 2009
Ans. :

Fig. 3.7

Q. 10 State the pumping lemma for regular language.

Ans. :

Pumping lemma for regular language

Pumping lemma gives a necessary condition for an input string to belong to a regular set.

Pumping lemma does not give sufficient condition for a language to be regular.

Pumping lemma should not be used to establish that a given language is regular.

Pumping lemma should be used to establish that a given language is not regular.

The pumping lemma uses the pigeonhole principle which states that if n pigeons are placed into less than n holes, some holes have to have more than one pigeon in it. Similarly, a string of length $\geq \mathrm{n}$ when recognized by a FA with n states will see some states repeating.

Definition of Pumping Lemma

Let L be a regular language and $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a finite automata with n-states. Language L is accepted by m. Let $\omega \in \mathrm{L}$ and $|\omega| \geq \mathrm{n}$, then ω can be written as xyz , where
(i) $|y|>0$
(ii) $|x y| \leq n$
(iii) $x y^{i} z \in L$ for all $i \geq 0$ here y^{i} denotes that y is repeated or pumped itimes.
Interpretation of Pumping Lemma

Fig. 3.8 : FA considered for interpretation of pumping lemma
Let us consider the FA of Fig. 3.8

$$
\text { No. of states }=5\left(q_{0} \text { to } q_{4}\right)
$$

Let us take a string ω with $|\omega| \geq 5$, recognized by the FA.

$$
\omega \equiv \text { abcabcb }
$$

To recognize the string $\omega=$ abcabcb, the machine will transit through various states as shown in Fig. 3.6.2.

Fig. 3.9 : Transitions of FA on input abcabcb

As the input abcabcb takes the machine through the loop $\mathrm{q}_{1} \rightarrow \mathrm{q}_{2} \rightarrow \mathrm{q}_{3} \rightarrow \mathrm{q}_{1}$, this loop can repeat any number of times. In terms of abcabcb, we can say that if abcabcb is accepted by FA
then every string in a(bca)*bcb will be accepted by the FA of Fig. 3.8. The portion bca is input during the loop.

$$
\mathrm{q}_{1} \rightarrow \mathrm{q}_{2} \rightarrow \mathrm{q}_{3} \rightarrow \mathrm{q}_{4} .
$$

Thus, if abcabcb is accepted by the FA then abcabcb can be written as xyz , with

$$
\begin{aligned}
& x=a \\
& y=b c a \\
& z=b c b .
\end{aligned}
$$

Length of abcabcb is $\geq \mathbf{n}$
$x^{i} z$ for every $\mathrm{i} \geq 0$ or $a(b c a)^{1}$ bcb for every $\mathrm{i} \geq 0$ will be accepted by the FA of Fig. 3.8.

Q. 11 Construct NFA from $(0+1)^{*}(00+11)$ and convert Into minimized DFA.
 Dec. 2009

Ans. :
$(0+1)^{*}(00+11)$
RE to NFA

Fig. 3.10 : RE to NFA

$=$

$=$

Fig. 3.10(a) : RE to NFA
NPA to DFA

Fig. 3.10(b) : NFA to DFA
Q. 12 Explain decision properties for regular languages.

Dec. 2009

Ans. :

Decision properties for regular languages

1. Is a regular set empty ? - Emptiness property.
2. Whether a finite automata accepts a finite number of strings ? - Finiteness property.
3. Whether a finite automata accepts an infinite number of strings $?$ - Infiniteness property.
In addition to above decision problems, we can formulate a number of other decision problems. Some of them are :
4. Given a regular expression R and a string ω, does ω belong to L(R) ?
5. Given two $F A s M_{1}$ and M_{2}, is $L\left(M_{1}\right)=L\left(M_{2}\right)$?
6. Given two FAs M_{1} and M_{2}, is $L\left(M_{1}\right)$ subset of $L\left(M_{2}\right)$?
7. Given an FA M, is M a minimum state FA accepting $L(M)$?

Decision Algorithm for emptiness :

Finite automata will fail to accept any string if it does not have a final state.

Finite automata will fail to accept a string if none of its accepting states is reachable from the initial state.

We can determine the emptiness of language accepted by an FA by calculating Q_{k}, the set of states that can be reached from q_{0} by using strings of length k or less.
$Q_{k}=\left\{\begin{array}{lc}\left\{q_{0}\right\} & \text { if } k=0 \\ \left\{Q_{k-1} \cup\{\delta(q, a)\} \mid q \in Q_{k-1} \text { and } a \in \Sigma\right\} & \text { if } k>0\end{array}\right\}$
We can go on computing the Q_{k} for each $k \geq 0$ until one of the two cases arise :

1. $\mathrm{Q}_{\mathbf{k}}$ contains a final state.

The language is not empty.
2. $Q_{k}=Q_{k-1}$

The language is empty as the final states are not reachable from q_{0}.

Decision algorithm for finiteness / infiniteness :

The set of strings accepted by a finite automata M with n states is finite if and only if the finite automata accepts only strings of length less than n.

The set of strings accepted by a finite automata M with n states is infinite if and only if it accepts some string ω such that $\mathrm{n} \leq|\omega|<2 \mathrm{n}$.
From the pumping lemma we know :

1. If ω with length of $\omega \geq \mathrm{n}$ is accepted by M then ω can be written as xyz.
2. For every, $i x y^{1} z$ will be accepted by M.

We can always design an algorithm to generate all strings $\operatorname{over} \Sigma$ with length between n and $\mathbf{2 n}$.

If any of these strings is accepted by M then $L(M)$ is infinite else $L(M)$ is finite.
Q. 13 Using pumping lemma for regular sets, prove that the language $L=\left\{0 \omega \omega^{A} \mid \omega \in\{0,1\}^{*}\right\}$ ls not regular.

May 2010
Ans. :
Step 1: Let us assume that L is regular and L is accepted by a FA with n states.
Step 2: Let us choose a string

$|\omega|=2 n+2 \geq n$
Let us write w as xyz with

$$
|y|>0 \text { and }|x y| \leq n
$$

Since $|x y| \leq n, x$ must be of the form a^{s}.
Since $\mathrm{Ixy} \mid \leq \mathrm{n}, \mathrm{y}$ must be of the form $\mathrm{a}^{\mathrm{r}} \mid \mathrm{r}>0$.
Now,

$$
\omega=a^{n} b b a^{n}=\underbrace{a^{s}}_{x} \underbrace{a^{\prime}}_{a^{\prime}} \underbrace{a^{n-s-1} b b a^{n}}_{z}
$$

Step 3: Let us check whether $x y^{i} z$ for $i=2$ belongs to L.

$$
x y^{2} z=a^{5} a^{2 r} a^{n-s-r} b b a^{n}=a^{n+r} b b a^{n}
$$

Since $r>0, a^{n+r} b b a^{n}$ is not of the form $\omega \omega^{R}$ as the strings starts with $(\mathbf{n}+\mathbf{r})$ a's but ends in '(\mathbf{n}) a's. Therefore, $x y^{2} z \notin$ L. Hence by contradiction, we can say that the given language is not regular.
Q. 14 Using pumping lemma for regular sets. Prove that the language $L=\left\{\omega \omega \mid \omega \in\{0,1\}^{*}\right\}$ is not regular.

Dec. 2006, Dec. 2010

Ans. :
Step 1: Let us assume that the given language is regular and L is accepted by a FA with a n states.
Step 2 : Let us choose a string

$$
\omega=\underbrace{a^{n} b}_{\omega} \underbrace{a^{n} b}_{\omega} \longleftarrow \text { from } \omega \omega
$$

$$
|\omega|=2 n+2 \geq n
$$

Let us write ω as $x y z$ with

$$
|y|>0
$$

and $|x y| \leq n$
Since $|x y| \leq n, x$ must be of the form a^{a}.
Since $|x y| \leq n, y$ must be of the form $a^{r} \mid r>0$.

Now, $\quad \omega=a^{n} b a^{n} b=\underbrace{a}_{x} \underbrace{a^{r}}_{y} \underbrace{a^{n-s-1} b a^{n} b}_{z}$
Step 3: Let us check whether $x y^{\prime} \mathrm{z}$ for $\mathrm{i}=2$ belongs to L .

$$
x y^{2} z=a^{s} a^{2 t} a^{n-s-r} b a^{n} b
$$

$=a^{n+r} b a^{n} b$
Since $r>0, a^{n+r} b a^{n} b$ is not of the form $\omega \omega^{R}$ as the number of a 's in the first half is $n+r$ and in the second half is n.
Therefore, $x y^{2} z \notin$ L. Hence by contradiction, the given language is not regular.
Q. 15 Show that the language $L\left\{a^{n} b a^{n} \mid n>0\right\}$ is not regular.

Dec. 2009, Dec. 2011

Ans. :
Step 1: Let us assume that L is regular and L is accepted by an FA with n states.
Step 2 : Let us choose a string

$$
\begin{aligned}
\omega & =a^{n} b a^{n} \\
|\omega| & =2 n+1 \geq n
\end{aligned}
$$

Let us write ω as xyz , with
$|y|>0$
and $|x y| \leq n$
Since, $|\mathrm{xy}| \leq \mathrm{n}, \mathrm{y}$ must be of the form $\mathrm{a}^{\mathrm{r}} \mid \mathrm{r}>0$
Since, $|\mathrm{xy}| \leq \mathrm{n}, \mathrm{x}$ must be of the form a^{s}.
Now, $a^{\mathrm{n}} \mathrm{b}^{\mathrm{n}}$ can be written as :
$a^{5} a^{\mathrm{r}} \mathrm{a}^{\mathrm{n}-\mathrm{s}-\mathrm{r}} b a^{\mathrm{n}}$
Step 3: Let us check whether $x y^{i} z$ for $i=0$ belongs to L.

$$
\begin{aligned}
x y^{0} z & =a^{s}\left(a^{r}\right)^{0} a^{n-s-r} b a^{n} \\
& =a^{n-r} b a^{n}
\end{aligned}
$$

Since, $r>0$ the string $a^{n-r} b a^{n} \notin L$.
Hence by contradiction we can say that the given language is not regular.
Q. 16 Write short note on application areas of R.E.

Ans. :

Application areas of Regular Expression

1. R.E. in Unix

The UNIX regular expression lets us specify a group of characters using a pair of square brackets []. The rules for character classes are :

1. [ab]
Stand for $a+b$
2. $[0-9]$
Stand for a digit from 0 to 9
3. $[\mathrm{A}-\mathrm{Z}]$
Stands for an upper-case letter
4. $[a-z]$

Stands for a lower-case letter
5. $[0-9 \mathrm{~A}-\mathrm{Za}-\mathrm{z}]$ Stands for a letter or a digit.

The grep utility in UNIX, scans a file for the occurrence of a pattern and displays those lines in which the given pattern is found.

For example :
\$ grep president emp.txt
It will list those lines from the file emp.txt which has the pattern "president". The pattern in grep command can be specified using regular expression.
6. * matches zero or more occurrences of previous character.
7. matches a single character.
8. [^ pqr] Matches a single character which is not a p, q or r.
9. ^ pat Matches pattern pat at the beginning of a line
10. pat \$ Matches pattern at end of line.

Example

(a) The regular expression [aA] g [ar] [ar] wal stands for either "Agarwal" or "agrawal".
(b) \mathbf{g}^{*} stands for zero or more occurrences of g .
(c) \$grep "A •* thakur" emp.txt will look for a pattern starting with A. and ending with thakur in the file emp.txt.

2. Lexical Analysis

Lexical analysis is an important phase of a compiler. The lexical analyser scans the source program and converts it into a steam of tokens. A token is a string of consecutive symbol defining an entity.

For example a C statement $\mathbf{x}=\mathbf{y}+\mathbf{z}$ has the following tokens :
\mathbf{x}
$=-$ An identifier
\mathbf{y}
\mathbf{y}
$\mathbf{+}$ Assignment operator
\mathbf{z}

- Arithmetic operator +
- An identifier

Keywords, identifiers and operators are common examples of tokens.

The UNIX utility lex can be used for writing of a lexical analysis program: Input to lex is a set of regular expressions for each type of token and output of lex is a C program for lexical analysis.
Q. 17 Design a DFA corresponding to the regular expression. $(a+b)^{*} a b a(a+b)^{*}$

May 2013
Ans. :
The language associated with the R.E. $(a+b)^{*} a b a(a+b)^{*}=$ strings with "aba" as substring.

DFA for strings with aba as substring.

Fig. 3.11
Q. 18 Construct an NFA with epsilon transition for the following RE. $(00+11)^{*}(10)^{*}$

May 2014
Ans. :

Fig. 3.12
Q. 19 Convert $(0+\epsilon)(10)^{*}(\epsilon+1)$ into NFA with
ϵ-moves and hence obtain a DFA. Dec. 2014

Ans. :
Step 1: RE to NFA for $(0+\epsilon)(10)^{*}(\epsilon+1)$

Fig. 3.13
(Note: States have been removed.)
Step 2: \in-NFA to DFA
\in-closure of states
$\mathrm{q}_{0} \rightarrow\left\{\mathrm{q}_{0}, \mathrm{q}_{2}, \mathrm{q}_{3}\right\}$,

$$
q_{1} \rightarrow\left\{q_{1}\right\}
$$

$q_{2} \rightarrow\left\{q_{2}, q_{3}\right\}$,

$$
\mathrm{q}_{3} \rightarrow\left\{\mathrm{q}_{3}\right\}
$$

The DFA using the direct method is given below.

Fig. 3.14
Q. 20 Using pumping lemma for regular sets, prove that the language, $L=\left\{0^{n} I n\right.$ is a prime $\}$ is not regular. Dec. 2007, Dec. 2009, Dec. 2015, May 2016
Ans. :
Step 1: Let us assume that the given language is regular and L is accepted by a FA with n states.
Step 2 : Let us choose a string $\omega=a^{p}$, where p is a prime and $\mathrm{p}>\mathrm{n}$.
$|\omega|=\left|a^{p}\right|=p \geq n$
Let us write w as xyz with
$|y|>0$
and $|x y| \leq n$
We can assume that $\mathrm{y}=\mathrm{a}^{\mathrm{m}}$ for $\mathrm{m}>0$.
Step 3 : Length of $x y^{1} z$ can be written as given below :

$$
\begin{aligned}
\left|x y^{\prime} z\right| & =|x y z|+\left|y^{i-1}\right|=p+(i-1) m \\
|y| & =\left|a^{m}\right|=m
\end{aligned}
$$

Let us check whether $P(i-1) m$ is a prime for every i.
For $\mathrm{i}=\mathrm{p}+1, \mathrm{p}+(\mathrm{i}-1) \mathrm{m}=\mathrm{P}+\mathrm{P}_{\mathrm{m}}=\mathrm{P}(1+\mathrm{m})$.
$\mathrm{P}(1+\mathrm{m})$ is not a prime as it has two factors p and
$(1+m)$ and

$$
\begin{aligned}
|\mathrm{p}| & >1, \\
|1+\mathrm{m}| & >1
\end{aligned}
$$

So $x^{p+1} z \notin L$ Hence by contradiction the given language is not regular.
Q. 21 Draw a state diagram and construct a regular expression corresponding to the following state transition table.

Dec. 2016

State	0	1
$\rightarrow{ }^{*} q_{1}$	q_{1}	q_{2}
q_{2}	q_{3}	q_{2}
q_{3}	q_{1}	q_{2}

Ans. :
State diagram

R.E. form state diagram

Step 1: Removing loop between q_{2} and q_{3} we get

Step 2: Removing the main loop, we get

Q. 22 Show that the language $L=\left\{a^{n} b^{n}\right\}$ is not regular.

Dec. 2006, May 2010, Dec. 2010, Dec. 2012, May 2013, May 2014. Dec. 2016, May 2017. Dec. 2017

Ans. :

Step 1: Let us assume that L is regular and L is accepted by a FA with n states.

Step 2: Let us choose a string
$\omega=a^{n} b^{n}$
$|\omega|=2 n \geq n$
Let us write w as $x y z$, with

$$
|y|>0
$$

and $|x y| \leq n$
Since, $|x y| \leq n, y$ must be of the form $a^{r} \mid r>0$
Since, $|\mathrm{xy}| \leq \mathrm{n}, \mathrm{x}$ must be the form a^{s}.
Now, $a^{n} b^{n}$ can be written as

Step 3 : Let us check whether $x y^{1} z$ for $i=2$ belongs to L.

$$
\begin{aligned}
x y^{2} z & =a^{s}\left(a^{r}\right)^{2} a^{n-s-r} b^{n} \\
& =a^{s} a^{2 r} a^{n-s=r} b^{n} \\
& =a^{s+2 r+n-s-r} b^{n} \\
& =a^{n+r} b^{n}
\end{aligned}
$$

Since $r>0$, number of $a^{\prime} s$ in $a^{n+r} b^{n}$ is greater than number of b’s. Therefore, $x y^{2} z \notin$ L. Hence by contradiction we can say that the given language is not regular.
Q. 23 Construct NFA for given regular expressions :
(i) $(a+b)^{*} a b$
(ii) $a(a+b)^{*} b$
(iii) $(\mathrm{aba})(\mathrm{a}+\mathrm{b})^{*}$
(iv) $(a b / b a)^{*} \mid(a a / b b)^{*}$

Ans.:

(i) $(\mathbf{a}+\mathrm{b}) * \mathrm{ab}: \mathrm{NFA}$

(ii) $\mathbf{a a}(\mathbf{a}+\mathrm{b}) * \mathbf{b}:$ NFA

(iii) (aba) $(a+b)^{*}:$ NFA

(iv) (ablba)* $1(a a l b b)^{*}: ~ N F A$

Q. 24 Convert $(0+\varepsilon)(10)^{*}(\varepsilon+1)$ into NFA with ε-moves and obtain DFA.

Dec. 201?
Ans. :
Step 1: NFA for the given expression :

Step 2 : ϵ-closure of states:

$$
\begin{aligned}
& \mathrm{q}_{0} \rightarrow\left\{\mathrm{q}_{0}, \mathrm{q}_{1}, \mathrm{q}_{3}\right\} \\
& \mathrm{q}_{1} \rightarrow\left\{\mathrm{q}_{1}, \mathrm{q}_{3}\right\} \\
& \mathrm{q}_{2} \rightarrow\left\{\mathrm{q}_{2}\right\} \\
& \mathrm{q}_{3} \rightarrow\left\{\mathrm{q}_{3}\right\}
\end{aligned}
$$

Step 3 : DFA using direct method :

Chapter 4 : Regular Grammar (RG)

Q. 1 Construct right linear grammar and left linear grammar for the language (ba)*.
 Dec. 2006

Ans.:

Transition system for (ba)* is given by :

We can write left linear grammar and the right linear grammar form the transition systems.

Right linear grammar :

$$
S \rightarrow b a S \mid \varepsilon
$$

Left linear grammar :

$$
S \rightarrow S b a \mid \varepsilon
$$

Q. 2 Final the equivalent DFA accepting the regular language defined by the right linear grammar given as:
$S \rightarrow a A|b B, A \rightarrow a A| b c|a B \rightarrow a B| b C \rightarrow b B$
May 2009
Ans.:
A new final state F is being introduced to handle productions like,

$$
A \rightarrow a, \quad B \rightarrow b
$$

Step 1: Adding transitions corresponding to every production, we get the FA shown in Fig. 4.1(a).

Fig. 4.1(a)
Step 2: Drawing an equivalent DFA, we get :

Fig. 4.1(b)

Step 3 : A dead state is added to handle ϕ-transition. The resulting DFA is shown in Fig. 4.1(c).

Fig. 4.1(c)
Q. 3 Construct left linear and right linear grammar for the regular expression.

$$
\left.\left((01+10)^{*} 11\right)^{*} 00\right)^{*} \quad \text { May } 2009
$$

Ans. :
The given expression can be represented using a transition system as shown below :

$=$

Fig. 4.2(a)

Removing $\varepsilon-\operatorname{transitions,~we~get~:~}$

Fig. 4.2(b)
Writing of right linear grammar we get,
$S \rightarrow 00 S|11 A| 01 B|10 B| \varepsilon$
$A \rightarrow 11 \mathrm{~A}|01 \mathrm{~B}| 10 \mathrm{~B} \mid 00 \mathrm{~S}$
$\mathrm{B} \rightarrow 01 \mathrm{~B}|10 \mathrm{~B}| 11 \mathrm{~A}$
For writing of left linear grammar, we interchange the start state and the final state and change direction of all transitions. The resulting transition system is given by :

Fig. 4.2(c)
Writing of left linear grammar we get,
$\mathrm{S} \rightarrow \mathrm{SOOIAOOIE}$
$A \rightarrow A 11|B 11| S 11$.
$\mathrm{B} \rightarrow \mathrm{B} 01|10 \mathrm{~B}| \mathrm{S} 01|\mathrm{~S} 10| \mathrm{A} 01 \mid \mathrm{A} 10$
Q. 4 Convert the following right-linear grammar to an equivalent DFA.
$S \rightarrow b B$
$B \rightarrow b C$
$B \rightarrow a B$
$C \rightarrow a$
$B \rightarrow b$
Ans. :
Re-writing the production we get
$S \rightarrow \mathrm{bB}$
$\mathrm{B} \rightarrow \mathrm{bClb}$
$B \rightarrow a B$
$\mathrm{C} \rightarrow \mathrm{a}$

Step 1: Adding transitions corresponding to every production, we get

Fig. 4.3(a)
Step 2: Adding a state E to handle ϕ-transitions, we get the final DFA.

Fig. 4.3(b) : Final DFA
Q. 5 Convert following RG to DFA

$$
\begin{array}{ll}
S \rightarrow 0 A \mid 1 B, & A \rightarrow 0 C|1 A| 0, \\
B \rightarrow 1 B|1 A| 1, & C \rightarrow 0 \mid 0 A .
\end{array}
$$

Ans.:
A new final state F is being introduced to handle productions like,

$$
\mathrm{A} \rightarrow 0, \mathrm{~B} \rightarrow 1, \mathrm{C} \rightarrow 0
$$

Step 1: Adding transitions corresponding to every production, we get the FA shown in Fig. 4.4(a).

Fig. 4.4(a)
Step 2: Drawing an equivalent DFA, we get

Fig. 4.4(b)

Step 3 : States $\{S\},\{A\},\{B\},\{C, F\}$, and $\{A, F\}$ are renamed as $q_{0}, q_{1}, q_{2}, q_{3}, q_{4}$ and a dead state q_{ϕ} is introduced to handle ϕ - transitions. The resulting DFA is shown in Fig. 4.4(c) :

Fig. 4.4(c) : Final DFA
Q. 6 Write an equivalent left linear grammar from the given right linear grammar.

$$
\begin{aligned}
& S \rightarrow 0 A \mid 1 B \\
& A \rightarrow O C|1 A| 0 \\
& B \rightarrow 1 B|1 A| 1 \\
& C \rightarrow O \mid O A
\end{aligned}
$$

Ans.:

Step 1: Transition system for the given right linear grammar is as shown in Fig. 4.5(a).

Fig. 4.5(a) : Transition graph

Step 2: Interchanging the start state with the final state and reversing direction of transitions, we get

Fig. 4.5(b)

Step 3 : Writing of left linear grammar from the transition system, we get :
$S \rightarrow \mathrm{COIAOIBI}$
$\mathrm{A} \rightarrow \mathrm{Al|CO|B1IO}$
B \rightarrow B1II
$\mathrm{C} \rightarrow \mathrm{A} 0$.

Chapter 5 : Context Free Grammars (CFG)

Q. 1 Write an unambiguous CFG for arlthmetic expressions with operators: $+, *, l, \wedge$, unary minus and operand $a, b, c, d, e, f . A l s o$, If should be possible to generate brackets with your grammar. Derive $(a+b) \wedge d / e+(-f)$ from your grammar. Dec. 2005

Ans.:

An unambiguous grammar is given below.
$\mathrm{E} \rightarrow \mathrm{E}+\mathrm{T} \mid \mathrm{T}$ [+ has lowest priority with $\mathrm{L} \rightarrow \mathrm{R}$ associativity]
$\mathrm{T} \rightarrow \mathrm{T} * \mathrm{FIT} / \mathrm{FIF} \quad[*$ and $/$ has higher priority over + with $\mathrm{L} \rightarrow \mathrm{R}$ associativity]
$\mathrm{F} \rightarrow \mathrm{F} \wedge \mathrm{G} \mid \mathrm{G} \quad[\wedge$ has higher priority over $*$ and $/$ with $\mathrm{L} \rightarrow \mathrm{R}$ associativity]
$\mathrm{G} \rightarrow-\mathrm{H} \mid \mathrm{H} \quad$ [unary - has the highest priority]
$\mathrm{H} \rightarrow \mathrm{a}|\mathrm{b}| c|d| e|f|(\mathrm{E}) \quad$ [to handle brackets and identifiers]
Derivation tree for $(a+b) \wedge d / e+(-f)$

Fig. 5.1 : Derivation tree for $(a+b)^{\wedge} \mathbf{d} / e+(-f)$

Q. 2 Convert the following CFG to GNF :

$$
\mathrm{S} \rightarrow \mathrm{aSa}|\mathrm{bSb}| c
$$

Dec. 2005

Ans.:

The grammar can be brought to GNF through simple substitutions $\mathrm{C}_{\mathrm{a}} \rightarrow \mathrm{a}$ and $\mathrm{C}_{\mathrm{b}} \rightarrow \mathrm{b}$.

$$
S \rightarrow a S C_{a}\left|b S C_{b}\right| C
$$

$\mathrm{C}_{\mathrm{a}} \rightarrow \mathrm{a}$
$\mathrm{C}_{\mathrm{b}} \rightarrow \mathrm{b}$

Q. 3 Write short note on GNF.

Ans.:

Grelbach Normal Form (GNF)

A context free grammar $G=(V, T, P, S)$ is said to be in GNF if every production is of the form :
$A \rightarrow a \alpha$,

Where, $a \in T$ is a terminal and α is a string of zero or more variables.

The language L (G) should be without ε.
Right hand side of each production should start with a terminal followed by a string of non-terminals of length zero or more.
Q. 4 Prove that the language $L=\left\{a^{p} \mid p\right.$ is a prime is not context free language. May 2006, May 201 ?

Ans. :

1. Let us assume that L is a CFL.
2. Let n be the natural number for L, as per the pumping lemma.
3. Let p be a prime number greater than n. Then $z=a^{p} \in L$. We can write $\mathbf{z}=\mathbf{u v x y z}$.
4. By pumping lemma $u v^{0} x y^{0} z=u x z \in L$. Therefore,

I uxz I is a prime number.
Let us assume that $|u x z|=q$.
Now, let us consider a string $u v^{q} x y^{q} z$,
The length of $u v^{q} x y^{q} z$ is given by:
$\left|u v^{q} x y^{q} z\right|=q+q(|v|+|y|)$, which is not a prime with q is a factor.
Thus, $u v^{q} x y^{9} z \notin$ L. This is a contradiction.
Therefore, L is not a context free language.
Q. 5 Given a CFG G, find G^{\prime} in CNF generating $L(G)-\varepsilon$ $S \rightarrow A S B l \varepsilon \quad A \rightarrow A a S|a \quad B \rightarrow S b S| A \mid b b$

May 2006, May 2009, May 2010. Dec. 2011
Ans. :
Step 1: Simplification of grammar
Symbol S is nullable.
After removing ε-productions, the set of productions is given by
$S \rightarrow$ ASB $\mid \mathrm{AB}$
$\mathrm{A} \rightarrow \mathrm{AaSlAala}$
$\mathrm{B} \rightarrow \mathrm{SbS}|\mathrm{Sb}| \mathrm{bS}|\mathrm{b}| \mathrm{A} \mid \mathrm{bb}$
Unit production $B \rightarrow A$ is removed, the resulting set of productions is given by

$$
\begin{aligned}
& S \rightarrow \text { ASB } \mid A B \\
& A \rightarrow \text { AaS }|A a| a \\
& B \rightarrow \text { SbS }|S b| b S|b| A a S|A a| a \mid b b
\end{aligned}
$$

Step 2: Every symbol in α, in productions of the form $A \rightarrow \alpha$ where $|\alpha| \geq 2$ should be a variable.
This can be done by adding two productions :

$$
\mathrm{C}_{\mathrm{a}} \rightarrow \mathrm{a}
$$

and $\mathrm{C}_{\mathrm{b}} \rightarrow \mathrm{b}$

The set of productions after the above changes is

$$
\begin{aligned}
S & \rightarrow A S B \mid A B \\
A & \rightarrow A C_{n} S\left|A C_{a}\right| a \\
B & \rightarrow S C_{b} S\left|S C_{b}\right| C_{b} S|b| A C_{a} S\left|A C_{n}\right| a \mid C_{b} C_{b} \\
C_{b} & \rightarrow a \\
C_{b} & \rightarrow b
\end{aligned}
$$

Step 3: Finding an equivalent CNF

Original production	Equivalent productions in CNF
$\mathrm{S} \rightarrow \mathrm{ASB}$	$\mathrm{S} \rightarrow \mathrm{AC}_{1}$
	$\mathrm{C}_{1} \rightarrow \mathrm{SB}$
$\mathrm{S} \rightarrow \mathrm{AB}$	$\mathrm{S} \rightarrow \mathrm{AB}$
$\mathrm{A} \rightarrow \mathrm{AC}_{\mathrm{a}} \mathrm{S}$	$\mathrm{A} \rightarrow \mathrm{AC}_{2}$
$\mathrm{C}_{2} \rightarrow \mathrm{C}_{\mathrm{a}} \mathrm{S}$	

Q. 6 Convert the following grammar into GNF

$$
S \rightarrow X Y 110 \quad X \rightarrow 00 X I Y \quad Y \rightarrow 1 X 1
$$

May 2006, May 2012

Ans.:

Simplification of grammar
The unit production $x \rightarrow y$ is removed, the equivalent set of productions is given by :

$$
\begin{aligned}
\mathrm{S} & \rightarrow \mathrm{XY} 1 \mid 0 \\
\mathrm{X} & \rightarrow 00 \mathrm{X} \mid 1 \mathrm{X} 1 \\
\mathrm{Y} & \rightarrow 1 \mathrm{X} 1
\end{aligned}
$$

The symbol X is non-generating.
The set of productions after elimination of X is given by :

$$
S \rightarrow 0 \text {, it is in GNF }
$$

Q. 7 Find CFG for generating

(I) String containing alternate sequence of 0 's and 1 's, $\Sigma=\{0,1\}$
(II) The string containing no consecutive ' b 's but ' a 's can be consecutive.
(iii) The set of all string over alphabet $\{\mathrm{a}, \mathrm{b}\}$ with exactly twice as many a's as b's.
(iv) Language having number of a's greater than number of b's.

Dec. 2006, May 2009, Dec. 2009

Ans.:
(i) String containing alternate sequence of 0 's and 1 's, $\Sigma=\{0,1\}$

Since, any binary number will satisfy the condition of alternate sequence of 0 's and 1 's, the language $\mathrm{L}=(0+1)^{*}$

The set of productions are :

$$
S \rightarrow O S|1 S| \varepsilon
$$

\therefore CFGG $=(\{S\},\{0,1\},\{S \rightarrow b S|1 S| \in\}, S)$
(ii) The string containing no consecutive b's but a's can be consecutive.

The set of productions for the given language L are :

$$
\begin{aligned}
& P=\{ \\
& S \rightarrow \text { aS }|\mathrm{bX}| \mathrm{b} \mid \varepsilon \\
& \mathrm{X} \rightarrow \mathrm{aSla} \\
& \}
\end{aligned}
$$

These production can easily be written from the FA for the above language. The FA is shown in Fig. Ex. 5.2.33.

Fig. 5.2

$$
\begin{aligned}
\text { Set of variables } V & =\{S, X\} \\
\text { Set of terminals } T & =\{a, b\} \\
\text { Start symbol } & =S
\end{aligned}
$$

(iii) The set of all strings over alphabet $\{\mathrm{a}, \mathrm{b}\}$ with exactly twice as many a's as b's.

$$
\begin{aligned}
\text { The } \mathrm{CFGG} & =(\mathrm{V}, \mathrm{~T}, \mathrm{P}, \mathrm{~S}) \\
\text { Where } \mathrm{V} & =\{\mathrm{S}\} \\
\mathrm{T} & =\{\mathrm{a}, \mathrm{~b}\} \\
\mathrm{P}= & \{\mathrm{S} \rightarrow \mathrm{aSaSbS}|\mathrm{aSbSaS}| \mathrm{bSaSaS} \mid \varepsilon\} \\
\mathrm{S}= & \text { Start symbol }
\end{aligned}
$$

(iv) Language having number of a 's greater than number of b 's. The set of productions for the grammar are given by :

$$
\begin{aligned}
& P=\{ \\
& \mathbf{S} \rightarrow \text { SaS }|a S S| S S a|a| a X \mid X a \\
& X \rightarrow \text { aB } \mid b A \\
& A \rightarrow \text { aX }|b A A| a \\
& B \rightarrow b X|a B B| b
\end{aligned}
$$

The variable X generates a string having equal number of a's and b's. Group of excess a's over b's are generated by S-productions.

Where

$$
\begin{aligned}
\text { Set of variables } V & =\{S, X, A, B\} \\
\text { Set of terminals } T & =\{a, b\} \\
\text { Start symbol } & =S
\end{aligned}
$$

Q. 8 Convert the given grammar to GNF. $\mathbf{S} \rightarrow$ SSlaSblab

Dec. 2006

Ans. :

Step 1: Other than the first symbol on the RHS of every production, every symbol must be a variable.
We can make the substitution X for b.
The resulting set of productions after the above substitution is :

$$
\begin{aligned}
& \mathrm{S} \rightarrow \text { SSlaSXlaX } \\
& \mathrm{X} \rightarrow \mathrm{~b}
\end{aligned}
$$

Step 2: Removing left recursion from s-production, we get :

$$
\begin{aligned}
S & \rightarrow \text { aSXS }_{1} \text { laXS } \\
1 & \text { laSXIaX } \\
S_{1} & \rightarrow S_{1} I S \\
X & \rightarrow b
\end{aligned}
$$

Step 3: $\quad S_{1}$-productions are not in GNF. They can be brought to GNF by substituting S.
$S \rightarrow \operatorname{aSXS}_{1}$ laXS ${ }_{1}|a S X| a X$
$S_{1} \rightarrow$ aSXS $_{1} S_{1} \operatorname{laXS} S_{1} S_{1} \operatorname{laSXS}_{1} \operatorname{laXS} S_{1} \operatorname{laSXS}{ }_{1}\left|a S_{1} \operatorname{laSX}\right| a X$
$\mathrm{X} \rightarrow \mathrm{b}$
Q. 9 Prove that $L=\left\{0^{1} 1^{1} 2^{1} 3^{j} \mid i>=1\right.$ and $\left.j>=1\right\}$ is not context free.

Dec. 2007

Ans.:

1. Let us assume that L is CFL
2. Let us pick up a word $\omega=0^{n} 1^{n} 2^{n} 3^{n}$, where the constant n is given as per the pumping lemma.
3. ω is rewritten as $u v x y z$ where $\mid v x y l \leq n$ and $v \cdot y \neq \varepsilon$ i.e. both v and y are not null.
4. From pumping lemma, if $u v x y z \in L$ then $u v^{1} x y^{1} z$ is in $L(G)$ for each $i=0,1,2, \ldots$
There are two case :
Case I: vy contains three symbols. These three symbols could be $0,1,2$ or $1,2,3$.
The exact ordering of $0,1,2,3$ will be broken in $u v^{2} x y^{2} z$ and hence $u v^{2} x y^{2} z \notin L(G)$
Case II: If vy does not contain three symbols then $u v^{2} x y^{2} z$ will have either unequal number of 0 's and 2 's or unequal number of 1 's and 3 's. Hence, $u v^{2} x y^{2} z \notin L$ (G).

Thus, proved by contradiction.
Q. 10 Prove that $L=\left\{a^{\prime} b^{\prime} c^{\prime}| | \geq 1\right\}$ is not a CFL.

May 2008

Ans. :

1. Let us assume that L is CFL.
2. Let us pick up a word $w=a^{n} b^{n} c^{n}$ where the constant n is given as per the pumping lemma.
3. w is rewritten as uvxyz. Where $|v x y| \leq n$ and $v \cdot y \neq \varepsilon$ i.e., both v and y are not null.
4. From pumping lemma, if $u v x y z \in L$ then $u v^{i} x y^{i} z$ is in $L(G)$ for each $\mathrm{i}=0,1,2, \ldots$
There are two cases :
Case I: vy contains all three symbols a, b and c .
If vy contains all three symbols a, b and c then either v or y contains two symbols. The exact ordering of a, b and c will be broken in $u v^{2} x y^{2} z$ and hence $u v^{2} x y^{2} z \notin L$ (G)
Case II : If vy does not contain three symbols a, b and c then $u v^{2} x y^{2} z$ will have unequal number of a 's, b's and c's and hence $u v^{2} x y^{2} z \notin L(G)$.
Hence, it is proved by contradiction.
Q. 11 Convert the following grammar to CNF $S \rightarrow$ AACD $\mathrm{A} \rightarrow \mathrm{aAb}|\varepsilon \quad \mathrm{C} \rightarrow \mathrm{aCla} \mathrm{A} \rightarrow \mathrm{aDa}| \mathrm{bDb} \mid \varepsilon$

May 2008

Ans. :

First of all, the grammar must be simplified.
Step 1: Removing null productions.
Nullable set $=\{\mathrm{A}\}$
Null productions are removed with the resulting set of production as :

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{AACD} \mid \mathrm{ACDICD} \\
& \mathrm{~A} \rightarrow \mathrm{aAblab} \\
& \mathrm{C} \rightarrow \mathrm{aCla} \\
& \mathrm{~A} \rightarrow \mathrm{aDalbDb}
\end{aligned}
$$

Step 2: Removing non-generating symbol
Symbol S and D are non-generating.
Since, the starting symbol itself is non-generating, it is an invalid grammar.

Fig. 5.3
Q. 12 Given a CFG G, find $\mathbf{G}^{\prime} \operatorname{In}$ CNF generating $L(G)=\varepsilon$ $\mathbf{S} \rightarrow$ ASB IE
$A \rightarrow A a S l a$
$\mathrm{B} \rightarrow \mathbf{S b S}|\mathrm{A}| \mathrm{bb}$
May 2006, May 2009, May 2010, Dec. 2011
Ans. :
Step 1: Simplification of grammar
Symbol S is nullable.
After removing ε-productions, the set of productions is given by

$$
\mathrm{S} \rightarrow \mathrm{ASB} \mid \mathrm{AB}
$$

$\mathrm{A} \rightarrow \mathrm{AaS}|\mathrm{Aa}| \mathrm{a}$
$\mathrm{B} \rightarrow$ SbSISblbSIblAlbb
Unit production $\mathrm{B} \rightarrow \mathrm{A}$ is removed, the resulting set of productions is given by

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{ASB} \mid \mathrm{AB} \\
& \mathrm{~A} \rightarrow \mathrm{AaS}|\mathrm{Aa}| \mathrm{a} \\
& \mathrm{~B} \rightarrow \mathrm{SbS}|\mathrm{Sb}| \mathrm{bS}|\mathrm{~b}| \mathrm{AaS}|\mathrm{Aa}| \mathrm{a} \mid \mathrm{bb}
\end{aligned}
$$

Step 2 : Every symbol in α, in productions of the form $A \Rightarrow \alpha$ where $|\alpha| \geq 2$ should be a variable.

This can be done by adding two productions :

$$
\text { and } \begin{aligned}
\mathrm{C}_{\mathrm{a}} & \rightarrow \mathrm{a} \\
\mathrm{C}_{\mathrm{b}} & \rightarrow \mathrm{~b}
\end{aligned}
$$

The set of productions after the above changes is

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{ASB}_{\mathrm{A}} \mid A B \\
& \mathrm{~A} \rightarrow \mathrm{AC}_{\mathrm{a}} \mathrm{~S}\left|\mathrm{AC}_{\mathrm{a}}\right| \mathrm{a} \\
& \mathrm{~B} \rightarrow \mathrm{SC}_{\mathrm{b}} \mathrm{~S}\left|\mathrm{SC}_{\mathrm{b}}\right| \mathrm{C}_{\mathrm{b}} \mathrm{~S}|\mathrm{~b}| \mathrm{AC}_{\mathrm{a}} S\left|\mathrm{AC}_{\mathrm{a}}\right| \mathrm{a} \mid C_{b} C_{b} \\
& \mathrm{C}_{\mathrm{a}} \rightarrow \mathrm{a} \\
& \mathrm{C}_{\mathrm{b}} \rightarrow \mathrm{~b}
\end{aligned}
$$

Step 3: Finding an equivalent CNF

Original production	Equivalent productions in CNF
$\mathrm{S} \rightarrow$ ASB	$\mathrm{S} \rightarrow \mathrm{AC}_{1}$
	$\mathrm{C}_{1} \rightarrow$ SB
$\mathrm{S} \rightarrow \mathrm{AB}$	$\mathrm{S} \rightarrow \mathrm{AB}$
$A \rightarrow \mathrm{AC}_{\mathrm{a}} \mathrm{S}$	$\mathrm{A} \rightarrow \mathrm{AC}_{2}$
	$\mathrm{C}_{2} \rightarrow \mathrm{C}_{\mathrm{A}} \mathrm{S}$
$\mathrm{A} \rightarrow \mathrm{AC}_{\text {a }}$	$\mathrm{A} \rightarrow \mathrm{AC}_{\mathrm{a}}$
$\mathrm{A} \rightarrow \mathrm{a}$.	$\mathrm{A} \rightarrow \mathrm{a}$
$\mathrm{B} \rightarrow \mathrm{SC}_{\mathrm{b}} \mathrm{S}$	$\mathrm{B} \rightarrow \mathrm{SC}_{3}$
	$\mathrm{C}_{3} \rightarrow \mathrm{C}_{\mathrm{b}} \mathrm{~S}$
$\mathrm{B} \rightarrow \mathrm{SC}_{\mathrm{b}}\left\|\mathrm{C}_{\mathrm{b}} \mathrm{S}\right\| \mathrm{b}$	$\mathrm{S} \rightarrow \mathrm{SC}_{\mathrm{b}}\left\|\mathrm{C}_{\mathrm{b}} \mathrm{S}\right\| \mathrm{b}$
$\mathrm{B} \rightarrow \mathrm{AC}_{4} \mathrm{~S}$	$\mathrm{B} \rightarrow \mathrm{AC}_{2}$
$\mathrm{B} \rightarrow \mathrm{AC}_{\mathrm{a}}\|\mathrm{a}\| \mathrm{C}_{\mathrm{b}} \mathrm{C}_{\mathrm{b}}$	$B \rightarrow \mathrm{AC}_{\mathrm{a}}\|\mathrm{a}\| \mathrm{C}_{\mathrm{b}} \mathrm{C}_{\mathrm{b}}$
$\mathrm{C}_{\mathrm{a}} \rightarrow \mathrm{a}$	$\mathrm{C}_{\mathrm{a}} \rightarrow \mathrm{a}$
$\mathrm{C}_{\mathrm{b}} \rightarrow \mathrm{b}$	$\mathrm{C}_{\mathrm{b}} \rightarrow \mathrm{b}$

Q. 13 Let $\mathbf{G}=(\mathbf{V}, \mathbf{T}, \mathbf{P}, \mathbf{S})$ be the CFG having following set of productions. Derive the string "aabbaa" using leftmost derivation and rightmost derivation.
$S \rightarrow a A S$ I $a, A \rightarrow S b A \mid S S$ I ba
May 2009
Ans. :
(I) Leftmost derivation :

Leftmost derivation of aabbaa is being shown with the help of the parse tree.
1.

2. a. $_{\text {a }}^{S}$

$A \rightarrow S b A$

4.

5.

Fig. 5.4(a)
$\mathrm{S} \rightarrow \mathrm{aAS} \rightarrow \mathrm{aSbAS} \rightarrow$ aabAS \rightarrow aabbas \rightarrow aabbaa
(ii) Rightmost derivation:

Rightmost derivation of aabbaa is being shown with the help of the parse tree.
1.

3.

Fig. 5.4(b)
$\mathrm{S} \rightarrow \mathrm{aAS} \rightarrow \mathrm{aAa} \rightarrow \mathrm{aSbAa} \rightarrow \mathrm{aSbbaa} \rightarrow$ aabbaa

Q. 14 Let \mathbf{G} be the grammar $\mathrm{S} \rightarrow \mathrm{aB}|\mathrm{bA} A \rightarrow \mathrm{a}|$ aS I

 $b A A B \rightarrow b \mid b S l a B B F I n d$(I) Left most derivation
(II) Right most derivation
(III) Parse Tree
(Iv) Is the grammar unamblguous ?

For given strings (A) aaabbabbba (B) bbaaabbaba
(C) 00110101

Dec. 2009. Dec. 2012. May 2013
Ans.:

(A) For string "aaabbabbba"

It will be worthwhile to draw the parse tree and from the parse tree, one can easily write left most and right most derivation.
(i) Left most derivation :
$\mathrm{S} \rightarrow \mathrm{aB} \rightarrow \mathrm{aaBB} \rightarrow \mathrm{aaaBBB} \rightarrow$ aaabBB
\rightarrow aaabbB \rightarrow aaabbaBB \rightarrow aaabbabB \rightarrow aaabbabbS
\rightarrow aaabbabbbA \rightarrow aaabbabbba
(ii) Right most derivation :
$\mathrm{S} \rightarrow \mathrm{aB} \rightarrow \mathrm{aaBB} \rightarrow \mathrm{aaBaBB} \rightarrow \mathrm{aaBaBbS} \rightarrow \mathrm{aaBaBbbA}$ $\rightarrow \mathrm{aaBaBbba}$
$\rightarrow a \mathrm{aBabbba} \rightarrow \mathrm{aaaBBabbba} \Rightarrow \mathrm{aaaBbabbba} \rightarrow$ aaabbabbba
(iii) Parse tree :

Fig. 5.5
(iv) The grammar is ambiguous as we can draw two parse trees for aababb :

(a)

(b)

Fig. 5.5
(B) For string "bbaaabbaba"
(i) Leftmost derivation

$$
\begin{aligned}
\mathrm{S} & \rightarrow \mathrm{bA} \rightarrow \text { bbAA } \rightarrow \text { bbaA } \rightarrow \text { bbaaS } \\
& \rightarrow \text { bbaaaB } \rightarrow \text { bbaaabs } \rightarrow \text { bbaaabbA } \\
& \rightarrow \text { bbaaabbas } \rightarrow \text { bbaaabbabA } \rightarrow \text { bbaaabbaba }
\end{aligned}
$$

(ii) Rightmost derivation

$$
\begin{aligned}
\mathrm{S} & \rightarrow \text { bA } \rightarrow \text { bbAA } \rightarrow \text { bbAaS } \rightarrow \text { bbAaaB } \\
& \rightarrow \text { bbAaabS } \rightarrow \text { bbAaabbA } \rightarrow \text { bbAaabbaS } \\
& \rightarrow \text { bbAaabbabA } \rightarrow \text { bbAaabbaba } \rightarrow \text { bbaaabbaba }
\end{aligned}
$$

(iii) Parse tree for bbaaabbaba

Fig. 5.5(c)
(C) For the string 00110101
(i) Leftmost derivation

$$
\begin{aligned}
S & \rightarrow 0 \mathrm{BB} \rightarrow 00 \mathrm{BB} \rightarrow 001 \mathrm{~B} \rightarrow 0011 \mathrm{~S} \\
& \rightarrow 00110 \mathrm{~B} \rightarrow 001101 \mathrm{~S} \rightarrow 0011010 \mathrm{~B} \\
& \rightarrow 00110101
\end{aligned}
$$

(ii) Rightmost derivation

$$
\begin{aligned}
S & \rightarrow 0 \mathrm{~B} \rightarrow 00 \mathrm{BB} \rightarrow 00 \mathrm{~B} 1 \mathrm{~S} \rightarrow 00 \mathrm{~B} 10 \mathrm{~B} \\
& \rightarrow 00 \mathrm{~B} 101 \mathrm{~S} \rightarrow 00 \mathrm{~B} 1010 \mathrm{~B} \rightarrow 00 \mathrm{~B} 10101 \\
& \rightarrow 001110101
\end{aligned}
$$

(iii) Parse tree

Fig. 5.5(d)
Q. 15 Obtain a grammar to generate the language $\left.L=\left\{0^{n} 1^{2 n} \mid n \geq 0\right)\right\}$.

Mayi2010
Ans.:
Productions for the required language are as follows.

$$
P=\{S \rightarrow 0 S 11 \mid \varepsilon\}
$$

CFG for the above language is ($\{S\},\{0,1\}, P, S$)
Q. 16 Reduce the following grammar to GNF.S $\rightarrow A B$, $A \rightarrow B S B \mid B B I b B \rightarrow a A b l a$

May 2011

Ans.:

Step 1: Making every symbol other than the first symbol (in derived string α in $\mathrm{A} \rightarrow \alpha$) as a variable :

Variables C_{b} is substituted for b with resulting set of productions give as :
$S \rightarrow A B$
$\mathrm{A} \rightarrow \mathrm{BSB}|\mathrm{BB}| \mathrm{b}$
$\mathrm{B} \rightarrow \mathrm{aAC}_{\mathrm{b}} \mid \mathrm{a}, \mathrm{C}_{\mathrm{b}} \rightarrow \mathrm{b}$
Step 2: The variables S, A, B and C_{b} are renamed as A_{1}, A_{2}, A_{3} and A_{4} respectively. The resulting set of productions is given below.
$\mathrm{A}_{1} \rightarrow \mathrm{~A}_{2} \mathrm{~A}_{3}$
$A_{2} \rightarrow A_{3} A_{1} A_{3}\left|A_{3} A_{3}\right| b$
$\mathrm{A}_{3} \rightarrow \mathrm{aA}_{1} \mathrm{~A}_{4} \mathrm{la}$
$\mathrm{A}_{4} \rightarrow \mathrm{~b}$

Step 3 : Convert to CFG
Given production $\quad \frac{\text { Equivalent Production }}{\ln \text { GNF }}$

$A_{2} \rightarrow A_{3} A_{3}$

$$
A_{2} \rightarrow b \quad \rightarrow \quad A_{2} \rightarrow b
$$

$$
A_{1} \rightarrow A_{2} A_{3}
$$

$$
\begin{aligned}
A_{1} \rightarrow & a A_{1} A_{4} A_{1} A_{3} A_{3} \mid a A_{1} A_{3} A_{3} \\
& \left|a A_{1} A_{4} A_{1} A_{3} A_{3}\right| a A_{3} A_{3} \mid b A_{3}
\end{aligned}
$$

\therefore The final set of productions is :
$\mathrm{A}_{1} \rightarrow \mathrm{aA}_{1} \mathrm{~A}_{4} \mathrm{~A}_{1} \mathrm{~A}_{3} \mathrm{~A}_{3}\left|\mathrm{aA} \mathrm{A}_{1} \mathrm{~A}_{3} \mathrm{~A}_{3}\right| a \mathrm{~A}_{1} \mathrm{~A}_{4} \mathrm{~A}_{3} \mathrm{~A}_{3}\left|a \mathrm{~A}_{3} \mathrm{~A}_{3}\right| \mathrm{bA} \mathrm{A}_{3}$
$\mathrm{A}_{2} \rightarrow \mathrm{aA}_{1} \mathrm{~A}_{4} \mathrm{~A}_{1} \mathrm{~A}_{3}\left|a \mathrm{~A}_{1} \mathrm{~A}_{3}\right| \mathrm{aA}_{1} \mathrm{~A}_{4} \mathrm{~A}_{3}\left|a \mathrm{~A}_{3}\right| \mathrm{b}$
$\mathrm{A}_{3} \rightarrow \mathrm{aA}_{1} \mathrm{~A}_{4} \mid \mathrm{a}$
$\mathrm{A}_{4} \rightarrow \mathrm{~b}$.
Q. 17 Reduce the following grammars to GNF $B \rightarrow a A b I a S \rightarrow A A \mid 1 \cdot A \rightarrow S S I 1 \quad$ May 2011
Ans.:
Step 1: Renaming of variables by substituting A_{1} for S and A_{2} for A.

$$
\begin{aligned}
& A_{1} \rightarrow A_{2} A_{2} I 1 \\
& A_{2} \rightarrow A_{1} A_{1} I 1
\end{aligned}
$$

Step 2: Every production of the form $A_{i} \rightarrow A_{j} \alpha$ with $i>j$ must be modified to make i j .
A_{2} - production, $A_{2} \rightarrow A_{1} A_{1}$ should be modified. We must substitute $A_{2} A_{2} \mid 1$ for the first A_{1}.

$$
\left[A_{2} \rightarrow A_{1} A_{1}\right] \Rightarrow\left[\begin{array}{l}
A_{2} \rightarrow A_{2} A_{2} A_{1} \\
A_{2} \rightarrow 1 A_{1}
\end{array}\right]
$$

The resulting set of productions is :

$$
\begin{aligned}
& A_{1} \rightarrow A_{2} A_{2} \mid 1 \\
& A_{2} \rightarrow A_{2} A_{2} A_{1}\left|1 A_{1}\right| 1
\end{aligned}
$$

Step 3: Removing left recursion:
The $\mathrm{A}_{\mathbf{2}}$ - production contains left recursion. Left recursion can be removed through

$$
\mathrm{A}_{2} \rightarrow 1 \mathrm{~A}_{1} \mathrm{~B}_{2} \mid 1 \mathrm{~B}_{2}
$$

$\mathrm{B}_{2} \rightarrow \mathrm{~A}_{2} \mathrm{~A}_{1} \mathrm{~B}_{2} \mid \mathrm{A}_{2} \mathrm{~A}_{1}$
The resulting set of productions is :

$$
\begin{aligned}
& \mathrm{A}_{1} \rightarrow \mathrm{~A}_{2} \mathrm{~A}_{2} \mid 1 \\
& \mathrm{~A}_{2} \rightarrow 1 \mathrm{~A}_{1} \mathrm{~B}_{2}\left|1 \mathrm{~B}_{2}\right| 1 \mathrm{~A}_{1} \mid 1 \\
& \mathrm{~B}_{2} \rightarrow \mathrm{~A}_{2} \mathrm{~A}_{1} \mathrm{~B}_{2} \mid \mathrm{A}_{2} \mathrm{~A}_{1}
\end{aligned}
$$

Step 4: $\quad A_{2}$ - productions are in GNF.
A_{1} and B_{2} productions can be converted to GNF with the help of A_{2} - productions.

$$
\begin{aligned}
& \mathrm{A}_{2} \rightarrow 1 \mathrm{~A}_{1} \mathrm{~B}_{2}\left|1 \mathrm{~B}_{2}\right| 1 \mathrm{~A}_{1} \mid 1 \\
& \mathrm{~A}_{1} \rightarrow 1 \mathrm{~A}_{1} \mathrm{~B}_{2} \mathrm{~A}_{2}\left|1 \mathrm{~B}_{2} \mathrm{~A}_{2}\right| 1 \mathrm{~A}_{1} \mathrm{~A}_{2}\left|1 \mathrm{~A}_{2}\right| 1 \\
& \mathrm{~B}_{2} \rightarrow 1 \mathrm{~A}_{1} \mathrm{~B}_{2} \mathrm{~A}_{1} \mathrm{~B}_{2}\left|1 \mathrm{~B}_{2} \mathrm{~A}_{1} \mathrm{~B}_{2}\right| 1 \mathrm{~A}_{1} \mathrm{~A}_{1} \mathrm{~B}_{2} \\
& \left|1 \mathrm{~A}_{1} \mathrm{~B}_{2}\right| 1 \mathrm{~A}_{1} \mathrm{~B}_{2} \mathrm{~A}_{1}\left|1 \mathrm{~B}_{2} \mathrm{~A}_{1}\right| 1 \mathrm{~A}_{1} \mathrm{~A}_{1} \mid 1 \mathrm{~A}_{1}
\end{aligned}
$$

Q. 18 Let G be the grammar $S \rightarrow$ aB I bAA \rightarrow a I aS I $b A A B \rightarrow b \mid b S I a B B$ Find
(i) Left most derivation
(ii) Right most derivation
(iii) Parse Tree
(iv) Is the grammar unambiguous?

For given strings (A) aaabbabbba (B) bbaaabbaba
(C) 00110101

Dec. 2009, Dec. 2012, May 2013
Ans. :
(A) For string "aaabbabbba"

It will be worthwhile to draw the parse tree and from the parse tree, one can easily write left most and right most derivation.
(i) Left most derivation:
$\mathrm{S} \rightarrow \mathrm{aB} \rightarrow \mathrm{aaBB} \rightarrow$ aaaBBB \rightarrow aaabBB
\rightarrow aaabbB \rightarrow aaabbaBB \rightarrow aaabbabB \rightarrow aaabbabbS
\rightarrow aaabbabbbA \rightarrow aaabbabbba
(ii) Right most derivation :
$\mathrm{S} \rightarrow \mathrm{aB} \rightarrow \mathrm{aaBB} \rightarrow \mathrm{aaBaBB} \rightarrow \mathrm{aaBaBbS} \rightarrow \mathrm{aaBaBbbA}$
\rightarrow aaBaBbba
\rightarrow aaBabbba $\rightarrow a a a B B a b b b a \rightarrow a a a B b a b b b a \rightarrow a a a b b a b b b a$
(iii) Parse tree :

Fig. 5.6
(iv) The grammar is ambiguous as we can draw two parse.trees for aababb :

(a)

(b)

Fig. 5.6
(B) For string "bbaaabbaba"
(i) Leftmost derivation

$$
\begin{aligned}
\mathrm{S} & \rightarrow \mathrm{bA} \rightarrow \mathrm{bbAA} \rightarrow \mathrm{bbaA} \rightarrow \mathrm{bbaaS} \\
& \rightarrow \text { bbaaaB } \rightarrow \text { bbaaabs } \rightarrow \text { bbaaabbA } \\
& \rightarrow \text { bbaaabbas } \rightarrow \text { bbaaabbabA } \rightarrow \text { bbaaabbaba }
\end{aligned}
$$

(ii) Rightmost derivation

$$
\begin{align*}
& \mathrm{S} \rightarrow \mathrm{bA} \rightarrow \mathrm{bbAA} \rightarrow \mathrm{bbAaS} \rightarrow \mathrm{bbAaaB} \\
& \rightarrow \text { bbAaabS } \rightarrow \text { bbAaabbA } \rightarrow \text { bbAaabbaS } \\
& \rightarrow \text { bbAaabbabA } \rightarrow \text { bbAaabbaba } \rightarrow \text { bbaaabbaba } \tag{iii}
\end{align*}
$$

Fig. 5.6(c)
(C) For the string 00110101
(i) Leftmost derivation

$$
S \rightarrow 0 \mathrm{BB} \rightarrow 00 \mathrm{BB} \rightarrow 001 \mathrm{~B} \rightarrow 0011 \mathrm{~S}
$$

$$
\begin{aligned}
& \rightarrow 00110 \mathrm{~B} \rightarrow 001101 \mathrm{~S} \rightarrow 0011010 \mathrm{~B} \\
& \rightarrow 00110101
\end{aligned}
$$

(ii). Rightmost derivation

$$
\begin{aligned}
S & \rightarrow 0 \mathrm{~B} \rightarrow 00 \mathrm{BB} \rightarrow 00 \mathrm{~B} 1 \mathrm{~S} \rightarrow 00 \mathrm{~B} 10 \mathrm{~B} \\
& \rightarrow 00 \mathrm{~B} 101 \mathrm{~S} \rightarrow 00 \mathrm{~B} 1010 \mathrm{~B} \rightarrow 00 \mathrm{~B} 10101 \\
& \rightarrow 001110101
\end{aligned}
$$

(iii) Parse tree

Fig. 5.6(d)
Q. 19 Consider the following grammar:
$\mathbf{S} \rightarrow$ iCtS I iCtSeS I a C \rightarrow b For the String 'ibtibtaea' find the following : (i) Leftmost derivation (ii) Rightmost derivation (iii)Parse Tree (iv) Check if the above grammar is Ambiguous

May 2014
Ans. :

(i) Leftmost derivation	(ii) Rightmost derivation:
$\mathrm{S} \rightarrow \mathrm{iCtS}$ [using S $\rightarrow \mathrm{iCtS}$]	$\mathrm{S} \rightarrow \mathrm{iCtS} \quad$ [using $\mathrm{S} \rightarrow \mathrm{iCtS}$]
\rightarrow ibtS [using $\mathrm{C} \rightarrow \mathrm{b}$]	$\rightarrow \mathrm{iCtiCtSeS}$
\rightarrow ibtiCtSeS	[using $\mathrm{S} \rightarrow \mathrm{iCtSeS}$]
ing $S \rightarrow$ iCtSeS]	\rightarrow iCtiCtSea [using $S \rightarrow$ a]
\rightarrow ibtibtSeS [using $\mathrm{C} \rightarrow$ b]	$\rightarrow \mathrm{iCteCtaea}$ [using S \rightarrow a]
\rightarrow ibtibtaeS [using $S \rightarrow$ a]	ebtaea [using $\mathrm{C} \rightarrow \mathrm{b}$]
\rightarrow ibtibtaea [using $\mathrm{S} \rightarrow \mathrm{a}$]	\rightarrow ibtebtaea [using $\mathrm{C} \rightarrow \mathrm{b}$]

(iii) Parse Tree :

Fig. 5.7
Q. 20 Convert the following Grammar to CNF form : $S \rightarrow A B A A \rightarrow a A|b A| \in B \rightarrow b B|a A| E$

May 2014
Ans. :

1. The non-terminals $\{\mathrm{S}, \mathrm{A}, \mathrm{B}\}$ are nullable. Null productions are removed. The resulting grammar is :
$S \rightarrow A B A|B A| A B|A A| A \mid B$
$\mathrm{A} \rightarrow \mathrm{aA}|\mathrm{bA}| \mathrm{a} \mid \mathrm{b}$
$\mathrm{B} \rightarrow \mathrm{bB}|\mathrm{aA}| \mathrm{b} \mid \mathrm{a}$
2. Removing unit productions, we get
$S \rightarrow A B A|B A| A B|A A| a A|b A| a|b| b B \mid a A$
$\mathrm{A} \rightarrow \mathrm{aA}|\mathrm{bA}| \mathrm{a} \mid \mathrm{b}$
$\mathrm{B} \rightarrow \mathrm{bB}|\mathrm{aA}| \mathrm{b} \mid \mathrm{a}$
3. Every symbol in α, in production of the form $\mathrm{A} \rightarrow \alpha$ where I $\alpha \mid \geq 2$ should be a variable.

This can be done by adding two productions.
$\mathrm{C}_{\mathrm{a}} \rightarrow \mathrm{a}$
$\mathrm{C}_{\mathrm{b}} \rightarrow \mathrm{b}$
The set of productions after the above changes is:
$S \rightarrow A B A|B A| A B|A A| C_{a} A\left|C_{b} A\right| a|b| C_{b} B \mid C_{a} A$
$\mathrm{A} \rightarrow \mathrm{C}_{\mathrm{a}} \mathrm{AlC}_{\mathrm{b}} \mathrm{A} \mid \mathrm{alb}$
$\mathrm{B} \rightarrow \mathrm{C}_{\mathrm{b}} \mathrm{B}\left|\mathrm{C}_{\mathrm{a}} \mathrm{A}\right| \mathrm{b} \mid \mathrm{a}$
$\mathrm{C}_{\mathrm{a}} \rightarrow \mathrm{a}, \mathrm{C}_{\mathrm{b}} \rightarrow \mathrm{b}$
4. Finding an equivalent CNF.

Original production	Equivalent productions in CNF
$\mathrm{S} \rightarrow \mathrm{ABA}$	$\mathrm{S} \rightarrow \mathrm{A} \mathrm{C}_{1}, \mathrm{C}_{1} \rightarrow \mathrm{BA}$
$\begin{aligned} & S \rightarrow B A\|A B\| A A \mid C_{a} A \\ & \left\|C_{b} A\right\| a\|b\| C_{b} B \mid C_{a} A \end{aligned}$	$\begin{aligned} & S \rightarrow B A\|A B\| A A\left\|C_{a} A\right\| C_{b} A \mid \\ & a\|b\| C_{b} B \mid C_{a} A \end{aligned}$
$\mathrm{A} \rightarrow \mathrm{Ca}_{\mathrm{a}} \mathrm{A}\left\|\mathrm{C}_{\mathrm{b}} \mathrm{A}\right\| \mathrm{alb}$.	$\mathrm{A} \rightarrow \mathrm{Ca}_{\mathrm{a}} \mathrm{A}\left\|\mathrm{C}_{\mathrm{b}} \mathrm{A}\right\| \mathrm{a} \mid \mathrm{b}$
$\mathrm{B} \rightarrow \mathrm{C}_{\mathrm{b}} \mathrm{B}\left\|\mathrm{C}_{\mathrm{a}} \mathrm{A}\right\| \mathrm{bla}$	$\mathrm{B} \rightarrow \mathrm{C}_{\mathrm{b}} \mathrm{B}\left\|\mathrm{Ca}_{\mathrm{a}} \mathrm{A}\right\| \mathrm{b} \mid \mathrm{a}$
$\mathrm{C}_{\mathrm{a}} \rightarrow \mathrm{a}$	$\mathrm{C}_{\mathrm{a}} \rightarrow \mathrm{a}$
$\mathrm{C}_{\mathrm{b}} \rightarrow \mathrm{b}$	$\mathrm{C}_{\mathrm{b}} \rightarrow \mathrm{b}$

Q. 21 Obtain leftmost derivation, rightmost derivation and derivation tree for the string "cccbaccba". The grammar is S \rightarrow SS a I SSb l c Dec. 2014

Ans. :

Derivation tree :

Fig. 5.8

Left most derivation
 Right most derivation

$$
\begin{array}{lll}
\mathrm{S} & \rightarrow \text { SSa } & \mathrm{S} \\
& \rightarrow \text { SSa } \\
& \rightarrow \text { SSaSa } & \rightarrow \text { SSSba } \\
& \rightarrow \text { cSSBaSa } & \\
& \rightarrow \text { SScba } \\
& \rightarrow \text { ccSbaSa } & \\
& \rightarrow \text { Sccba } \\
& \rightarrow \text { SccbaSa } &
\end{array}
$$

Q. 22 Convert following grammar to CNF and GNF.

S \rightarrow ASB lalbb
$A \rightarrow$ aSA la
$B \rightarrow$ SbS I bb
Ans.:
$S \rightarrow$ ASB $|a| b b$
$\mathrm{A} \rightarrow \mathrm{aSAla}$
$\mathrm{B} \rightarrow \mathrm{SbS} \mid \mathrm{bb}$

Converting to CNF :

Re-writing the grammar, we get,
$\mathrm{S} \rightarrow \mathrm{ASBlalV} \mathrm{V}_{1}$
$\mathrm{A} \rightarrow \mathrm{V}_{2} \mathrm{SA} \mathrm{I}$
$B \rightarrow \mathrm{SV}_{1} S I \mathrm{~V}_{1} \mathrm{~V}_{1}$
$\mathrm{V}_{1} \rightarrow \mathrm{~b}$
$V_{2} \rightarrow a$
Now, re-writing each production in its equivalent CNF form, we get,

Productions
$S \rightarrow$ ASB
$S \rightarrow a$

CNF forms
$S \rightarrow A V_{3}, V_{3} \rightarrow S B$
$S \rightarrow a$

$S \rightarrow V_{1} V_{1}$	$S \rightarrow V_{1} V_{1}$
$A \rightarrow V_{2} S A \mid a$	$S \rightarrow V_{2} V_{4}, V_{4} \rightarrow S A$
	$A \rightarrow a$
$B \rightarrow S V_{1} S \mid V_{1} V_{1}$	$B \rightarrow S V_{5}, V_{5} \rightarrow V_{1} S$
	$B \rightarrow V_{1} V_{1}$
$V_{1} \rightarrow b$	$V_{1} \rightarrow b$
$V_{2} \rightarrow a$	$V_{2} \rightarrow a$

Converting to GNF :

Step 1: Substituting symbols, we get,

$$
\begin{aligned}
& \mathrm{S} \rightarrow \text { ASB Ialb } X_{1} \\
& \mathrm{~A} \rightarrow \mathrm{aS} \text { Ala } \\
& \mathrm{B} \rightarrow \mathrm{~S} \mathrm{X}_{2} \mathrm{~S} \mid \mathrm{bX} \mathrm{X}_{1} \\
& \mathrm{X}_{1} \rightarrow \mathrm{~b} \\
& \mathrm{X}_{2} \rightarrow \mathrm{a}
\end{aligned}
$$

Step 2 : Re-writing production in GNF :

Productions

(1) $X_{1} \rightarrow b$
(2) $X_{2} \rightarrow \mathrm{a}$
(3) $\mathrm{A} \rightarrow \mathrm{aSAla}$
(4) $\mathrm{S} \rightarrow \mathrm{ASB}$ lalb X_{1}
(5) $\mathrm{B} \rightarrow \mathrm{SX}_{2} \mathrm{~S} \mid \mathrm{bX}$

CNF forms

$\mathrm{X}_{1} \rightarrow \mathrm{~b}$
$\mathrm{X}_{2} \rightarrow \mathrm{a}$
$\mathrm{A} \rightarrow \mathrm{aSAla}$
$S \rightarrow$ aSASB I aSB [substituting A]
$S \rightarrow a \mid b X_{1}$
$\mathrm{S} \rightarrow \operatorname{aSASBX}_{2} \mathrm{SIaSBX} \mathrm{S}_{2} \mathrm{~S} \mathrm{aX}_{2} \mathrm{~S} \mid$ b $\mathrm{X}_{1} \mathrm{X}_{2} \mathrm{~S}$
[substituting for S]
$S \rightarrow b X$
Q. 23 Consider the following grammar $G=(V, T P, S)$, $V=(S, X), T=\{0,1\}$ and productions P are
$S \rightarrow 0$ IOX11 01S1
$\mathrm{X} \rightarrow \mathbf{0 X X 1} \mid 1 \mathrm{~S}$
S is start symbol. Show that above grammar is ambiguous.

Dec. 2015
Ans. :
A grammar is said to be ambiguous grammar if the language generated by the grammar contains some strings that has 2 parse trees.

Ex. : Let us consider the given grammar

$$
\begin{aligned}
& S \rightarrow 0|0 X 1| 01 S 1 \\
& X \rightarrow 0 \times X 111 S
\end{aligned}
$$

where, S is the start symbol.
A string 010011 is generated by the given grammar.
The grammar generates the string 010011 in 2 different ways. The 2 deviations are shown in Fig. 1(a)-Q. 61 and Fig. 1(b)-Q. 61. As the same string has 2 different parse trees. The given grammar is ambiguous grammar.

(a)

(b)

Fig. 5.9
Q. 24 Consider the following grammar $G=(V, T, P, S)$, $\mathrm{V}=\{\mathrm{S}, \mathrm{X}\}, \mathrm{T}=\{\mathrm{a}, \mathrm{b}\}$ and productions P are
$S \rightarrow$ aSb laX

$X \rightarrow X a \mid S a l a$

Convert this grammar in Greibach Normal Form (GNF).

May 2016
Ans.:
Given set of productions

$$
\begin{aligned}
& \mathrm{S} \rightarrow \text { aSblaX } \\
& \mathrm{X} \rightarrow \text { XalSala }
\end{aligned}
$$

Substituting C_{a} for $\mathrm{a}, \mathrm{C}_{\mathrm{b}}$ for $\mathrm{b}, \mathrm{A}_{1}$ for S and A_{2} for X .

$$
\begin{aligned}
& \mathrm{A}_{1} \rightarrow \mathrm{aA}_{1} \mathrm{C}_{\mathrm{b}} \mid \mathrm{aA}_{2} \\
& \mathrm{~A}_{2} \rightarrow \mathrm{~A}_{2} \mathrm{C}_{\mathrm{a}}\left|\mathrm{~A}_{1} \mathrm{C}_{\mathrm{a}}\right| \mathrm{a} \\
& \mathrm{C}_{\mathrm{a}} \rightarrow \mathrm{a} \\
& \mathrm{C}_{\mathrm{b}} \rightarrow \mathrm{~b}
\end{aligned}
$$

Removing left recursion form A_{2} production, we get

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{a}} \rightarrow \mathrm{a}, \mathrm{C}_{\mathrm{b}} \rightarrow \mathrm{~b} \\
& \mathrm{~A}_{1} \rightarrow \mathrm{a} \mathrm{~A}_{1} \mathrm{C}_{\mathrm{b}} \mid \mathrm{aA}_{2} \\
& \mathrm{~A}_{2} \rightarrow \mathrm{~A}_{1} \mathrm{C}_{\mathrm{a}} \mathrm{~A}_{3}\left|\mathrm{aA}_{3}\right| \mathrm{A}_{1} \mathrm{C}_{\mathrm{a}} \mid \mathrm{a} \\
& \mathrm{~A}_{3} \rightarrow \mathrm{C}_{\mathrm{a}} \mathrm{~A}_{3} \mid \mathrm{A}_{2}
\end{aligned}
$$

Re-writing productions in GNF from

$$
\begin{aligned}
\mathrm{A}_{1} \rightarrow & \mathrm{aA}_{1} \mathrm{C}_{\mathrm{b}} \mid \mathrm{aA}_{2} \\
\mathrm{~A}_{2} \rightarrow & \mathrm{aA}_{1} \mathrm{C}_{\mathrm{b}} \mathrm{C}_{\mathrm{a}} \mathrm{~A}_{3}\left|\mathrm{aA}_{2} \mathrm{C}_{\mathrm{a}} \mathrm{~A}_{3}\right| \mathrm{aA}_{3} \mid \mathrm{aA}_{1} \mathrm{C}_{\mathrm{b}} \mathrm{C}_{\mathrm{a}} \\
& \left|a A_{2} \mathrm{C}_{\mathrm{a}}\right| \mathrm{a} \\
\mathrm{~A}_{3} \rightarrow & \rightarrow \mathrm{aA}_{3}\left|\mathrm{aA}_{1} \mathrm{C}_{\mathrm{b}} \mathrm{C}_{\mathrm{a}} \mathrm{~A}_{3}\right| \mathrm{aA}_{2} \mathrm{C}_{\mathrm{a}} \mathrm{~A}_{3} \mid \mathrm{AA}_{3} \\
& \left|a A_{1} \mathrm{C}_{\mathrm{b}} \mathrm{C}_{\mathrm{a}}\right| \mathrm{aA}_{2} \mathrm{C}_{\mathrm{a}} \mid \mathrm{aa} \\
\mathrm{C}_{\mathrm{a}} \rightarrow & \rightarrow \mathrm{a} \\
\mathrm{C}_{\mathrm{b}} \rightarrow & \mathrm{~b}
\end{aligned}
$$

Q. 25 Construct a grammar In GNF which is equilvalent to the grammar $S \rightarrow A A|a, A \rightarrow S S| b$.

May 2008, Dec. 2011, Dec. 2016
Ans.:
Step 1: Grammar is already in a simple form without :

1. e-productions.
2. Unit productions.
3. Useless symbol.

We can proceed for renaming of variables, Variables \mathbf{S} and \mathbf{A} are renamed as A_{1} and A_{2} respectively. The set of productions after renaming becomes :
$A_{1} \rightarrow A_{2} A_{2}$
$A_{1} \rightarrow a$
$A_{2} \rightarrow A_{1} A_{1}$
$A_{2} \rightarrow b$$\quad$ Productions after renaming

Step 2 : Every production of the form $A_{i} \rightarrow A_{j} \propto$ with $i>j$ must be modified to make $\mathrm{i} \leq \mathrm{j}$.
A_{2} - production $A_{2} \rightarrow A_{1} A_{1}$ should be modified. \Downarrow

We must substitute $A_{2} A_{2} I$ a for the first A_{1}. We should not touch the second A_{1} of $A_{1} A_{1}$.

$$
\left[A_{2} \rightarrow A_{1} A_{1}\right] \Rightarrow\left[\begin{array}{l}
A_{2} \rightarrow A_{2} A_{2} A_{1} \\
A_{2} \rightarrow a A_{1}
\end{array}\right]
$$

The resulting set of productions is :

$$
\begin{aligned}
& \mathrm{A}_{1} \rightarrow \mathrm{~A}_{2} \mathrm{~A}_{2} \mid \mathrm{a} \\
& \mathrm{~A}_{2} \rightarrow \mathrm{~A}_{2} \mathrm{~A}_{2} \mathrm{~A}_{1}\left|\mathrm{aA}_{1}\right| \mathrm{b}
\end{aligned}
$$

Step 3 : Removing left recursion :
The A_{2} - productions $A_{2} \rightarrow A_{2} A_{2} A_{1} I \mathrm{aA}_{1} I b$ contains left recursion. Left recursion from A_{2}-production can be removed through introduction of B_{2}-production.

$$
\begin{aligned}
& \mathrm{A}_{2} \rightarrow \mathrm{aA}_{1} \mathrm{~B}_{2} \mid \mathrm{bB}_{2} \\
& \mathrm{~B}_{2} \rightarrow \mathrm{~A}_{2} \mathrm{~A}_{1} \mathrm{~B}_{2} \mid \mathrm{A}_{2} \mathrm{~A}_{1}
\end{aligned}
$$

The resulting set of productions is :

$$
\begin{aligned}
& \mathrm{A}_{1} \rightarrow \mathrm{~A}_{2} \mathrm{~A}_{2} \mid \mathrm{a} \\
& \mathrm{~A}_{2} \rightarrow \mathrm{aA}_{1} \mathrm{~B}_{2}\left|\mathrm{aB}_{2}\right| \mathrm{aA}_{1} \mathrm{Ib} \\
& \mathrm{~B}_{2} \rightarrow \mathrm{~A}_{2} \mathrm{~A}_{1} \mathrm{~B}_{2} \mid \mathrm{A}_{2} \mathrm{~A}_{1}
\end{aligned}
$$

Step 4: $\quad A_{2}-$ productions are in GNF.
A_{1} and B_{2} productions can be converted to GNF with the help of A_{2}-productions.

$$
\begin{aligned}
\mathrm{A}_{2} \rightarrow & \mathrm{aA}_{1} \mathrm{~B}_{2}\left|\mathrm{bB}_{2}\right| \mathrm{aA}_{1} \mid \mathrm{b} \ldots \text { in } \mathrm{GNF} \\
\mathrm{~A}_{1} \rightarrow & \mathrm{~A}_{2} \mathrm{~A}_{2} \\
& \Downarrow \text { Substitute } \mathrm{aA}_{1} \mathrm{~B}_{2}\left|\mathrm{bB}_{2}\right| \mathrm{aA}_{1} \mid \mathrm{b} \text { for first } \mathrm{A}_{2} \\
\mathbf{A}_{1} \rightarrow & \mathbf{a A}_{1} \mathbf{B}_{2} \mathbf{A}_{\mathbf{2}}\left|\mathrm{bB}_{2} \mathrm{~A}_{\mathbf{2}}\right| \mathbf{a A}_{1} \mathbf{A}_{\mathbf{2}} \mid \mathrm{bA}_{2} \\
\mathrm{~A}_{1} \rightarrow & \mathrm{a} \ldots \text { in } \mathrm{GNF}
\end{aligned}
$$

Now, for $B_{2}-$ Production

$$
\mathrm{B}_{2} \rightarrow \mathrm{~A}_{2} \mathrm{~A}_{1} \mathrm{~B}_{2}
$$

\Downarrow Substitute $\mathrm{aA}_{1} \mathrm{~B}_{2}\left|\mathrm{bB}_{2}\right| \mathrm{aA}_{1} \mid \mathrm{b}$ for the first A_{2}
$B_{2} \rightarrow a A_{1} B_{2} A_{1} B_{2}\left|b B_{2} A_{1} B_{2}\right| a A_{1} A_{1} B_{2} \mid b A_{1} B_{2}$
$\mathrm{B}_{2} \rightarrow \mathrm{~A}_{2} \mathrm{~A}_{1}$
\Downarrow Substitute a $A_{1} B_{2}\left|\mathrm{~b} \mathrm{~B}_{2}\right| \mathrm{a} \mathrm{A}_{1} \mid \mathrm{b}$ for the first A_{2}

$$
\mathbf{B}_{2} \rightarrow \mathbf{a} \mathbf{A}_{1} \mathbf{B}_{2} \mathbf{A}_{1}\left|b B_{2} A_{1}\right| \mathbf{a} A_{1} A_{1} \mid \mathbf{b} \mathbf{A}_{1}
$$

The final set of productions is :

$$
\begin{aligned}
& A_{2} \rightarrow a A_{1} B_{2}\left|b B_{2}\right| a A_{1} \mid b \\
& A_{1} \rightarrow a A_{1} B_{2} A_{2}\left|b B_{2} A_{2}\right| a A_{1} A_{2}\left|b A_{2}\right| a
\end{aligned}
$$

A set of productions P

$$
\begin{aligned}
\mathrm{B}_{2} \rightarrow & \mathrm{a} A_{1} \mathrm{~B}_{2} \mathrm{~A}_{1} \mathrm{~B}_{2}\left|b B_{2} \mathrm{~A}_{1} \mathrm{~B}_{2}\right| \mathrm{a} A_{1} A_{1} B_{2}\left|\mathrm{bA} A_{1}\right| \\
& \mathrm{a} \mathrm{~A}_{1} \mathrm{~B}_{2} \mathrm{~A}_{1}\left|\mathrm{bB} B_{2} A_{1}\right| a A_{1} A_{1} \mid b A_{1}
\end{aligned}
$$

where,Set of variables $V=\left(A_{1}, A_{2}, B_{2}\right)$
Set of terminals $T=(a, b)$ Start symbol $=\mathrm{A}_{1}$
Set of productions $\mathrm{P}=$ Given above.
Q. 26 Consider the following grammar:
$S \rightarrow$ ICtSIICtSeSIa
$\mathbf{C} \rightarrow \mathrm{b}$
For the string 'ibtibtaea' find the following :
(i) Leftmost derivation
(ii) Rightmost derivation
(iii) Parse tree
(iv) Check if above grammar is ambiguous.

Dec. 2017
Ans. :

(I) Leftmost derivation

$$
\begin{aligned}
& S \Rightarrow i C t S e S \xrightarrow{C \rightarrow b} i b t S e S \xrightarrow{S \rightarrow i C t S} \\
& \Rightarrow \text { ibtictSeS } \xrightarrow{C \rightarrow b} i b t i b t S e S \xrightarrow{S \rightarrow a} i b t i b t a e S
\end{aligned}
$$

(ii) Rightmost derivation

(iii) Parse tree

(iv) It is an ambiguous grammar due to laughing if problem.
Q. 27 Reduce following grammar to GNF.

$$
\begin{aligned}
\mathrm{S} & \rightarrow \text { AB } \\
\mathrm{A} & \rightarrow \text { BSBIBBIb } \\
\mathrm{B} & \rightarrow \text { alaAb } \\
\text { (i) } \quad \mathrm{S} & \rightarrow 01 \mathrm{~S} 101 \\
\mathrm{~S} & \rightarrow 10 \mathrm{~S} 110 \\
\mathrm{~S} & \rightarrow 00 \mathrm{l} \in
\end{aligned}
$$

Ans. :
Removing ϵ-production, we get,
$S \rightarrow$ 01SI01/10SI10100
It can be converted into GNF in an easy way by introducing two production

$$
X \rightarrow 1 \text { and } Y \rightarrow 0
$$

\therefore Productions in GNF are
$\mathrm{S} \rightarrow$ 0XSIOXI1YSI1YI0Y
$X \rightarrow 1$
$\mathrm{Y} \rightarrow 0$

Chapter 6 : Pushdown Automata (PDA)

Q. 1 Distinguish between NPDA and DPDA. Dec. 2005

Ans. :

Distingulsh between NPDA and DPDA

A NPDA provides non-determinism to PDA.
In a DPDA there is only one move in every situation. Where as, in case of NPDA there could be multiple moves under a situation. DPDA is less powerful than NPDA.

Every context free language can not be recognized by ${ }^{2}$ DPDA but it can be recognized by NPDA. The class of language \& DPDA can accept lies in between a regular language and CFL. A palindrome can be accepted by NPDA but it can not be accepted by a DPDA

Q. 2 Design a PDA to accept (bdb) ${ }^{n} C^{n}$.

Ans.:

To solve this problem, we can take a stack symbol x. For every 'bdb', one x will be pushed on top of the stack. After reading (bdb) ${ }^{\mathrm{n}}$, the stack should contain n number of x 's. These x 's will be matched with c 's. The transitions for the PDA accepting through an empty stack are given in Fig. 6.1.

Fig. 6.1
A cycle through $q_{0} \rightarrow q_{1} \rightarrow q_{2} \rightarrow q_{0}$ traces a group of bdb.
The PDA

$$
M=\left\{Q, \Sigma, \Gamma, \delta, q_{0}, z_{0}, \phi\right\}
$$

Where,

$$
Q^{\prime} \equiv\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}, \Sigma=\{b, d, c\}, \Gamma=\left\{x, z_{0}\right\}
$$

q_{0} is the initial state, z_{0} is initial stack symbol.
The transition function δ is given by,
$\delta\left(q_{0}, b, z_{0}\right)=\left(q_{1}, z_{0}\right)$
$\delta\left(q_{0}, b, x\right)=\left(q_{1}, x\right)$
$\delta\left(q_{1}, d, z_{0}\right)=\left(q_{2}, z_{0}\right)$
$\delta\left(q_{1}, d, x\right)=\left(q_{2}, x\right)$
$\delta\left(q_{2}, b, z_{0}\right)=\left(q_{0}, x z_{0}\right)$
$\delta\left(q_{2}, b, x\right)=\left(q_{0}, x x\right)$
$\delta\left(q_{0}, c, x\right)=\left(q_{3}, \varepsilon\right)$
$\delta\left(q_{3}, c, x\right)=\left(q_{3}, \varepsilon\right)$
$\delta\left(q_{3}, \varepsilon, z_{0}\right)=\left(q_{3}, \varepsilon\right)$ Accept through empty stack.

Q. 3 Design a PDA for detection of even palindrome over $\{a, b\}$.

Dec. 2005, May 2006, May 2007, May 2016
Ans.:

An even palindrome will be of the form ww^{R}

If the length of w is n then a palindrome of even length is :
First n characters are equal to the last n characters in the reverse order.

The character immediately before the middle position will be identical to the character immediately after the middle position.

Algorlthm :

There is no way of finding the middle position by a PDA; therefore the middle position is fixed non-deterministically.

1. First n characters are pushed onto the stack. n is nondeterministic.
2. The n characters on the stack are matched with the last n characters of the input string.
3. n is decided non-deterministically. Every character out of first n characters, whose previous character is same as itself should be considered for two cases :
(a) It is first character of the second half.

- Pop the current stack symbol using the transitions:

$$
\begin{array}{ll}
\delta\left(\mathrm{q}_{0}, \mathrm{a}, \mathrm{a}\right) & \Rightarrow\left(\mathrm{q}_{1}, \varepsilon\right) \\
\delta\left(\mathrm{q}_{0}, \mathrm{~b}, \mathrm{~b}\right) & \Rightarrow\left(\mathrm{q}_{1}, \varepsilon\right)
\end{array}
$$

(b) It belongs to first half.

- Push the current input

$$
\begin{aligned}
& \delta\left(\mathrm{q}_{0}, \mathrm{a}, \varepsilon\right) \Rightarrow\left(\mathrm{q}_{0}, \mathrm{a}\right) \\
& \delta\left(\mathrm{q}_{0}, \mathrm{~b}, \varepsilon\right) \Rightarrow\left(\mathrm{q}_{0}, \mathrm{~b}\right)
\end{aligned}
$$

4. n is decided non-deterministically. Every character out of first n characters, whose previous character is not same as itself should be pushed onto the stack.

- Push the current symbol using the transitions :

$$
\begin{array}{ll}
\delta\left(\mathrm{q}_{0}, \mathrm{a}, \mathrm{~b}\right) & \Rightarrow\left(\mathrm{q}_{0}, \mathrm{ab}\right) \\
\delta\left(\mathrm{q}_{0}, \mathrm{~b}, \mathrm{a}\right) & \Rightarrow\left(\mathrm{q}_{0}, \mathrm{ba}\right)
\end{array}
$$

The transition table for the PDA is given below :

$$
\begin{aligned}
\delta\left(q_{0}, a, z_{0}\right) & \Rightarrow\left\{\left(q_{0}, a z_{0}\right)\right\} \\
\delta\left(q_{0}, b, z_{0}\right) & \Rightarrow\left\{\left(q_{0}, b z_{0}\right)\right\} \\
\delta\left(q_{0}, a, a\right) & \Rightarrow\left\{\left(q_{0}, a a\right)\left(q_{1}, \varepsilon\right)\right\} \\
\delta\left(q_{0}, a, b\right) & \Rightarrow\left\{\left(q_{0}, a b\right)\right\} \\
\delta\left(q_{0}, b, a\right) & \Rightarrow\left\{\left(q_{0}, b a\right)\right\} \\
\delta\left(q_{0}, b, b\right) & \Rightarrow\left\{\left(q_{0}, b b\right),\left(q_{1}, \varepsilon\right)\right\} \\
\delta\left(q_{1}, a, a\right) & \Rightarrow\left\{\left(q_{1}, \varepsilon\right)\right\} \\
\delta\left(q_{1}, b, b\right) & \Rightarrow\left\{\left(q_{1}, \varepsilon\right)\right\}
\end{aligned}
$$

$\delta\left(q_{1}, \varepsilon, z_{0}\right) \Rightarrow\left\{\left(q_{1}, \varepsilon\right)\right\}$ [Accept through an empty stack]
Where,

$$
\text { the set of states } Q=\left\{q_{0}, q_{1}\right\}
$$

the set of input symbols $\Sigma=\{\mathrm{a}, \mathrm{b}\}$
the set of stack symbols $\Gamma=\left\{a, b, z_{0}\right\}$

$$
\begin{aligned}
\text { Starting state } & =q_{0} \\
\text { Initial stack symbol } & =z_{0}
\end{aligned}
$$

Q. 4 Construct a PDA equivalent to the following CFG.
$S \rightarrow 0 B B$
\rightarrow OS:1S10
Test if 010^{4} is in the language
May 2006. May 2011. May 2012
Ans. :
The equivalent PDA, M is given by

$$
M=(\{q\},\{0,1\},\{0,1, S, B\}, \delta, q, S, \phi)
$$

where δ is given by

$\delta(q, \varepsilon, S)$	$\Rightarrow\{(q, 0 B B)\}$	For each production
$\delta(q, \varepsilon, B)$	$\Rightarrow\{(q, 0 S),(q, 1 S),(q, 0)\}$	in the given grammar
$\delta(q, 0,0)$	$\Rightarrow\{(q, \varepsilon)\}$	
$\delta(q, 1,1)$	$\Rightarrow\{(q, \varepsilon)\}$	For each terminal

Acceptance of 010^{4} by M :

$\delta(q, 010000, S) \quad \delta(q, \varepsilon, S)=(q, 0 B B)$
$(q, 010000,0 B B)$
$\delta(q, 0,0)=(q, \varepsilon)$
$(q, 10000, B B)$
$\delta(q, \varepsilon, B)=(q, 1 S)$
($q, 10000,1 S B$)
$\delta(q, 1,1)=(q, \varepsilon)$
($q, 0000, S B$)
$\delta(q, \varepsilon, S)=(q, 0 B B)$
\qquad $(q, 0000,0 B B B)$
$\delta(q, 0,0)=(q, \varepsilon)$.
\qquad ($q, 000, \mathrm{BBB}$)
$\delta(q, \varepsilon, B)=(q, 0)$
\qquad $(q, 000,0 B B)$
$\delta(q, 0,0)=(q, \varepsilon)$
$(q, 00, B B)$
$\delta(q, \varepsilon, B)=(q, 0)$
$(q, 00,0 B)$
$\delta(q, 0,0)=(q, \varepsilon)$
$(q, 0, B)$
$\delta(q, \varepsilon, B)=(q, 0)$
$(q, 0,0)$
$\delta(q, 0,0)=(q, \varepsilon)$

$$
\longrightarrow(q, \varepsilon, \varepsilon)
$$

Thus the string 010^{4} is accepted by M using an empty stack.

$$
\therefore 010^{4} \in L
$$

Q. 5 Construct a PDA accepting $\{$ anbman $I m, n \geq 1\}$ by null store.

Dec. 2006. Dec. 2010. May 2012. May 2013
Ans. :
Algorithm :

1. The sequence of a's should be pushed onto the stack in state q_{0}

$$
\begin{aligned}
\delta\left(q_{0}, a, z_{0}\right) & =\left(q_{0}, a z_{0}\right) \\
\delta\left(q_{0}, a, a\right) & =\left(q_{0}, a a\right)
\end{aligned}
$$

2. On first b, the machine moves to q_{1} and remains there for b 's. b's will have no effect on the stack.
3. For every ' a ', an ' a ' is erased from the stack.

The PDA accepting through empty stack is given by

$$
M=\left(\left\{q_{0}, q_{1}, q_{2}\right\},\{a, b\},\left\{a, z_{0}\right\}, \delta, q_{0}, z_{0}, 0\right)
$$

Where the transition function δ is :

1. $\delta\left(\mathrm{q}_{0}, \mathrm{a}, \mathrm{z}_{0}\right)=\left(\mathrm{q}_{0}, \mathrm{az}_{0}\right) \quad$ [First ' a ' is pushed]
2. $\delta\left(q_{0}, a, a\right)=\left(q_{0}, a a\right) \quad$ [Subsequent a 's are pushed]
3. $\delta\left(q_{0}, b, a\right)=\left(q_{1}, a\right) \quad$ [Input symbols b's are skipped]
4. $\delta\left(q_{1}, b, a\right)=\left(q_{1}, a\right)$
5. $\delta\left(q_{1}, a, a\right)=\left(q_{2}, \varepsilon\right) \quad$ [An a is erased on first a of last a 's]
6. $\delta\left(q_{2}, a, a\right)=\left(q_{2}, \varepsilon\right) \quad$ [An a is erased on subsequent a 's of last a's]
7. $\delta\left(q_{2}, \varepsilon, z_{0}\right)=\left(q_{2}, \varepsilon\right) \quad$ [Accepting through empty stack]

Q. 6 Design a PDA to accept (ab) ${ }^{n}$ (cd) ${ }^{n}$. May 200;

Ans. :

To solve this problem, we can take a stack symbol x. For every 'ab', one x will be pushed on top of the stack. After reading (ab) ${ }^{n}$, the stack should contain n number of x 's. These x 's will be matched with (cd) ${ }^{\mathrm{a}}$. For every 'cd' one x will be popped.

The transitions for the PDA accepting through an empty stack are given in Fig. 6.2.

Fig. 6.2
PDA accepts through the final state q_{4}.
The PDA M $=\left\{Q, \Sigma, \Gamma, \delta, \mathrm{q}_{0}, \mathrm{z}_{0}, \mathrm{~F}\right\}$
Where,

$$
\begin{aligned}
& \mathbf{Q}=\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right\} \\
& \boldsymbol{\Sigma}=\{a, b, c, d\} \\
& \Gamma=\left\{x, z_{0}\right\}
\end{aligned}
$$

The transition function δ is given by,
$\delta\left(q_{0}, a, z_{0}\right)=\left(q_{1}, z_{0}\right)$
$\delta\left(q_{0}, a, x\right)=\left(q_{1}, x\right)$
$\delta\left(q_{1}, b, z_{0}\right)=\left(q_{0}, x z_{0}\right)$
$\delta\left(q_{1}, b, x\right)=\left(q_{0}, x x\right)$
$\delta\left(q_{0}, c, x\right)=\left(q_{2}, x\right)$
$\delta\left(q_{2}, d, x\right)=\left(q_{3}, \varepsilon\right)$
$\delta\left(q_{3}, c, x\right)=\left(q_{2}, x\right)$
$\delta\left(q_{2}, \varepsilon, z_{0}\right)=\left(q_{1}, z_{0}\right)$
q_{0} is initial state,
z_{0} is initial stack symbol.
Set of final states $F=\left\{q_{4}\right\}$

Q. 7 Design a PDA for detection of odd palindrome over $\{\mathrm{a}, \mathrm{b}\}$.
 Dec. 2007

Ans.:

An odd palindrome will be of the form:

1. $w a w^{R}$

2. $w b w^{R}$

If the length of \boldsymbol{w} is \boldsymbol{n} then a palindrome of odd length is :

First n characters are equal to the last n characters in reverse order with middle character as ' a ' or ' b '.

Algorlthm :

There is no way of finding the middle position of a string by a PDA, therefore the middle position is fixed non-deterministically.

1. First n characters are pushed onto the stack, where n is nondeterministic.
2. The n characters on the stack are matched with the last n characters of the input string.
3. n is decided non-deterministically. Every character out of first n characters should be considered for two cases :
(a) It is not the middle character - push the current character using the transition :

$$
\begin{aligned}
& \delta\left(q_{0}, a, \varepsilon\right) \Rightarrow\left(q_{0}, a\right) \\
& \delta\left(q_{0}, b, \varepsilon\right) \Rightarrow\left(q_{0}, b\right)
\end{aligned}
$$

(b) It is a middle character - go for matching of second half with the first half.

$$
\begin{array}{ll}
\delta\left(\mathrm{q}_{0}, \mathrm{a}_{2}, \varepsilon\right) & \Rightarrow\left(\mathrm{q}_{1}, \varepsilon\right) \\
\delta\left(\mathrm{q}_{0}, b, \varepsilon\right) & \Rightarrow\left(\mathrm{q}_{1}, \varepsilon\right)
\end{array}
$$

The status of the stack and the state of the machine is shown in the Fig. 6.3. Input applied is ababa.
Left child \rightarrow current input is taken as the middle character
Right child \rightarrow current input is not a middle character.

Fig. 6.3 : Processing of string by the PDA. String is taken as "ababa"

The transitton table for the PDA is given below,
$8\left(q_{1}, A, B\right) \Rightarrow\left\{\left(q_{1}\right.\right.$,
B - Indicates that Irrespective of the current stack symbol, perform the transitlon.
$\delta\left(q_{0}, b, b\right) \Rightarrow\left\{\left(q_{1}, b\right),\left(q_{0}, b\right)\right\}$
$\delta(q, a, n) \Rightarrow\{(q, B)\}$
$\delta\left(q_{1}, b, b\right) \Rightarrow\left\{\left(q_{1}, b\right)\right\}$
$\delta\left(q_{1}, c, q_{0}\right) \Rightarrow\left\{\left(q_{1}, e\right)\right\}$ [Accept through an empty stack]
Where, The set of states $Q=\left(q_{0}, q_{1}\right)$
The set input alphabet \sum a (a, b)
The set of stack symbols $\Gamma=\left(a, b, z_{0}\right)$

$$
\begin{aligned}
\text { Starting state } & =q_{0} \\
\text { Initial stack symbol } & =z_{0}
\end{aligned}
$$

Q. 8 Glve the CFG generating the language accepted by the following PDA: $M=\left(\left\{q_{0}, q_{1}\right\},\{0,1\},\left\{z_{0}, x\right\}\right.$, $\left.\delta, q_{0}, z_{0}, \phi\right)$ when δ is glven below: $\delta\left(q_{0}, 1, z_{0}\right)=\left\{\left(q_{0}, x z_{0}\right)\right\} \delta\left(q_{0}, 1, x\right)=\left\{\left(q_{0}, x x\right)\right\}$ $\delta\left(q_{0}, 0, x\right)=\left\{\left(q_{1}, x\right)\right\} \delta\left(q_{0}, \varepsilon, z_{0}\right)=\left\{\left(q_{0}, \varepsilon\right)\right\}$ $\delta\left(q_{1}, 1, x\right)=\left\{\left(q_{1}, e\right)\right\} \delta\left(q_{1}, 0, z_{0}\right)=\left\{\left(q_{0}, z_{0}\right)\right\}$

Dec. 2007

Ans. :
Step 1: Add productions for the start symbol

$$
\begin{aligned}
& S \rightarrow\left[q_{0}{ }^{z_{0}} q_{0}\right] \\
& S \rightarrow\left[q_{0}{ }^{z_{0}} q_{1}\right]
\end{aligned}
$$

Step 2: Add productions for $\delta\left(q_{0}, 1, z_{0}\right)=\left\{\left(q_{0}, x z_{0}\right)\right\}$

$$
\begin{aligned}
& {\left[q_{0}{ }^{z_{0}} q_{0}\right] \rightarrow 1\left[q_{0}{ }^{x} q_{0}\right]\left[q_{0}{ }^{z_{0}} q_{0}\right]} \\
& {\left[q_{0}{ }^{z_{0}} q_{0}\right] \rightarrow 1\left[q_{0}{ }^{x} q_{1}\right]\left[q_{1}{ }^{z} q_{0}\right]} \\
& {\left[q_{0}{ }^{z_{0}} q_{1}\right] \rightarrow 1\left[q_{0}{ }^{x} q_{0}\right]\left[q_{0}{ }^{z_{0}} q_{1}\right]} \\
& {\left[q_{0}{ }^{z_{0}} q_{1}\right] \rightarrow 1\left[q_{0}{ }^{x} q_{1}\right]\left[q_{1}{ }^{z_{0}} q_{1}\right]}
\end{aligned}
$$

Step 3: Add productions for $\delta\left(q_{0}, 1, x\right) \Rightarrow\left\{\left(q_{0}, x x\right)\right\}$

$$
\left[q_{0}{ }^{x} q_{0}\right] \rightarrow 1\left[q_{0}{ }^{x} q_{0}\right]\left[q_{0}{ }^{x} q_{0}\right]
$$

$$
\left[q_{0}{ }^{x} q_{0}\right] \rightarrow 1\left[q_{0}{ }^{x} q_{1}\right]\left[q_{1}{ }^{x} q_{0}\right]
$$

$$
\left[q_{0}^{x} q_{1}\right] \rightarrow 1\left[q_{0}^{x} q_{q_{0}}\right]\left[q_{0}^{x} q_{1}\right]
$$

$$
\left[q_{0}{ }^{x} q_{1}\right] \rightarrow 1\left[q_{0}{ }^{x} q_{1}\right]\left[q_{1}{ }^{x} q_{1}\right]
$$

Step 4: Add productions for $\delta\left(q_{0}, 0, x\right) \Rightarrow\left\{\left(q_{1}, x\right)\right\}$

$$
\begin{aligned}
& {\left[q_{0}{ }^{x} q_{0}\right] \rightarrow 0\left[q_{1}{ }^{x} q_{0}\right]} \\
& {\left[q_{0}{ }^{x} q_{1}\right] \rightarrow 0\left[q_{1}{ }^{x} q_{1}\right]}
\end{aligned}
$$

Step 5: Add productions for $\delta\left(q_{0}, \varepsilon, z_{0}\right)=\left\{\left(q_{1}, \varepsilon\right)\right\}$

$$
\left[q_{0}^{z_{0}} q_{1}\right] \rightarrow \varepsilon
$$

Step 6: Add production for $\delta\left(q_{1}, 1, x\right) \Rightarrow\left\{\left(q_{1}, \varepsilon\right)\right\}$

$$
\left[\mathrm{q}_{1}^{\mathrm{x}} \mathrm{q}_{\mathrm{i}}\right] \rightarrow 1
$$

Step 7 : Add productions for $\delta\left(q_{1}, 0, z_{0}\right) \Rightarrow\left\{\left(q_{0}, z_{0}\right)\right\}$

$$
\begin{aligned}
& {\left[q_{1}{ }^{z_{0}} q_{0}\right] \Rightarrow 0\left[q_{0}{ }^{z_{0}} q_{0}\right]} \\
& {\left[q_{1}{ }^{z_{0}} q_{1}\right] \Rightarrow 0\left[q_{0}^{z_{0}} q_{1}\right]}
\end{aligned}
$$

Q. 9 Design a PDA for accepting a language

$L=\left\{W c W^{\top} \mid W \in\{a, b\}^{*}\right\}$.
May 2008, May 2010, May 2011
Ans. :
W^{T} stands for reverse of W. A string of the form $\mathrm{WcW}{ }^{\mathrm{T}}$ is an odd length palindrome with the middle character as c .

Algorithm :

If the length of the string is $2 n+1$, then the first n symbols should be matched with the last \mathbf{n} symbols in the reverse order. A stack can be used to reverse the first \boldsymbol{n} input symbols.

Status of the stack and state of the machine is shown in Fig. 6.4. Input applied is abbcbba.

Fig. 6.4 : A PDA on input abbcbba
The PDA accepting through final state is given by

$$
M=\left(\left\{q_{0}, q_{1}, q_{2}\right\},\{a, b, c\},\left\{a, b, z_{0}\right\}, \delta, q_{0}, z_{0},\left\{q_{2}\right\}\right)
$$

Where the transition function δ is given below :

1. $\delta\left(q_{0}, a, \varepsilon\right)=\left(q_{0}, a\right) \quad$ First n symbols are pushed onto
2. $\delta\left(q_{0}, b, \varepsilon\right)=\left(q_{0}, b\right)$ the stack
3. $\delta\left(\mathrm{q}_{0}, \mathrm{c}, \varepsilon\right)=\left(\mathrm{q}_{1}, \varepsilon\right)$
4. $\delta\left(q_{1}, a, a\right)=\left(q_{1}, \varepsilon\right)$
5. $\delta\left(\mathrm{q}_{1}, b, b\right)=\left(\mathrm{q}_{1}, \varepsilon\right)$
[State changes on c]
Last n symbols are matched with first n symbols in reverse order
6. $\delta\left(q_{1}, \varepsilon_{0} z_{0}\right)=\left(q_{2}, z_{0}\right)$
[Accepted through final state] ${ }^{-}$

A transition of the form $\delta\left(q_{0}, a, \varepsilon\right)=\left(q_{0}, a\right)$ implies that always push a, irrespective of stack symbol.

Q. 10 Convert the following expression grammar to PDAI \rightarrow alblaliblIOIIE \rightarrow IIE*EIE*EI (E)
 Dec. 2008

Ans. :

The equivalent PDA, M is given by,
$M=(\{q\},\{0,1, a, b, *,+,()\},,\{0,1, a, b, *,+,(b, i, E), \delta, q, E, \phi)$ where, δ is given by,
$\delta(q, \varepsilon, E)=\{(q, I),(q, E * E),(q, E+E),(q,(E))\}$
$\delta(q, \varepsilon, I)=\{(q, a),(q, b),(q, I b),(q, I q),(q, I 0),(q, I)\}$
$\delta(q, 0,0)=\{(q, \varepsilon)\}$
$\delta(q, 1,1)=\{(q, \varepsilon)\}$
$\delta(q, a, a)=\{(q, \varepsilon)\}$
$\delta(q, b, b)=\{(q, \varepsilon)\}$
$\delta(q,+,+)=\{(q, \varepsilon)\}$
$\delta(\mathrm{q}, *, *)=\{(\mathrm{q}, \mathrm{\varepsilon})\}$
$\delta(q,()=,\{(q, \varepsilon)\}$
$\delta(q),),)=\{(q, \varepsilon)\}$
Q. 11 Design a PDA for CFL that checks the well formedness of parenthesis i.e. the language L of all "balanced" string of two types of parenthesis say "()" and "[]". Trace the sequence of moves made corresponding to input string ([[])[]).

May 2009, May 2014, Dec. 2017
Ans.:
The transition function of the PDA is given below :

1. $\delta\left(\mathrm{q}_{0},\left(, \mathrm{z}_{0}\right)=\left(\mathrm{q}_{0},\left(\mathrm{z}_{0}\right)\right.\right.$
2. $\delta\left(\mathrm{q}_{0^{\prime}}()()=,\left(\mathrm{q}_{0^{\prime}},(\mathrm{C})\right.\right.$
3. $\delta\left(\mathrm{q}_{0}, \mathrm{C}, \mathrm{L}\right)=\left(\mathrm{q}_{0},(\mathrm{C})\right.$

4. $\delta\left(q_{0},\left[, z_{0}\right)=\left(q_{0},\left[z_{0}\right)\right.\right.$
5. $\delta\left(q_{0},\left[,()=\left(q_{0},[()\right.\right.\right.$
6. $\delta\left(q_{0},\left[,[)=\left(q_{0},[[)\right.\right.\right.$
7. $\left.\left.\delta\left(q_{0},\right)^{\prime}\right)\right)=\left(q_{0}, \varepsilon\right)$
8. $\delta\left(\mathrm{q}_{0}, \mathrm{l}, \mathrm{J}\right)=\left(\mathrm{q}_{0}, \varepsilon\right)$
9. $\delta\left(q_{0}, \varepsilon, z_{0}\right)=\left(q_{f} z_{0}\right)$] Accept through a final state.

Simulation of PDA for the input string ([]])[])

$$
\begin{aligned}
& \left.\left(q_{0},([])[]\right), z_{0}\right) \xrightarrow{\text { Rule } 1}\left(q_{0},([])[]\right),\left(z_{0}\right) \\
& \left.\xrightarrow{\text { Rule } 2}\left(q_{0},[]\right)[]\right),\left(\left(z_{0}\right)\right. \\
& \left.\left.\xrightarrow{\text { Rule } 5}\left(q_{0},\right]\right)[]\right),\left[\left(\left(z_{0}\right)\right.\right. \\
& \text { Rule } 8 \\
& \left(q_{0},[]\right),\left(\left(z_{0}\right)\right.
\end{aligned}
$$

Rule 7
$\longrightarrow\left(q_{0},[]\right),\left(x_{0}\right)$
Rule 5
Rule 8
$\left(q_{0}\right),\left(z_{0}\right)$
Rule 7
Rule 9

$$
\left(q_{f} \varepsilon, z_{0}\right)
$$

Q. 12 Consider the PDA with the following moves : $\delta\left(q_{0}, a, z_{0}\right)=\left\{\left(q_{0}, a z_{0}\right)\right\} \delta\left(q_{0}, a, a\right)=\left\{\left(q_{0}, a a\right)\right\} \delta\left(q_{0}\right.$, $b, a)=\left\{\left(q_{1}, \varepsilon\right)\right\} \delta\left(q_{1}, b, a\right)=\left\{\left(q_{1}, \varepsilon\right)\right\} \delta\left(q_{1}, \varepsilon, z_{0}\right)$ $=\left\{\left(q_{1}, \varepsilon\right)\right\}$ Obtain CFG equivalent to PDA.

May 2009
Ans. :
Step 1: Add productions for the start symbol.

$$
\begin{aligned}
& S \rightarrow\left[q_{0}{ }^{z_{0}} q_{0}\right] \\
& S \rightarrow\left[q_{0}{ }^{z_{0}} q_{1}\right]
\end{aligned}
$$

Step 2: Add productions for $\left(\mathrm{q}_{0}, \mathrm{a}, \mathrm{a}\right)=\left\{\left(\mathrm{q}_{0}, \mathrm{a}\right)\right\}$

$$
\begin{aligned}
& {\left[q_{0}{ }^{a} q_{0}\right] \rightarrow a\left[q_{0}{ }^{a} q_{0}\right]\left[q_{0}{ }^{a} q_{0}\right]} \\
& {\left[q_{0}{ }^{a} q_{0}\right] \rightarrow a\left[q_{0}{ }^{a} q_{1}\right]\left[q_{1}{ }^{a} q_{0}\right]} \\
& {\left[q_{0}{ }^{a} q_{1}\right] \rightarrow a\left[q_{0}{ }^{a} q_{0}\right]\left[q_{0}{ }^{a} q_{1}\right]} \\
& {\left[q_{0}{ }^{a} q_{1}\right] \rightarrow a\left[q_{0}{ }^{a} q_{1}\right]\left[q_{1}{ }^{a} q_{1}\right]}
\end{aligned}
$$

Step 3: Add productions for $\delta\left(\mathrm{q}_{0}, \mathrm{~b}, \mathrm{a}\right) \equiv\left\{\left(\mathrm{q}_{1}, \mathrm{\varepsilon}\right)\right\}$

$$
\left[q_{0}{ }^{a} q_{1}\right] \rightarrow b
$$

Step 4: Add productions for $\delta\left(\mathrm{q}_{1}, \mathrm{~b}, \mathrm{a}\right)=\left\{\left(\mathrm{q}_{1}, \mathrm{\varepsilon}\right)\right\}$

$$
\left[q_{1}{ }^{a} q_{1}\right] \rightarrow b
$$

Step 5: Add productions for $\delta\left(\mathrm{q}_{1}, \varepsilon, z_{0}\right) \rightarrow\left\{\left(\mathrm{q}_{1}, \varepsilon\right)\right\}$

$$
\left[q_{1}{ }^{z_{0}} q_{1}\right] \rightarrow \varepsilon
$$

Q. 13 Write short note on DPDA.

Ans.:
DPDA
In a DPDA there is only one move in every situation. A DPDA is less powerful than NPDA.

Every context free language cannot be accepted by a DPDA. For example, a string of the form ww^{R} can not be processed by a DPDA.

The class of a language a DPDA can accept lies in between a regular language and CFL.

A DPDA is defined as :

$$
M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, z_{0}, F\right) \text {, where }
$$

$\delta(q, a, x)$ has one move for any $q \in Q, X \in \Gamma$ and $a \in \Sigma$.

Q. 14 Design a PDA for detection of palindromes over $\{\mathrm{a}, \mathrm{b}\}$.
 Dec. 2012

Ans. :
A palindrome will be of the form :

1. $\quad w^{R} \rightharpoondown$ - even palindrome
2. waw ${ }^{R}$
3. $\mathrm{wbw}^{\mathrm{R}}$ - - odd palindrome

If the length of w is n then a palindrome is :
First n characters are equal to the last n characters in the reverse order with the middle character as :
(1) a
[For odd palindrome]
(2) b
[For odd palindrome]
(3) ε [For even palindrome]

The transition table for the PDA is given below :

$$
\begin{aligned}
\delta\left(q_{0}, a, z_{0}\right) & \Rightarrow\left\{\left(q_{1}, z_{0}\right),\left(q_{0}, a z_{0}\right)\right\} \\
\delta\left(q_{0}, b, z_{0}\right) & \Rightarrow\left\{\left(q_{1}, z_{0}\right),\left(q_{0}, b z_{0}\right)\right\} \\
\delta\left(q_{0}, a, a\right) & \Rightarrow\left\{\left(q_{0}, a a\right)\left(q_{1}, a\right),\left(q_{1}, \varepsilon\right)\right\} \\
\delta\left(q_{0}, a, b\right) & \Rightarrow\left\{\left(q_{0}, a b\right),\left(q_{1}, b\right)\right\} \\
\delta\left(q_{0}, b, a\right) & \Rightarrow\left\{\left(q_{0}, b a\right),\left(q_{1}, a\right)\right\} \\
\delta\left(q_{0}, b, b\right) & \Rightarrow\left\{\left(q_{0}, b b\right),\left(q_{1}, b\right),\left(q_{1}, \varepsilon\right)\right\} \\
\delta\left(q_{1}, \text { a a a }\right) & \Rightarrow\left\{\left(q_{1}, \varepsilon\right)\right\} \\
\delta\left(q_{1}, b, b\right) & \Rightarrow\left\{\left(q_{1}, \varepsilon\right)\right\} \\
\delta\left(q_{1}, \varepsilon, z_{0}\right) & \Rightarrow\left\{\left(q_{1}, \varepsilon\right)\right\}
\end{aligned}
$$

[Accept through an empty stack].

Details of important transitions :

The transaction, $\delta\left(q_{0}, a, a\right) \Rightarrow\left\{\left(q_{0}, a a\right),\left(q_{1}, a\right),\left(q_{1}, \varepsilon\right)\right\}$

Input 'a' is first character of w^{R} of even palindrome

The transition rule for $\delta\left(q_{0}, a, a\right)$, must consider the three cases:

1. Input ' a ' is part of w of the palindrome.
2. Input ' a ' is middle character of waw ${ }^{R}$
3. Input ' a ' is the first character of w^{R}.

The transaction, $\delta\left(q_{0}, a, b\right) \Rightarrow\left\{\left(q_{0}, a b\right),\left(q_{1}, b\right)\right\}$

Input 'a' is part of w

Input ' a ' is middle point of waw ${ }^{R}$
Q. 15 Write application of PDA.

Dec. 2012
Ans.:

Applications of PDA

PDA is a machine for CFL.
A string belonging to a CFL can be recognized by a PDA.
PDA is extensively used for parsing.
PDA is an abstract machine; it can also used for giving proofs. of lemma on CFL.

Q. 16 Design a PDA to accept language

$\left\{a^{n-1} b^{2 n+1} \mid n \geq 1\right\}$
Dec. 2014
Ans. :
For every ' a ' in the input, $2 b$'s are pushed onto the stack.
For the first ' b ' in the input, $2 b$'s are pushed onto the stack.
For every ' b ' in the input, 1 ' b ' is popped out from the stack.
Finally the stack should become empty.

Transitions

$$
\begin{aligned}
\delta\left(q_{0}, a, z_{0}\right)= & \left(q_{0}, b b z_{0}\right) \\
\delta\left(q_{0}, a, b\right)= & \left(q_{0}, b b b\right) \\
\delta\left(q_{0}, b, z_{0}\right)= & \left(q_{1}, b b z_{0}\right) \\
\delta\left(q_{0}, b, b\right)= & \left(q_{1}, b b b\right) \\
\delta\left(q_{1}, b, b\right)= & \left(q_{1}, \in\right) \\
\delta\left(q_{1}, \in, z_{0}\right)= & \left(q_{1}, \epsilon\right) \\
& {[\text { Accept using empty stack] }}
\end{aligned}
$$

Q. 17 Design PDA to check even palindrome over $\Sigma=\{0,1\}$
Ans. :
An even palindrome will be of the form $w w^{R}$

If the length of w is n then a palindrome of even length is :
First n characters are equal to the last n characters in the reverse order.

The character immediately before the middle position will be identical to the character immediately after the middle position.

Algorlthm :

There is no way of finding the middle position by a PDA; therefore the middle position is fixed non-deterministically.

1. First n characters are pushed onto the stack. n is nondeterministic.
2. The n characters on the stack are matched with the last n characters of the input string.
3. n is decided non-deterministically. Every character out of first n characters, whose previous character is same as itself should be considered for two cases :
(a) It is first character of the second half.

- Pop the current stack symbol using the transitions:

$$
\begin{aligned}
\delta\left(q_{0}, 0,0\right) & \Rightarrow\left(q_{1}, \varepsilon\right) \\
\delta\left(q_{0}, 1,1\right) & \Rightarrow\left(q_{1}, \varepsilon\right) \\
ـ & \text { Must be identical }
\end{aligned}
$$

(b) It belongs to first half.

- Push the current input

$$
\begin{aligned}
& \delta\left(q_{0}, 0, \varepsilon\right) \Rightarrow\left(q_{0}, 0\right) \\
& \delta\left(q_{0}, 1, \varepsilon\right) \Rightarrow\left(q_{0}, 1\right)
\end{aligned}
$$

4. n is decided non-deterministically. Every character out of first n characters, whose previous character is not same as itself should be pushed onto the stack.

- Push the current symbol using the transitions :

$$
\begin{aligned}
& \delta\left(q_{0}, 0,1\right) \Rightarrow\left(q_{0}, 01\right) \\
& \delta\left(q_{0}, 1,0\right) \Rightarrow\left(q_{0}, 10\right)
\end{aligned}
$$

The transition table for the PDA is given below :

$$
\begin{aligned}
\delta\left(q_{0}, 0, z_{0}\right) & \Rightarrow\left\{\left(q_{0}, 0 z_{0}\right)\right\} \\
\delta\left(q_{0}, 1, z_{0}\right) & \Rightarrow\left\{\left(q_{0}, 1 z_{0}\right)\right\} \\
\delta\left(q_{0}, 0,0\right) & \Rightarrow\left\{\left(q_{0}, 00\right)\left(q_{1}, \varepsilon\right)\right\} \\
\delta\left(q_{0}, 0,1\right) & \Rightarrow\left\{\left(q_{0}, 01\right)\right\} \\
\delta\left(q_{0}, 1,0\right) & \Rightarrow\left\{\left(q_{0}, 10\right)\right\} \\
\delta\left(q_{0}, 1,1\right) & \Rightarrow\left\{\left(q_{0}, 11\right),\left(q_{1}, \varepsilon\right)\right\} \\
\delta\left(q_{1}, 0,0\right) & \Rightarrow\left\{\left(q_{1}, \varepsilon\right)\right\} \\
\delta\left(q_{1}, 1,1\right) & \Rightarrow\left\{\left(q_{1}, \varepsilon\right)\right\} \\
\delta\left(q_{1}, \varepsilon, z_{0}\right) & \Rightarrow\left\{\left(q_{1}, \varepsilon\right)\right\}
\end{aligned}
$$

[Accept through an empty stack]
Where,

$$
\text { the set of states } \mathbf{Q}=\left\{q_{0}, q_{1}\right\}
$$

the set of input symbols $\sum=\{0,1\}$
the set of stack symbols $\Gamma=\left\{0,1, z_{0}\right\}$

$$
\begin{aligned}
\text { Starting state } & =\mathbf{q}_{0} \\
\text { Initial stack symbol } & =z_{0}
\end{aligned}
$$

Q. 18 Design DPDA to accept language $L=\left\{x \in\{a, b\}^{*}\right.$ $\left.N_{a}(x)>N_{b}(x)\right\}, N_{a}(x)>N_{b}(x)$ means number of $a^{\prime} s$ are greater than number of b's in string x.

Dec. 2015
Ans. :
The PDA is being designed to accept the string using final state. The stack is being used to store excess of a's over b's or excess of b's over a's out of input seen so far.

Transitions

1. $\delta\left(q_{0}, a, z_{0}\right)=\left(q_{0}, a z_{0}\right)$
2. $\delta\left(q_{0}, b, z_{0}\right)=\left(q_{0}, b z_{0}\right)$
[Extra ' a ' is pushed]
3. $\delta\left(\mathrm{q}_{0}, \mathrm{a}, \mathrm{a}\right)=\left(\mathrm{q}_{0}, a \mathrm{a}\right)$
4. $\delta\left(q_{0}, a, b\right)=\left(q_{0}, \epsilon\right)$ [Extra ' b ' is pushed]
5. $\delta\left(q_{0}, b, b\right)=\left(q_{0}, b b\right)$
6. $\delta\left(q_{0}, b, a\right)=\left(q_{0}, \epsilon\right)$ [Excess a's are pushed]
[Excess b's decreased by 1]
[Excess b's are pushed]
7. $\delta\left(q_{0}, \in, a\right)=\left(q_{1}, E\right)$
[Excess a's decreased by 1]
[Input ends with excess a's on the stack]

The PDA is given by :

$$
M=\left(\left\{q_{0}, q_{1}\right\}\{a, b\},\left\{a, b, z_{0}\right\}, \delta, q_{0}, z_{0},\left\{q_{1}\right\}\right)
$$

Q. 19 Construct PDA accepting the language

$$
L=\left\{a^{2 n} b^{n} \mid n>0\right\} .
$$

May 2016
Ans. :

Algorithm :

1. For every pair of leading a's, one \mathbf{X} is inserted in the stack.
2. X's on the stack are matched with trailing b's.

The PDA is given by

$$
M=\left(\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\},\{a, b\}\left\{X, Z_{0}\right\}, \delta, q_{0}, Z_{0}, \phi\right)
$$

where the transition function δ is
1.
2.

$$
\begin{aligned}
\delta\left(q_{0}, a, Z_{0}\right) & =\left(q_{1}, Z_{0}\right) \\
\delta\left(q_{1}, a, Z_{0}\right) & =\left(q_{2}, X Z_{0}\right) \\
\delta\left(q_{2}, a, X\right) & =\left(q_{1}, X\right) \\
\delta\left(q_{1}, a, X\right) & =\left(q_{2}, X X\right) \\
\delta\left(q_{2}, b, X\right) & =\left(q_{3}, \epsilon\right) \\
\delta\left(q_{3}, b, X\right) & =\left(q_{3}, \epsilon\right) \\
\delta\left(q_{3}, \in, Z_{0}\right) & =\left(q_{3}, \epsilon\right)
\end{aligned}
$$

Accept through empty stack.
Q. 20 Design a PDA corresponding to the grammar:
$S \rightarrow$ aSAle
$A \rightarrow b B$
$B \rightarrow b$
Dec. 2016
Ans. :
The equivalent PDA, M is given by :

$\mathbf{M}=(\{q\},\{a, b\},\{a, b, S, A, B\}, \delta, q, S, \phi)$

where δ is given by :

$$
\begin{aligned}
& \delta(q, \in, S) \Rightarrow\{(q, a S A),(q, \sigma)\} \\
& \delta(q, \in, A) \Rightarrow\{(q, b B)\} \\
& \delta(q, \in, B)=\{(q, b)\} \\
& \delta(q, a, a)=\{(q, \in)\} \\
& \delta(q, b, b)=\{(q, \epsilon)\}
\end{aligned}
$$

Q. 21 Design a PDA to accept language
$\left\{a^{n-1} b^{2 n+1} \mid n>=1\right\}$
Dec. 2017

-Ans. :

1. $\delta\left(q_{0}, a, Z_{0}\right) \Rightarrow\left(q_{1}, a a Z_{0}\right)$
2. $\delta\left(q_{1}, a, a\right) \Rightarrow\left(q_{1}, a\right)$
3. $\delta\left(q_{1}, b, a\right) \Rightarrow\left(q_{2}, a\right)$
4. $\delta\left(q_{2}, b, a\right) \Rightarrow\left(q_{1}, \epsilon\right)$
5. $\delta\left(q_{2}, \epsilon, Z_{0}\right) \Rightarrow\left(q_{2}, \epsilon\right)$

Accept through empty stack.

Chapter 7 : Turing Machine (TM)

Q. 1 Write short note on : Universal TM.
 Dec. 2005. May 2007. Dec. 2007. May 2008. Dec. 2008, May 2009, May 2010, Dec. 2011, May 2012 Dec. 2012, Dec. 2015

Ans.:

Universal TM

A general-purpose computer can be programmed to solve different types of problems. A TM can also behave like a generalpurpose computer. A general purpose computer solves a problem as given below :

1. A program is written in a high level language and its machine-code is obtained with the help of a complier.
2. Machine code is loaded in main memory.
3. Input to the program can also be loaded in memory.
4. Program stored in memory is executed line by line. Execution involves reading a line of code pointed by IP (instruction pointer), decoding the code and executing it.
We can follow a similar approach for a TM. Such, a TM is. known as Universal Turing Machine. Universal Turing Machine (UTM) can solve all sorts of solvable problems.

A Turing machine M is designed to solve a particular problem p, can be specified as :

1. The initial state q_{0} of the TM M.
2. The transition function δ of M can be specified as given :

If the current state of M is q_{j} and the symbol under the head is a_{j} then the machine moves to state q_{j} while changing a_{i} to a_{j}. The move of tape head may be :

1. To-left,
2. To-Right or
3. Neutral

Such a move of TM can be represented by tuple
$\left\{\left(q_{i}, a_{i}, q_{j}, a_{j}, m_{f}\right): q_{j}, q_{j} \in Q ; a_{i}, a_{j} \in \Gamma ; m_{f} \in(T o-\right.$ left, ToRight, Neutral] \}

UTM should be able to simulate every turing machine. Simulation of a Turing will involve :

1. Encoding behaviour of a particular TM as a program.
2. Execution of the above program by UTM.

A move of the form $\left(q_{i}, a_{i}, q_{j}, a_{j}, m_{f}\right)$ can be represented as 10^{i+1} $10^{i} 10^{j+1} 10^{j} 10^{K}$,

Where $K=1$, if move is to the left
$K=2$, if move is to the right
$K=3$, if move is 'no-move'
State q_{0} is represented by 0 ,
State q_{1} is represented by 00 ,
State q_{a} is represented by $0^{\mathrm{n}+1}$.
First symbol can be represented by 0 ,
Second symbol can be represented by 00 and so on.
Two elements of a tuple representing a move are separated by 1 .
Two moves are separated by 11 .

Execution by UTM :

We can assume the UTM as a 3-tape turing machine.

1. Input is written on the first tape.
2. Moves of the TM in encoded form is written on the second tape.
3. The current state of TM is written on the third tape.

The control unit of UTM by counting number of 0 's between 1 's can find out the current symbol under the head. It can find the current state from the tape 3. Now, it can locate the appropriate move based on current input and the current state from the tape 2. Now, the control unit can extract the following information from the tape 2 :

1. Next state
2. Next symbol to be written
3. Move of the head.

Based on this information, the control unit can take the appropriate action.

Q. 2 Design a TM which recognizes palindromes over alphabet $\{\mathrm{a}, \mathrm{b}\}$

May 2006. May 2009. May 2014. Dec. 2017
Ans.:
A palindrome can have one of the following forms :

1. $\omega \omega^{\mathrm{R}}$
2. $\omega a \omega^{R}$
3. $\omega b \omega^{R}$

Where ω is a string over $\{\mathrm{a}, \mathrm{b}\}$ with $|\omega| \geq 0$

Algorithm :

1. Algorithm requires \mathbf{n} cycles, where $|\omega|=\mathrm{n}$.
2. In each cycle, first character is matched with the last character and both are erased.

Fig. 7.1(a) : Transition diagram
If the leftmost character is ' a ' the machine takes a path through $q_{0} \rightarrow q_{1} \rightarrow q_{3} \rightarrow q_{5} \rightarrow q_{7}$, looking for last character as ' a '.

If the leftmost character is ' b ', the machine takes a path through
$q_{0} \rightarrow q_{2} \rightarrow q_{4} \rightarrow q_{6} \rightarrow q_{7}$, looking for last character as ' b '.
The Turing machine M is given by :

$$
M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, B, F\right)
$$

where, $Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}, q_{5}, q_{6}, q_{7}, q_{8}\right\}$
$\boldsymbol{\Sigma}=\{\mathrm{a}, \mathrm{b}\}$
$\Gamma=\{a, b, B\}$
The transition function δ is given in Fig. 7.1(a)
$\mathrm{q}_{0}=$ initial state
$B=$ blank symbol
F $=\left\{q_{B}\right\}$, halting state
Working of TM for input abbabba is shown in Fig. 7.1(a):

Fig. 7.1(a)
Q. 3 Design a TM to compute multiplication of two unary numbers.

May 2007
Ans. :
Multiplication algorithm is being explained with the help of an example.
3×5 will require three cycles.

Cycle 1

Cycle 2

Cycle 3

To calculate 3×5, three times, 5 zero's are appended.
Unary representation of 3 is 000 .
Unary representation of 5 is 00000 .
3,5 and the result, are separated by \#.
Inside each major cycles (three cycles for 3), there will be a number of minor cycles (5 minor cycles for 5) to append 0 's one at a time.

Fig．7．2 ：Transition diagram for TM
Let us assume that the two numbers to be multiplied are x_{1} and x_{2} ．
x_{1} is represented by ω_{1} ，where ω_{1} is a string of 0 ＇s．
x_{2} is represented by ω_{2} ，where ω_{2} is a string of 0 ＇s．
$x_{1} * x_{2}$ is represented by ω_{3} ，where ω_{3} is a string 0 ＇s．
\＃separates ω_{1} and ω_{2}, ω_{2} and ω_{3} ．
In the TM shown in Fig．Ex．7．3．6，there are two cycles．
The cycle $q_{0} \rightarrow q_{1} \rightarrow q_{2} \rightarrow q_{5} \rightarrow q_{0}$ appends ω_{2} to ω_{3} for every zero in ω_{1} ，with the help of cycle $q_{2} \rightarrow q_{3} \rightarrow q_{4} \rightarrow q_{2}$

Working of TM for 2×2 is shown in Fig．7．2（a）：

Fig．7．2Contd．．．

トB0x\＃x0\＃00BトB0x\＃x0\＃00B	
	$\underset{q_{3}}{\uparrow}$
$\vdash \mathrm{B} 0 \times \# \mathrm{x} 0 \mathrm{\#} 00 \mathrm{~B} \vdash \mathrm{BO} 0 \times \mathrm{x} 0$ \＃00B	
	$\begin{array}{ll} \uparrow & \uparrow \\ q_{3} & \uparrow_{3} \end{array}$
－B0x\＃x0\＃00BトB0x\＃x0\＃000B	
	$\begin{array}{ll} \uparrow & \uparrow \\ \boldsymbol{q}_{3} & \uparrow_{4} \end{array}$
－B0x\＃x0\＃000BトB0x\＃x0\＃000B	
	$\begin{array}{ll} \uparrow & \uparrow \\ q_{1} & q_{1} \end{array}$
－B0x\＃x0\＃000BトB0x\＃x0\＃000B	
	$\stackrel{\uparrow}{q_{i}}$
－B0x\＃00\＃000BトB0x\＃0x\＃000B	
	$\stackrel{\uparrow}{\mathbf{q}_{\mathbf{3}}}$
－B0x\＃0x\＃000BトB0x\＃0x\＃000B	
	$\begin{array}{ll} \uparrow & \uparrow \\ q_{3} & \phi_{3} \end{array}$
1 B0x\＃0x\＃000BトB0x\＃0x\＃000B	
	$\begin{array}{ll} \uparrow & \uparrow \\ q_{3} & q_{3} \end{array}$

トB0x\＃0x\＃0000BトB0x\＃0x\＃0000B

トB0x\＃00\＃0000BトB0x\＃00\＃0000BトB0x\＃00\＃0000B

トB0x\＃00\＃0000BトB00\＃00\＃0000BトB00\＃00\＃0000B

Fig．7．2（a）
Q． 4 Design a TM to find the value of $\log _{2}(n)$ ，where n is any binary number．

Dec．200？
Ans．：
$\log _{2}(n)$ of any number n lying between 2^{a} and $2^{\mathrm{n}+1}$ is given by n ．
i．e．if $2^{n} \leq n<2^{n+1}$ ，then $\log _{2}(n)=n$
Let us consider the case of a number

$$
\begin{aligned}
n & =36 \\
2^{5} & \leq 36<2^{6}
\end{aligned}
$$

Therefore，$\quad \log _{2}(36)=5$
36 can be written as 100100.
Any number n satisfying the condition $2^{5} \leq \mathrm{n}<2^{6}$ can be written as $1 \mathbf{X X X X X}$（where \mathbf{X} stands for either 1 or 0 ）． $\log _{2}$ （IXXXXX）can be calculated by erasing the most significant bit 1 and renaming other bits as＇ 0 ＇．Unary representation of 5 is 00000 ．

Fig．7．3（a）：Transition diagram

	0	1	B
$\rightarrow q_{0}$	$\left(q_{0}, B, R\right)$	$\left(\mathbf{q}_{1}, B, R\right)$	-
q_{1}	$\left(q_{1}, 0, R\right)$	$\left(q_{1}, 0, R\right)$	$\left(q_{2}, B, L\right)$
\mathbf{q}_{2}^{*}	\mathbf{q}_{2}	q_{2}	\mathbf{q}_{2}

Fig．7．3（b）：Transition table
Working of TM for（36） 10 is shown in Fig．7．3（c）：
$(36)_{10}=(0100100)_{2}$
B0100100BトB100100BトB00100B

\uparrow	\cdots	\uparrow
\mathbf{q}_{0}	\mathbf{q}_{0}	\uparrow

トB00100B1－B00100BトB00000B
\uparrow
\mathbf{q}_{1}
\uparrow
q_{1}
\uparrow
q_{1}

FB00000BトB00000B1－B00000B
\uparrow
q_{1}
\uparrow
q_{1}
\uparrow
q_{2}

Fig．7．3（c）
Q． 5 Design a Turing machine to compute n！．
Dec． 2008
Ans：：
It is assumed that \mathbf{n} is represented in unary system．
Factorial of n can be calculated through repeated application of ：
1．Multiplication
2．Copy
Operations．
Algorithm is being explained with the help of example．
Algorithm for 3 ．
Initial configuration

Cycle 1 ：
1．Multiplication

2．Copy $n=1$ ，i．e． 2

Cycle 2 ：

1．Multiplication

2．Copyn－2，i．e． $10 \# 000 \# 000 \# 00 \# 000000 \# 0$

Cycle 3 ：

1． 0 \＃ $000 \# 000 \# 00 \# 000000 \# 0 \# 000000 \#$ $\underbrace{}_{n} \underbrace{n-1}_{1 \times n} \underbrace{n-2}_{n \times(n-1)} \underbrace{}_{n \times(n-1)(n-2)}$

Fig．7．4（a）
Subroutine for multiplication ：

Fig．7．4（b）
Subroutine to copy n－1：

Fig．7．4（c）

Q. 6 Write note on 'Multiple Turing machine'.

Dec. 2007
Ans.:

Multiple Turing machine

1. A Turing Machine with Multiple Heads

A turing machine with single tape can have multiple heads. Let us consider a turing machine with two heads H_{1} and H_{2}. Each head is capable of performing read/write /move operation independently.

Fig. 7.5: A Turing machine with two heads
The transition behavior of 2-head one tape Turing machine can be defined as given below :
δ (State, Symbol under H_{1}, Symbol under H_{2}) $=$ (New state, $\left.\left(S_{1}, M_{1}\right),\left(S_{2}, M_{2}\right)\right)$

Where,
S_{1} is the symbol to be written in the cell under H_{1}.
M_{1} is the movement (L, R, N) of H_{1}.
S_{2} is the symbol to be written in the cell under H_{2}.
M_{2} is the movement (L, R, N) of H_{2}.

2. Multi-Tape Turing Machine

Multi-Tape turing machine has multiple tuples with each tape having its own independent head. Let us consider the case of a two tape turing machine. It is shown in Fig. 7.6.

Tape 1: | B | a | b | a | a | b | b | a | B | B | B |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | | | | | |

Tape 2:

Fig. 7.6: A two-tape turing machine
The transition behavior of a two-tape Turing machine can be defined as:
$\delta\left(q_{1}, a_{1}, a_{2}\right)=\left(q_{2},\left(S_{1}, M_{1}\right),\left(S_{2}, M_{2}\right)\right)$
Where,
q_{1} is the current state,
g_{2} is the next state,
a_{1} is the symbol under the head on tape 1 ,
a_{2} is the symbol under the head on tape 2 ,
S_{1} is the symbol written in the current cell on tape 1 ,
S_{2} is the symbol written in the current cell on tape 2 ,
M_{1} is the movement (L, R, N) of head on tape 1 ,
M_{2} is the movement (L, R, N) of head on tape 2.
Q. 7 Design a TM which recognizes words of the form $a^{n} b^{n} c^{n} \mid n \geq 1$.

May 2006.May 2008, Dec. 2011. Dec. 2016
Ans. :

Fig. 7.7(a) : Transition diagram

	a	b	c	x	y	z	B
$\rightarrow q_{0}$	$\left(q_{1}, x, R\right)$	-	-	-	$\left(q_{4}, y, R\right)$	-	-
q_{1}	$\left(q_{1}, a, R\right)$	$\left(q_{2}, y, R\right)$	-	-	$\left(q_{1}, y, R\right)$	-	-
q_{2}	-	$\left(q_{2}, b, R\right)$	$\left(q_{3}, z, R\right)$	-	-	$\left(q_{2}, z, R\right)$	-
q_{3}	$\left(q_{3}, a, L\right)$	$\left(q_{3}, b, L\right)$	-	$\left(q_{0}, x, R\right)$	$\left(q_{3}, y, L\right)$	$\left(q_{3}, z, L\right)$	-
q_{4}	-	-	-	-	$\left(q_{1}, y, R\right)$	$\left(q_{4}, z, R\right)$	$\left(q_{5}, B, N\right)$
q_{5}^{*}	q_{5}						

Hating
state
Fig. 7.7(b) : Transition table
The Turing machine M is given by :

$$
M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, B, F\right)
$$

Where, $Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}, q_{5}\right\}$
$\Sigma=\{a, b, c\}$
$\Gamma=\{a, b, c, x, y, z, B\}$
$\delta=$ The transition is given Fig. 7.7(a, b)
$\mathbf{q}_{0}=$ Initial state
$B=$ Blank symbol
$\mathrm{F}=\left\{\mathrm{q}_{\mathrm{g}}\right\}$, Halting state

Algorthm :

For a string $a^{n} b^{n} c^{n}$, the TM will need n cycles. In each cycle :

1. Leftmost a is written as x
2. Leftmost \mathbf{b} is written as \mathbf{y}
3. Leftmost \mathbf{c} is written as z

At the end of n cycles, the tape should contain only x 's, y 's and z 's.

Working of the TM for input $\mathrm{a}^{3} \mathrm{~b}^{3} \mathrm{c}^{3}$ is shown in Fig. 7.7(c) :

トBxxayybzzcB|-BxxayybzzcBトBxxayybzzcB

- Bxxxyyyzzz $^{\prime}$ - BxxxyyyzzzB|-BxxyyyyzzzB

Fig. 7.7(c)

Q. 8 Design a turing machine to check whether a string over $\{\mathrm{a}, \mathrm{b}\}$ contains equal number of a 's and b's:
 Dec. 2009, May 2008, Dec. 2015

Ans.:

Algorithm :

1. Locate first \mathbf{a} or first \mathbf{b}.
2. If it is ' a ' then locate ' b ' rewrite them as x.
3. If it is ' b ' then locate ' a ' rewrite them as x.
4. Repeat steps from $\mathbf{1}$ to $\mathbf{3}$ till every a or b is re-written as x .

Fig. 7.8(a) : State transition diagram

	a	b	X	B		
$\rightarrow q_{0}$	$\left(q_{1}, X, R\right)$	$\left(q_{2}, X, R\right)$	$\left(q_{0}, X, R\right)$	$\left(q_{4}, B, N\right)$		
q_{1}	$\left(q_{1}, a, R\right)$	$\left(q_{3}, X, L\right)$	$\left(q_{1}, X, R\right)$	-		
q_{2}	$\left(q_{3}, X, L\right)$	$\left(q_{2}, b, R\right)$	$\left(q_{2}, X, R\right)$	-		
q_{3}	$\left(q_{3}, a, L\right)$	$\left(q_{3}, b, L\right)$	$\left(q_{3}, X, L\right)$	$\left(q_{0}, B, R\right)$		
q_{4}^{*}	q_{4}	q_{4}	q_{4}	q_{4}	\leftarrow	Halting
:---						

Fig. 7.8(b) : Transition table
The turing machine M is given by :
$M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, B, F\right)$
Where, $Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right\}$
$\Sigma=\{a, b\}$
$\Gamma=\{a, b, X, B\}$
$\mathbf{q}_{0}=$ Initial state
$B=$ Blank symbol
$F=\left\{q_{4}\right\}$
Working of machine for an input abba is shown in Fig. 7.8(c)
$|-B a b b a B|-B \times b b a B|-B \times x b a B|-B \times x a B$

Fig. 7.8(c) Contd....

Fig. 7.8(c)

Q. 9 What is Turing machine ?

Dec. 2008

Ans.:

Turing machine : Formal Definition of Turing Machine

A Turing machine M is a 7-tuple given by :

$$
M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, B, F\right)
$$

where

1. Q is finite set of states
2. $\quad \sum$ is finite set of input alphabet not containing B.
3. Γ is a finite set of tape symbols. Tape symbols include B.
4. $\mathrm{q}_{0} \in \mathrm{Q}$ is the initial symbol.
5. $B \in \Gamma$ is a special symbol representing an empty cell.
6. $\mathrm{F} \subseteq \mathrm{Q}$ is the set of final states, final states are also known as halting states.
7. The transition function δ is a function from
$\mathrm{Q} \times \Gamma$ to $\mathrm{Q} \times \Gamma \times(\mathrm{L}, \mathrm{R}, \mathrm{N})$
A transition in turing machine is written as,
$\delta\left(q_{0}, a\right)=\left(q_{1}, b, R\right)$, which implies, when in state q_{0} and scanning symbol a, the machine will enter state q_{1}, it will rewrite a as b and move to the right cell.

A transition $\delta\left(q_{0}, a\right)=\left(q_{1}, a, R\right)$, implies that the machine will enter state q_{1}, it will not change the symbol being scanned and move to the right cell.

Movement of Read / Write head is given L, R or N
$L \rightarrow$ Move to left cell
$R \rightarrow$ Move to right cell
$\mathrm{N} \rightarrow$ Remain in the current cell (No movement)
Q. 10 Design a TM to compute proper subtraction of two unary numbers. The proper subtraction function f is defined as follows:
$f(m, n)= \begin{cases}m-n & \text { if } m>n \\ 0 & \text { otherwise }\end{cases}$
May 2009, Dec. 2009
Ans.:
The working of the TM is being explained with subtraction of 3 from 5.

In unary system; 5 is represented as 00000 .

In unary system, 3 is represented as 000 . In unary system, 0 is represented by a blank tape.
Subtraction will require several cycle. In each cycle :

1. Leftmost 0 is crased
2. Rightmost 0 is erased.

Situation of tape after each cycle is shown below :
Initial

After $1^{\text {st }}$ cycle

After $2^{\text {nd }}$ cycle

After $3^{\text {rd }}$ cycl

Transition diagram and transition table are given in Fig. 7.9(a) and (b).

Fig. 7.9(a) : Transition diagram

Fig. 7.9(b) : Transition table
The Turing machine M is given by:

$$
M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, B, F\right)
$$

where,

$$
\begin{aligned}
& Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}, q_{5}\right\} \\
& \Sigma=\{0,1, \#\} \\
& \Gamma=(0,1, \#, B)
\end{aligned}
$$

The transition function δ is given in Fig. 7.9(a) and (b)
$\mathrm{q}_{0}=$ initial state.

$B=$ blank symbol

$\mathrm{F}=\left\{\mathrm{q}_{5}\right\}$, Halting state
The working of TM is being simulated for 5-3 is shown in Fig. Ex. 7.3(c) :

Fig. 7.9(c)

Q. 11 Write short note on Variants of TM.

Dec. 2006, Dec. 2008, Dec. 2009, Dec. 2010.
 May 2014, May 2015, May 2017

Ans. :

1. Two-way Infinite Turing Machine

In a standard turing machine number of positions for leftmost blanks is fixed and they are included in instantaneous description, where the right-hand blanks are not included.

In the two way infinite Turing machine, there is an infinite sequence of blanks on each side of the input string. In an instantaneous description, these blanks are never shown.
2. A Turing Machine with Multiple Heads

A turing machine with single tape can have multiple heads. Let us consider a turing machine with two heads H_{1} and H_{2}. Each head is capable of performing read/write /move operation independently.

Fig. 7.10 : A Turing machine with two heads
The transition behavior of 2-head one tape Turing machine can be defined as given below :
$\delta\left(\right.$ State, Symbol under H_{1}, Symbol under $\left.\mathrm{H}_{2}\right)=($ New state, $\left(\mathrm{S}_{1}, \mathrm{M}_{1}\right),\left(\mathrm{S}_{2}, \mathrm{M}_{2}\right)$)

Where,
S_{1} is the symbol to be written in the cell under H_{1}.
M_{1} is the movement (L, R, N) of H_{1}.
S_{2} is the symbol to be written in the cell under H_{2}.
M_{2} is the movement (L, R, N) of H_{2}.

3. Multi-Tape Turing Machine

Multi-Tape turing machine has multiple tuples with each tape having its own independent head. Let us consider the case of a two tape turing machine. It is shown in Fig. 7.11.

Tape 1:

Tape 2:

Fig. 7.11 : A two-tape turing machine
The transition behavior of a two-tape Turing machine can be defined as:

$$
\begin{aligned}
& \delta\left(\mathrm{q}_{1}, \mathrm{a}_{1}, \mathrm{a}_{2}\right)=\left(\mathrm{q}_{2},\left(\mathrm{~S}_{1}, \mathrm{M}_{1}\right),\left(\mathrm{S}_{2}, \mathrm{M}_{2}\right)\right) \\
& \text { Where, }
\end{aligned}
$$

q_{1} is the current state,
q_{2} is the next state,
a_{1} is the symbol under the head on tape 1 ,
a_{2} is the symbol under the head on tape 2 ,
S_{1} is the symbol written in the current cell on tape 1 ,
S_{2} is the symbol written in the current cell on tape 2,
M_{1} is the movement (L, R, N) of head on tape 1 ,
M_{2} is the movement (L, R, N) of head on tape 2.

4. Non-deterministic Turing Machine

Non-deterministic is a powerful feature. A non-deterministic TM machine might have, on certain combinations of state and symbol under the head, more than one possible choice of behaviour.

Non-deterministic does not make a TM more powerful.
For every non-deterministic TM, there is an equivalent deterministic TM.

It is easy to design a non-deterministic TM for certain class of problems.

A string is said to be accepted by a NDTM, if there is at least one sequence of moves that takes the machine to final state.

An example of non-deterministic move for a TM is shown in Fig. 7.12.

Fig. 7.12 : A sample move for NDTM
The transition behaviour for state q_{0} for TM of Fig. 7.12 can be written as

$$
\delta\left(q_{0}, a\right)=\left\{\left(q_{0}, a, R\right)\left(q_{1}, x, R\right)\right\}
$$

Q. 12 Design a turing machine to replace string 110 by 101 in binary Input string.
 May 2010

Ans.:
The turing machine will look for every occurrence of the string 110.

State q_{2} is for previous two symbols as 11 .
Next symbol as 0 in state \mathbf{q}_{2}, will initiate the replacement process to replace 110 by 101.

Fig. 7.13

The turing machine M is given by :
$\mathbf{M}=\left(\mathrm{Q}, \Sigma, \Gamma, \delta, \mathrm{q}_{0}, \mathrm{~B}, \mathrm{~F}\right)$
Where, $\mathrm{Q}=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{3}, \mathrm{q}_{4}, \mathrm{q}_{5}\right\}$
$\Sigma=\{0,1\}$
$\Gamma \equiv\{0,1, \mathrm{~B}\}$
$\delta=$ Transition function is shown using the transition diagram
$B=$ Blank symbol for the tape
$F=\left\{q_{5}\right\}$, halting state
Working of the machine for input 0101101 is shown in Fig. 7.13(a):

Fig. 7.13(a)
Q. 13 Design Turing machine as generator to add two binary numbers and hence simulate for " $110+10$ ".

Ans.:

This problem can be solved using a 3-tape Turing machine.
First machine T1 stores the first binary number. Second machine $\mathbf{T} 2$ stores the second binary number. Third machine $T 3$ stores the result.

The Turing machine will have 3 states:
q_{0} - previous carry as 0
q_{1} - previous carry as 1
$\mathbf{q}_{\mathbf{2}}$-Halting state

$(0,0, L)(0,0, L)(B, 0, L)$	$(1,1, L)(0,0, L)(B, 0, L)$
$(1,1, L)(0,0, L)(B, 1, L)$	$(1,1, L)(B, B, L)(B, 0, L)$
$(0,0, L)(1,1, L)(B, 1, L)$	$(0,0, L)(1,1, L)(B, 0, L)$
$(B, B, L)(0,0, L)(B, 0, L)$	$(B, B, L)(1,1, L)(B, 0, L)$
$(0,0, L)(B, B, L)(B, 0, L)$	$(1,1, L)(1,1, L)(B, 1, L)$
$(B, B, L)(1,1, L)(B, 1, L)$	
$(1,1, L)(B, B, L)(B, 1, L)$	

Fig. 7.14
Simulation for $110+10$

	B	B	1	0	
	B	1	1	0	
	B	B	B	B	

B	B	B	1	0	
B	B	1	1	0	
B	1	0	0	0	
\uparrow					
q_{2} (Halt)					

Q. 14 Design a Turing machine as acceptor for the language $\left\{a^{n} b^{m} I n, m \geq 0\right.$ and $\left.m \geq n\right\}$. Dec. 2014
Ans. :

Fig. 7.15
Q. 15 Construct turning machine that accepts the string over $\Sigma=\{0,1\}$ and converts every occurrence of 111 to 101.

May 2015
Ans. :

Fig. 7.16
The turing machine M is given by :

$$
M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, B, F\right)
$$

Where, $Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}, q_{5}\right\}$
$\Sigma=\{0,1\}$
$\Gamma=\{0,1, B\}$
$\delta=$ Transition function is shown using the transition diagram
$B=$ Blank symbol for the tape
$\mathrm{F}=\left\{\mathrm{q}_{5}\right\}$, halting state

Q. 16 Construct a TM for checking well for medness of parentheses. May 2012, May 2015. May 2017

 Ans.:In each cycle, the left-most ')' is written as \mathbf{X}; then the head moves left to locate the nearer ' $($ ' and it is changed to X.

The cycles of computation are shown below.
Input string is assumed to be (00) 0 .

Fig. 7.17(a) : State transition diagram

	$($	$)$	x	B
q_{0}	$\left(\mathrm{q}_{0},(\mathrm{R})\right.$	$\left(\mathrm{q}_{1}, \mathbf{x}, \mathrm{~L}\right)$	$\left(\mathrm{q}_{0}, \mathrm{x}, \mathrm{R}\right)$	$\left(\mathrm{q}_{2}, \mathrm{~B}, \mathrm{~L}\right)$
q_{1}	$\left(\mathrm{q}_{0}, \mathrm{x}, \mathrm{R}\right)$	-	$\left(\mathrm{q}_{1}, \mathrm{x}, \mathrm{L}\right)$	-
q_{2}	-	-	$\left(\mathrm{q}_{2}, \mathrm{x}, \mathrm{L}\right)$	$\left(\mathrm{q}_{3}, \mathrm{~B}, \mathrm{R}\right)$
q_{3}^{*}	q_{3}	q_{3}	q_{3}	q_{3}
\Downarrow				

Halting

state
Fig. 7.17(b) : State transition table
The Turing machine M is given by :

$$
M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, B, F\right)
$$

where, $\mathbf{Q}=\left\{\mathbf{q}_{0}, \mathbf{q}_{1}, \mathbf{q}_{2}, \mathbf{q}_{3}\right\}$
$\boldsymbol{\Sigma}=\{()$,
$\Gamma=\{(), x, B$,
δ is given in Fig. 7.17(a) or 7.17(b)
$\mathrm{q}_{0}=$ Initial state
$B=$ Blank symbol
$F=\left\{q_{3}\right\}$, halting state
Making of the machine for input ($(0))()$ is given in Fig. 7.17(c) :

Fig. 7.17(c)
Q. 17 Design a turing machine to check whether a string over $\{\mathrm{a}, \mathrm{b}\}$ contains equal number of a's and b's. Dec. 2009. May 2008. Dec. 2015

Ans. :

Algorithm :

1. Locate first \mathbf{a} or first \mathbf{b}.
2. If it is ' a ' then locate ' b ' rewrite them as x.
3. If it is ' b ' then locate ' a ' rewrite them as x.
4. Repeat steps from 1 to 3 till every a or b is re-written as x.

Fig. 7.18(a) : State transition diagram

Fig. 7.18(b) : Transition table

The turing machine M is given by :

$$
M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, B, F\right)
$$

Where, $Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right\}$
$\Sigma=\{a, b\}$
$\Gamma=\{a, b, X, B\}$
$q_{0}=$ Initial state
$B=$ Blank symbol
$F=\left\{q_{4}\right\}$
Working of machine for an input abba is shown in
Fig. 7.18(c) :

Fig. 7.18(c) Contd....
$|-B \times x \times B \vdash B \times x \times B|-B \times x \times B \vdash B \times x \times B$

 \uparrow

$-\mathbf{B} \times \times \times \mathbf{B} \vdash \mathbf{B} \times \times \times \mathbf{B}$
के

Fig. 7.18(c)
Q. 18 Design a Turing machine as an acceptor for the language

$$
\left\{a^{n} b^{m} \mid n, m \geq 0 \text { and } m \geq n\right\}
$$

May 2016
Ans. :

Fig. 7.19

$$
M=\left(Q, \sum, \Gamma, \delta, q_{0}, B, F\right)
$$

Where, $\mathbf{Q}=\left\{\mathbf{q}_{0}, \mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{3}, \mathrm{q}_{4}\right\}$
$\Sigma=\{\mathrm{a}, \mathrm{b}\}$
$\Gamma=\{a, b, X, Y, B\}$
$\mathrm{q}_{0}=$ initial state
B = Blank symbol
$F=\left\{q_{4}\right\}$
Q. 19 Design a TM to add two unary numbers.

May 2011. Dec. 2016
Ans. :
Addition of two unary numbers can be performed through append operation. To add two numbers 5 (say ω_{1}) and 3 (say ω_{2}) will require following steps :

1. Initial configuration of tape :

2. ω_{1} is appended to ω_{2}.

While every ' 0 ' from ω_{1} is getting appended to ω_{2}, ' 0 ' from ω_{1} is erased. ω_{2} contains 80 's, which is sum of 5 and 3 .

Fig. 7.20(a) : Transition diagram

Fig. 7.20(b) : Transition table

The turing machine M is given by :

$$
M=\left(Q, \Sigma, \Gamma, \delta, q_{0,}, B, F\right)
$$

Where $\quad Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}$
$\boldsymbol{\Sigma}=\{0, \#\}$
$\Gamma=\{0, \#, B\}$
$\delta=$ Transition function is given in
Fig. Ex. 7.3.10 (a), (b)
$\mathrm{q}_{0}=$ initial state
$B=$ blank symbol
$F=\left\{q_{3}\right\}$, halting state.
Q. 20 Write short note on: Church-Turing Thesis.

May 2017
Ans.:

Church-Turing Thesis

The Turing machine is a general model of computation. Any algorithmic procedure can be solved by G computer can also be solved by a TM. Problems computed by a computer or a TM are also known as partial recursive functions. Some enhancements to TM made the Church-Turing thesis acceptable. These enhancements are :

1. Multi-tape
2. Multi-head
3. Infinite tapes
4. Non-determinism.

Since the introduction of TM, no one has suggested an algorithm than can be solved by a computer but cannot be solved by a TM.

Chapter 8 : Undecidability

Q. 1 Write short note on : Recursive and Recursively Enumerable Languages.

Dec. 2005. Dec. 2009, Dec. 2010, May 2014, Dec. 2014. May 2015, Dec. 2015, May 2016, Dec. 2016. Dec. 2017

Ans. :

Recursive and Recursively Enumerable Languages

There is a difference between recursively enumerable (Turing Acceptable) and recursive (Turing Decidable) language.

Following statements are equivalent :

1. The language L is Turing acceptable.
2. The language L is recursively enumerable.

Following statements are equivalent

1. The language L is Turing decidable.
2. The language L is recursive.
3. There is an algorithm for recognizing L.

Every Turing decidable language is Turing acceptable.
Every Turing acceptable language need not be Turing decidable.

Turing Acceptable Language

A language $L \subseteq \Sigma^{*}$ is said to be a Turing Acceptable. language if there is a Turing machine M which halts on every $\omega \in L$ with an answer 'YES'. However, if $\omega \notin L$, then M may not halt.

Turing Decidable Language

A language $L \subseteq \Sigma^{*}$ is said to be turing being decidable if there is a turing machine M which always halts on every $\omega \in \Sigma^{*}$. If $\omega \in L$ then M halts, with answer 'YES', and if $\omega \notin L$ then M halts, with answer ' NO '.

A set of solutions for any problem defines a language.
A problem P is said to be decidable/solvable if the language $L \subseteq \Sigma^{*}$ representing the problem (set of solutions) is turing decidable.

casy-solutions

If P is solvable / decidable then there is an algorithm for recognizing L, representing the problem. It may be noted that an algorithm terminates on all inputs.
Following statements are equivalent :

1. The language L is Turing decidable.
2. The language L is recursive.
3. There is an algorithm for recognizing L.

Every turing decidable language is turing acceptable.
Every turing acceptable language need not be turing decidable.

A language $L \subseteq \Sigma^{*}$ many not be turing acceptable and hence not turing decidable. Thus we cannot design a turing machine / algorithm which halts for every $\omega \in \mathrm{L}$.

Q. 2 Two recursive languages L_{1} and L_{2} is recursive :

 $L_{1} \cup L_{2}$
Ans.:

$L_{1} \cup L_{2}$ is recursive

Let the turing machine M_{1} decides L_{1} and M_{2} decides L_{2}.
If a word $\omega \in L_{1}$ then M_{1} returns " Y " else it returns " N ". Similarly, if a word $\omega \in L_{2}$ then M_{2} returns " Y " else it returns " N ". Let us construct a turing machine M_{3} as shown in Fig. 8.1.

Fig. 8.1 : A turing machine for $L_{1} \cup L_{2}$
Output of machine M_{1} is written on the tape of M_{3}.
Output of machine M_{2} is written on the tape of M_{3}.
The machine M_{3} returns " Y " as output, if at least one of the outputs of M_{1}, or of M_{2} is " Y ".

It should be clear that M_{3} decides $L_{1} \cup L_{2}$. As both L_{1} and L_{2} are turing decidable, after a finite time both M_{1} and M_{2} will halt with answer "Y" or " N ". The machine M_{3} is activated after M_{1} and M_{2} are halted. The machine M_{3} halts with answer " Y " if $\omega \in L_{1}$ or $\omega \in L_{2}$, else M_{3} halts with output " N ".

Thus $L_{1} \cup L_{2}$ is turing decidable or $L_{1} \cup L_{2}$ is recursive.

Q. 3 Prove that there exists no algorithm for deciding whether a given CFG is amblguous.

May 2006, Dec. 2007. Dec. 2008
Ans.:
The post correspondence problem can be used to prove the un-decidability of whether a given CFG is ambiguous.

Let us consider two sequences of strings over \sum.

$$
A=\left\{u_{1}, u_{2}, u_{3} \ldots u_{m}\right\}
$$

$$
B=\left\{v_{1}, v_{2}, v_{3} \ldots v_{m}\right\}
$$

Let us take a new set of symbols $a_{1}, a_{2} \ldots a_{i n}$ such that

$$
\left\{a_{1}, a_{2} \ldots a_{m}\right\} \cap \Sigma=\phi .
$$

Symbols $a_{1}, a_{2} \ldots a_{m}$ are being taken as index symbols. The index symbol a_{i} represents a choice of u_{i} from A and v_{i} from the list B .

A string of the form $u_{i} u_{j} u_{k} \ldots a_{k} a_{j} a_{i}$. Over alphabet $\Sigma \cup\left\{a_{1}, a_{2}, \ldots a_{m}\right\}$ can be defined using the set of productions:

$$
\mathbf{G}_{A}=\left\{\begin{array}{c}
A \rightarrow u_{1} A a_{1}\left|u_{2} A a_{2}\right| \ldots \mid u_{m} A a_{m} \\
u_{1} a_{1}\left|u_{2} a_{2}\right| \ldots \mid u_{m} a_{m}
\end{array}\right\}
$$

Similarly a string of the form $v_{i} v_{j} v_{k} \ldots a_{k} a_{j} a_{i}$ over alphabet $\Sigma \cup\left\{a_{1}, a_{2} \ldots a_{m}\right\}$ can be defined using the set of productions:

$$
G_{B}=\left\{\begin{array}{c}
B \rightarrow v_{1} A a_{1}\left|v_{2} A a_{2}\right| \ldots \mid v_{m} A a_{m} \\
v_{1} a_{1}\left|v_{2} a_{2}\right| \ldots \mid v_{m} a_{m}
\end{array}\right\}
$$

Finaily, we can combine the languages and grammars of two lists to form a grammar $G_{A B}$:

A new start symbol S is added to $G_{A B}$
Two new productions are added to $G_{A B}$

$$
\begin{aligned}
& S \rightarrow A \\
& S \rightarrow B
\end{aligned}
$$

All productions of G_{A} and G_{B} are taken.
Now, we will show that $G_{A B}$ is ambiguous if and only if an instance (A, B) of PCP has a solution.

Assumption :

Suppose the sequence $i_{1}, i_{2}, \ldots, i_{m}$ is a solution to this instance of PCP. Two derivations for the above string in $G_{A B}$ is :

$$
\begin{aligned}
& S \Rightarrow A \Rightarrow u_{i 1} A a_{i_{1}} \Rightarrow u_{i_{1}} u_{i_{2}} A a_{i_{1}} a_{i_{2}} \Rightarrow \ldots \Rightarrow \\
& u_{i 1} u_{i 2} \ldots u_{i_{m}} a_{i_{1}} a_{i 2} \ldots a_{i_{m}} \\
& S \Rightarrow B \Rightarrow v_{i_{1}} B a_{i_{1}} \Rightarrow v_{i_{1}} v_{i_{2}} B a_{i_{1}} a_{i_{2}} \Rightarrow \ldots \Rightarrow \\
& v_{i_{1}} v_{i 2} \ldots v_{i_{m}} a_{i_{1}} a_{i 2} \ldots a_{i m}
\end{aligned}
$$

Consequently, if $G_{A B}$ is ambiguous, then the post correspondence problem with the pair (A, B) has a solution. Conversely, if $G_{A B}$ is unambiguous, then the post correspondence cannot have a solution.

If there exists an algorithm for solving the ambiguous problem, then there exists an algorithm for solving the post correspondence problem. But, since there is no algorithm for the post correspondence problem, the ambiguity of CFG problem is unsolvable.
Q. 4 Write short notes on post correspondence problem and Grelbach Theorem.

> May 2006. Dec. 2006. May 2007. Dec. 2007. May 2008. $\frac{\text { Dec. 2008. May 2009, May 2010. Dec. } 2010}{\text { May 2011, Dec. 2011. May 2012. May } 2016}$

Ans. :

Post correspondence problem

Definition : Let A and B be two non-empty lists of strings over \sum. A and B are given as below :

$$
\begin{aligned}
& A=\left\{x_{1}, x_{2}, x_{3} \ldots x_{k}\right\} \\
& B=\left\{y_{1}, y_{2}, y_{3} \ldots y_{k}\right\}
\end{aligned}
$$

There is a post correspondence between A and B if there is a sequence of one or more integers $i, j, k \ldots m$ such that :

The string $x_{i} x_{j} \ldots x_{m}$ is equal to $y_{i} y_{j} \ldots y_{m}$.
Example : Does the PCP with two lists:

$$
\begin{aligned}
& A=\left\{a, a b a^{3}, a b\right\} \text { and } \\
& B=\left\{a^{3}, a b, b\right\}
\end{aligned}
$$

have a solution?
So to find a sequence using which when the elements of A and B are listed, will produce identical strings.

The required sequence is $(2,1,1,3)$
$A_{2} A_{1} A_{1} A_{3}=a b a^{3} a a b=a b a^{6} b$
$B_{2} B_{1} B_{1} B_{3}=a b a^{3} a^{3} b=a b a^{6} b$
Thus, the PCP has solution.
So accept the un-decidability of post correspondence problem without proof.

Example:

Determining the solution for following instance of PCP.

	List A	List B
1	wl	xi
1	01	0
2	110010	0
3	1	1111
4	11	01

The PCP has a solution. The required sequence is $(1,3,2,4,4,3)$

$$
\begin{aligned}
& \omega_{1} \omega_{3} \omega_{2} \omega_{4} \omega_{4} \omega_{3}=01111001011111 \\
& x_{1} x_{3} x_{2} x_{4} x_{4} x_{3}=01111001011111
\end{aligned}
$$

Greibach Theorem

The Theorem states that :

"Let σ be a class of languages that is effectively closed under concatenation with regular sets and union, and for which $\mathrm{L}=\mathrm{\Sigma}^{*}$ is un-decidable for any sufficiently large fixed Σ. Let P be any nontrivial property that is true for all regular sets and that is preserved under a, where a is single symbol in Σ. Then P is un-decidable for σ ".

Greibach theorem can be used to prove that many problems related to CFG are un-decidable.

Q. 5 Write short notes on : Halting problem.

Dec. 2006. Dec. 2007, May 2008, Dec. 2008. May 2011. Dec. 2011. Dec. 2015. Dec. 2016. May 2017

Ans. :

Halting Problem of a Turing Machine

The halting problem of a Turing machine states:
Given a Turing machine M and an input ω to the machine M , determine if the machine M will eventually halt when it is given input ω.

Halting problem of a Turing machine is unsolvable.

Proof:

Moves of a turing machine can be represented using a binary number. Thus, a Turing machine can be represented using a string over $\Sigma^{*}(0,1)$. This concept has already been explained in the chapter.

Insolvability of halting problem of a Turing machine can be proved through the method of contradiction.
Step 1: Let us assume that the halting problem of a Turing machine is solvable. There exists

1. A string describing M.
2. An input ω for machine M.
H_{1} generates an output "halt" if H_{1} determines that M stops on input ω; otherwise H outputs "loop". Working of the machine H_{1} is shown below.

$$
\xrightarrow{\mathrm{M}} \xrightarrow{\mathrm{H}_{1}} \longrightarrow \text { halt }
$$

Step 2: Let us revise the machine H_{1} as H_{2} to take M as both inputs and H_{2} should be able to determine if M will halt on M as its input. Please note that a machine can be described as a string over 0 and 1 .

Step 3 : Let us construct a new Turing machine H_{3} that takes output of H_{2} as input and does the following :

1. If the output of H 2 is "loop" than H 3 halts.
2. If the output of H_{2} is "halt" than H_{3} will loop forever.

H_{3} will do the opposite of the output of H_{2}.
Step 4 : Let us give H_{3} itself as inputs to H_{3}.

If H_{3} halts on H_{3} as input then H_{3} would loop (that is how we constructed it). If H_{3} loops forever on H_{3} as input H_{3} halts (that is how we constructed it).

In either case, the result is wrong.
Hence.
H_{3} does not exist.
If $\mathbf{H}_{\mathbf{3}}$ does not exist than $\mathrm{H}_{\mathbf{2}}$ does not exist.
If $\mathrm{H}_{\mathbf{2}}$ does not exist than H_{1} does not exist.
Q. 6 Does PCP with following two list : $A=(10,011$, 101) and $B=(101,11,011)$ have a solution? Justify your answer. May 2009

Ans. :

A_{2} and A_{3} differ from B_{2} and B_{3} at the first of place. Therefore, we must pick A_{1} and B_{1}

Sequence

String

(1)

$$
\left(A_{1}=10\right)\left(B_{1}=101\right)
$$

The next string to be picked up must be A_{3} and B_{3}. Any other sequence will not lead to a solution.

Sequence

String

$(1,3)$

$$
\left(A_{1} A_{3}=10101\right)\left(B_{1} B_{3}=101011\right)
$$

The next string to be picked up must be A_{3} and B_{3}. Any other sequence will not lead to a solution.

Sequence

String

$$
(1,3,3) \quad\left(A_{1} A_{3} A_{3}=10101101\right)\left(B_{1} B_{3} B_{3}=101011011\right)
$$

There is only choice of next string. This choice is A_{3} and B_{3}. This does not lead to a solution. The PCP has no solution.

Q. 7 Write short note on : Rice Theorem

Dec. 2012. May 2013, May 2014, May 2015, Dec. 2015. May 2016, Dec. 2016, May 2017, Dec. 2017

Ans. :

Rice Theorem

"Every property that is satisfied by some but not all recursively enumerable language is un-decidable". Any property that is satisfied by some recursively enumerable language but not all is known as nontrivial property. We have seen many properties of R.E. languages that are un-decidable. These properties include :

1. Given a TM M , is $\mathrm{L}(\mathrm{M})$ nonempty ?
2. Given a $T M M$, is $L(M)$ finite ?
3. Given a $T M M$, is $L(M)$ regular ?
4. Given a TM M, is $L(M)$ recursive ?

The Rice's theorem can be proved by reducing some other unsolvable problem to nontrivial property of recursively enumerable language.

Theory of Computer Science

Statistical Analysis		
Chapter No.	Doc, 2018	$\text { Hay } 2019$
Chapter 1	27.5 Marks	10 Marks
Chapter 2	12.5 Marks	20 Marks
Chapter 3	27.5 Marks	15 Marks
Chapter 4	-	-
Chapter 5	-	10 Marks
Chapter 6	25 Marks	10 Marks
Chapter 7	12.5 Marks	20 Marks
Chapter 8	7.5 Marks	25 Marks
Repeated questions	-	5 Marks

Dec. 2018

Chapter 1 : Introduction [Total Marks - 27.5]

Q. 1(a) Explain Chomsky Hierarchy.
(5 Marks)

Ans.: Chomsky hierarchy

A grammar can be classified on the basis of production rules. Chomsky classified grammars into the following types :

1. Type 3 : Regular grammar
2. Type 2 : Context free grammar
3. Type 1 : Context sensitive grammar
4. Type $0:$ Unrestricted grammar

Type 3 or regular grammar

- A grammar is called Type 3 or regular grammar if all its productions are of the following forms:
$\mathrm{A} \rightarrow \varepsilon$
$\mathrm{A} \rightarrow \mathrm{a}$
$\mathrm{A} \rightarrow \mathrm{aB}$
$\mathrm{A} \rightarrow \mathrm{Ba}$
Where, $a \in \sum$ and $A, B \in V$.
- A language generated by Type 3 grammar is known as regular language.

Type 2 or context free grammar

- A grammar is called Type 2 or context free grammar if all its productions are of the following form $A \rightarrow \alpha$ where $A \in V$ and $\alpha \in(V \cup T) *$.
- $\quad V$ is a set of variables and T is a set of terminals.
- The language generated by a Type 2 grammar is called a context free language, a regular language but not the reverse.'

Type 1 or context sensitive grammar

- A grammar is called a Type 1 or context sensitive grammar if all its productions are of the following form:

$$
\alpha \rightarrow \beta
$$

- Where, β is atleast as long as α.

Type 0 or unrestricted grammar

Productions can be written without any restriction in an unrestricted grammar. If there is production of the $\alpha \rightarrow \beta$, then length of α could be more than length of β.

Every grammar also is a Type 0 grammar
A Type 2 grammar is also a Type 1 grammar
A Type 3 grammar is also a Type 2 grammar
Q. 3(b) Consider the following grammar

S $\boldsymbol{\operatorname { I C t S l i c t s e s }}$ la
$C \rightarrow b$
For the string 'lbtaeibta' find the following :
(I) Leftmost derivation
(ii) Rightmost derivation
(iii) Parse tree
(iv) Check if above grammar is amblguous.

Ans.:
(i) Left most derivation:
$S \rightarrow$ iCLSeS
[using $\mathbf{S} \rightarrow \mathrm{iCLSeS}$]
$\rightarrow \mathrm{ibtSeS}$
[using C \rightarrow b]
\rightarrow ibtaeS
[using $S \rightarrow a$]
\rightarrow ibtaeiCtS
[using $\mathrm{S} \rightarrow \mathrm{iCtS}$]
\rightarrow ibtaeibts [using $C \rightarrow b]$
\rightarrow ibtaeibta
(ii) Rightmost derivation:

$$
\begin{array}{rll}
. S & \rightarrow \text { iCtSeS } & \text { [using } S \rightarrow i C t S e S] \\
& \rightarrow \text { iCtSeiCtS } & \text { [using } S \rightarrow i C t S] \\
& \rightarrow \text { iCtSeiCta } & {[\text { using } S \rightarrow a]} \\
& \rightarrow \text { iCtSeibta } & \text { [using } \mathbf{C} \rightarrow \mathrm{b}] \\
& \rightarrow \text { iCtaeibta } & \text { [using } \mathbf{S} \rightarrow \mathrm{a}] \\
& \rightarrow \text { ibtaeibta } & {[\text { [using } \mathrm{C} \rightarrow \mathrm{~b}]}
\end{array}
$$

(iii) Parse tree as shown in Fig. 1-Q. 3(b).

Fig. 1-Q. 3(b)
(iv) The grammar can be shown to be ambiguous by drawing two different derivation trees for the string ibtibtaea as shown in Fig. 2-Q. 3(b).

Fig. 2-Q. 3(b)
Q. 5(b) Construct Mealy and Moore Machine to convert each occurrence of 100 by 101.

Ans.:

1. Mealy Machine

Fig. 1-Q. 5(b)

2. Moore Machine

Fig. 2-Q. 5(b)
Q. 6(d) Write short note on Mealy and Moore Machine.
(2.5 Marks)

Ans.:

Final state machines are characterised by two behaviours :

1. State transition function ($\boldsymbol{\delta}$)
2. Output function (λ)

State transition function (δ) is also known as STF.
Output function (λ) is also known as machine function (MTF).
$\delta: \Sigma \times Q \rightarrow Q$
$\lambda: \Sigma \times \mathrm{Q} \rightarrow \mathrm{O}$ [for Mealy machine]
$\lambda: \mathbf{Q} \rightarrow \mathbf{O}$ [for Moore machine]
There are two types of automata with outputs:

1. Mealy machine: Output is associated with transition
$\lambda: \Sigma \times \mathbf{Q} \rightarrow 0$
Set of output alphabet O can be different from the set of input alphabet Σ.
2. Moore machine : Output is associated with state
$\lambda: Q \rightarrow 0$

Chapter 2 : Finite Automata [Total Marks - 12.5]

Q. 2(a) Design a Finite State machine to determine whether ternary number (base 3) is divisible by 5.
(10 Marks)

Ans.:

- A ternary system has three alphabets

$$
\Sigma=\{0,1,2\}
$$

- Base of a ternary number is 3.
- The running remainder could be :

$$
(0)_{3}=0 \rightarrow \text { associated state, } q_{0}
$$

$$
\begin{aligned}
\left(1_{3}=\right. & 1 \rightarrow \text { associated state, } q_{1} \\
(2)_{3}= & 2 \rightarrow \text { associated state, } q_{2} \\
(10)_{3}= & 3 \rightarrow \text { associated state, } q_{3} \\
(11)_{3}= & 4 \rightarrow \text { associated state, } q_{4} \\
\uparrow & \uparrow \\
\text { Temary } & \text { Decimal }
\end{aligned}
$$

Fig. 1-Q. 2(a)

Q. 6(a) Write short note on Closure properties of Context Free Language.

Ans.:

Closure properties of context free language

- A context free language is closed under following operations :

1. Union
2. Concatenation 3.
Kleene star

- Context free language is closed under intersection.
- The intersection of a context-free language with a regular language is a context free language.
- The CFL is closed under complementation.
- The CFL is closed under reversal.

1. CFL is closed under union

If L_{2} and L_{2} are context-free languages, then $L_{2} \cup L_{2}$ is a context free language.
2. CFL is closed under concatenation

If L_{2} and L_{2} are context-free languages, then $L_{2} L_{2}$ is a context-free language.
3. CFL is closed under Kleene Star

If L is a context-free language, then L^{*} is a context-free language.
4. CFL is not closed under intersection

Context-free languages are closed under intersection.
5. CFL is not closed under complementation

The set of context-free languages is closed under complementation.
6. Intersection of CFL and RL

If L is a CFL and R is a regular language, then $R \cap L$ is a CFL.
7. CFL Is closed under reversal

If L is a context-free language, then so is L^{R}.

Chapter 3 : Regular Expressions and Languages [Total Marks - 27.5]

Q. 1(c) Define Regular Expression and glve regular expression for:
(I) Set of all strings over $\{0,1\}$ that end with 1 has no substring 00
(5 Marks)

Ans.:

Regular expression

- An expression written using the set of operators (+,., *) and describing a regular language is known as regular expression.
- The transition graph is shown in Fig. 1-Q. 1(c).

Fig. 1-Q. 1(c)

- $\quad \therefore$ R.E. can be written from the transition graph. The required R. E. $=1(1+01)^{*}$
Q.2(b) Give and explain formal definition of Pumping Lemma for Regular Language and prove that following language is not regular. $L=\left\{a^{m} b^{m-1} \mid m>0\right\}$

Ans.:

Pumping Lemma for Regular Language

- Some languages are regular. There are other languages which are not regular. One can neither express a non-regular language using regular expression nor design finite automata for it.
- Pumping lemma gives a necessary condition for an input string to belong to a regular set.
- Pumping lemma does not give sufficient condition for a anguage to be regular.
- Pumping lemma should not be used to establish that a given language is regular.
- Pumping lemma should be used to establish that a given language is not regular.
- The pumping lemma uses the pigeonhole principle which states that if n pigeons are placed into less than n holes, some holes have to have more than one pigeon in it. Similarly, a string of length $\geq \mathrm{n}$ when recognized by a FA with n states will see some states repeating.

Definition of Pumping Lemma

Let L be a regular language and $M=\left(Q, \Sigma, \delta, q_{0}\right.$. F) be a finite automata with n-states, Language L is accepted by m. Let $\omega \in L$ and I $\omega \mid \geq \mathrm{n}$, then ω can be written as xyz , where
(i) $|y|>0$
(ii) $|x y| \leq n$
(iii) $x^{\prime} z \in L$ for all $i \geq 0$ here y^{\prime} denotes that y is repeated or pumped i times.

Proving that the language $L=\left\{a^{m} b^{m-1} \mid m>0\right\}$ is not regular:

Step 1: Let us assume that the given language $L\left(\left.a^{n} b^{n-1}\right|_{n>0}\right)$ is regular and L is accepted by an FA with n states.
Step 2 : Let us choose a string

$$
\begin{aligned}
\omega & =a^{n} b^{n-1} \\
|\omega| & =2^{n-1} \geq n \text { for } n>0
\end{aligned}
$$

Let us write ω as xyz , with

$$
\begin{aligned}
|y| & >0 \\
\text { and }|x y| & \leq n
\end{aligned}
$$

since, $|x y| \leq n, y$ must be of the form $a^{r} \mid r>0$.
since $|\mathrm{xy}| \leq \mathrm{n}, \mathrm{x}$ must be of the form a^{s}.
Now, $a^{n} b^{n=1}$ can be written as

Fig. 1-Q. 2(b)
Step 3: Let us check whether $x \bar{L}_{z}$ for $\overline{\mathrm{L}}=2$ belongs to L.

$$
\begin{aligned}
x y^{2} & =a^{s}\left(a^{r}\right)^{2} a^{n-s-r} b^{n-1} \\
& =a 3 a 2 r a n-s-r b n-1 \\
& =a n+r b n-1 \\
\text { Since } r & >0, a^{n+r} b^{n-1} \notin L .
\end{aligned}
$$

Hence, by contradiction, we can say that the given language is not regular.
Q. 5(a) Convert $(0+1)(10)^{*}(0+1)$ into NFA with e-moves and obtain DFA.

Ans.:
R. E. to NFA

Fig. 1-Q. 5(a)

NFA to DFA using direct method

Fig. 2-Q. 5(a)
Q.6(b) Write short note on : Applications of Regular expression and Finite automata.
(2.5 Marks)

Ans.:

1. Applications of regular expression

(a) R.E. in Unix

The UNIX regular expression lets us specify a group of characters using a pair of square brackets []. The rules for character classes are:

1. [ab] Stand for $a+b$
2. [0-9] Stand for a digit from 0 to 9
3. [A - Z] Stands for an upper-case letter
4. [a-z] Stands for a lower-case letter
5. [0-9A-Za - z]Stands for a letter or a digit.

The grep utility in UNIX scans a file for the occurrence of a pattern and displays those lines in which the given pattern is found.
For example :
\$ grep president emp.txt
It will list those lines from the file emp.txt which has the pattern "president". The pattem in grep command can be specified using - regular expression.
6. * matches zero or more occurrences of previous character.
7. - matches a single character.
8. [^ pqr] Matches a single character which is not ap, q or r.
9. ^ pat Matches pattern pat at the beginning of a line
10. pat \$ Matches pattern at end of line.

Example:

(a) The regular expression [aA]g [ar] [ar] wal stands for either "Agarwal" or 'agrawal".
(b) \boldsymbol{g}^{*} stands for zero or more occurrences of g .
(c) \$grep "A - * thakur" emp.txt will look for a pattern starting with A. and ending with thakur in the file emp.txt.
(b) Lexical analysis

Lexical analysis is an important phase of a compiler. The lexical analyser scans the source program and converts it into a steam of tokens. A token is a string of consecutive symbols defining an entity.

For example a C statement $\mathbf{x}=\mathbf{y}+\mathbf{z}$ has the following tokens:

$$
\begin{aligned}
& x-\text { An identifier } \\
& =- \text { Assignment operator } \\
& \mathbf{y}=\text { An identifier } \\
& +- \text { Arithmetic operator }+ \\
& z-\text { An identifier }
\end{aligned}
$$

Keywords, identifiers and operators are common examples of tokens.
The UNIX utility lex can be used for writing of a lexical analysis program. Input to lex is a set of regular expressions for each type of token and output of lex is a C program for lexical analysis.
2. Applications of Finite Automata

Finite automata are used for solving several common types of computer algorithms. Some of them are :
(i) Design of digital circuit
(ii) String matching
(iii)Communication protocols for information exchange.
(iv)Lexical analysis phase of a compiler.

Finite automata can work as an algorithm for regular language. It can be used for checking whether a string $w \in L$, where L is a regular language.

Chapter 6 : Regular Grammar [Total Marks - 25]

Q. 1(b) Differentiate between PDA and NPDA.

(5 Marks)

Ans.:

Difference between PDA and NPDA is as follows:

Sr. No.	RDA	NPDA
1.	Always a single move on a new input	Multiple moves are possible on a new input
2.	Less powerful than NPDA	More powerful than a PDA
3.	Algorithms related to PDA are simple	Algorithms related to NPDA are complex
4.	Algorithms related to PDA do not require backtracking	Algorithms related to NPDA require backtracking

Q. 3(a) Construct PDA accepting the language $L=\left\{a^{2 n} b^{n} \mid n \geq 0\right\}$.
(10 Marks)
Ans.:

1. For every pair of a's one x is pushed on to the stack
2. For every b, one x is popped out from the stack.
3. Finally the stack should contain the initial stack symbol $\mathbf{Z}_{\mathbf{0}}$.

Transition table (δ)

1. $\quad \delta\left(q_{0}, a_{1}, Z_{0}\right)=\left(q_{1}, Z_{0}\right)$
2. $\quad \delta\left(q_{1}, a, Z_{0}\right)=\left(q_{0}, x Z_{0}\right)$
3. $\quad \delta\left(q_{0}, \mathrm{a}, \mathrm{x}\right)=\left(\mathrm{q}_{1}, \mathrm{x}\right)$
4. $\delta\left(q_{1}, a, x\right)=\left(q_{0}, x\right)$
5. $\delta\left(q_{a}, b, x\right)=\left(q_{2}, \epsilon\right)$
6. $\delta\left(q_{2}, b, x\right)=\left(q_{2}, \epsilon\right)$
7. $\delta\left(q_{2}, \epsilon, Z_{0}\right)=\left(q_{2}, \epsilon\right)$

Accepting through empty stack

- Thus, the PDA M $=\left(\left\{q_{0}, q_{1}, q_{2}\right\},\{a, b\},\left\{x, z_{0}\right\}, \delta, q_{0}, Z_{0},\{\phi\}\right)$
Q. 4(b) Convert following CFG to CNF
(10 Marks)
$\mathbf{S} \rightarrow$ ASA \mid Ab
$A \rightarrow \mathrm{BlS}$
$B \rightarrow b l e$
Ans.:

1. Nullable set of symbols $=(B, A)$

Re-writing grammar after removing \in-production,
we get,

$$
\begin{aligned}
& S \rightarrow A S|S A| A S A|a B| a \\
& A \rightarrow B \mid S \\
& B \rightarrow B
\end{aligned}
$$

2 Re-writing grammar after removing unit productions $(\mathrm{A} \rightarrow \mathrm{B}, \mathrm{A} \rightarrow \mathrm{S})$, we get

$$
\begin{aligned}
& S \rightarrow \mathrm{AS}|S A| A S A|a B| a \\
& A \rightarrow b|A S| S A|A S A| a B \mid a \\
& B \rightarrow b
\end{aligned}
$$

3. Every symbol in α, in production of the form $A \rightarrow \alpha$ where $|\alpha| \geq 2$ should be a variable. This can be done by adding the production

$$
c_{1} \rightarrow a
$$

The set of productions become,
$S \rightarrow A S|S A| A S A\left|C_{1} B\right| a$
$A \rightarrow b|A S| S A|A S A| C_{2} B \mid a$
$B \rightarrow b$
$\mathrm{C}_{1} \rightarrow \mathrm{a}$
4. Finding an equivalent grammar in CNF.
$S \rightarrow A S|S A| A C_{2}\left|C_{1} B\right| a\left[\right.$ Replacing $S A$ by $\left.C_{2}\right]$
$C_{2} \rightarrow S A$
$A \rightarrow b|A S| S A\left|A C_{2}\right| C_{1} B \mid a$
$\mathrm{B} \rightarrow \mathrm{b}$
$\mathrm{C}_{1} \rightarrow \mathrm{a}$
Chapter 7 : Turing Machine (TM) [Total Marks - 12.5]

Q. 4(a) Construct TM to check well-formedness of parenthesis.

(10 Marks)
Ans. :
In each cycle, the left-most ')' is written as X, then the head moves left to locate the nearer ' $($ ' and it is changed to X.
The cycles of computation are shown below.
Input string is assumed to be $(()())()$.

Cycle No.	Tape
Initial	B (())() B
1.	$\mathrm{B}(\mathrm{XX}())(\mathrm{B}$
2.	B (XXXX$)$) B
3.	B XXXXXX () B
4.	B XXXXXXXX B

		()	x	B
	q_{0}	$\left(q_{0},(, R)\right.$	$\left(\mathrm{q}_{1}, \mathrm{x}, \mathrm{L}\right)$	($\mathrm{q}_{0}, \mathrm{x}, \mathrm{R}$)	($\mathrm{q}_{2}, \mathrm{~B}, \mathrm{~L}$)
	q_{1}	$\left(q_{0}, x, R\right)$	-	($\mathbf{q}_{1}, \mathrm{x}_{\mathrm{L}} \mathrm{L}$)	-
	g_{2}	-	-	($\mathbf{q}_{2}, \mathrm{x}, \mathrm{L}$)	($\left.\mathrm{q}_{3}, \mathrm{~B}, \mathrm{R}\right)$
	q_{3}^{*}	q_{3}	93	9	93
	\downarrow				
	Halting state				
Fig. 1-Q. 4(a)(a) : State transition diagram	Fig. 1-Q. 4(a)(b) : State transition table				

The Turing machine M is given by :

$$
M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, B, F\right)
$$

where,

$$
\begin{aligned}
& \mathbf{Q}=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\} \\
& \mathbf{\Sigma}=\{(0)\} \\
& \Gamma=\{(,), \mathrm{x}, \mathrm{~B}\}
\end{aligned}
$$

δ is given in Fig. 1-Q. 4(a)(a) or Fig. 1-Q. 4(a)(b)

$$
\begin{aligned}
& \mathbf{q}_{0}=\text { Initial state } \\
& B=\text { Blank symbol } \\
& \mathbf{F}=\left\{\mathbf{q}_{3}\right\}, \text { halting state }
\end{aligned}
$$

Making of the machine for input (00)O is given in Fig. 1-Q. 4(a)(c) :

Fig. 1-Q. 4(a)(c)

Q. 6(e) Write short note on : Universal Turing Machine.

(2.5 Marks)

Ans. :

Universal turing machine

A general-purpose computer can be programmed to solve different types of problems. A TM can also behave like a general-purpose computer. A general purpose computer solves a problem as given below :

1. A program is written in a high level language and its machine-code is obtained with the help of a complier.
2. Machine code is loaded in main memory.
3. Input to the program can also be loaded in memory.
4. Program stored in memory is executed line by line. Execution involves reading a line of code pointed by IP (instruction pointer), decoding the code and executing it.

We can follow a similar approach for a TM. Such a TM is known as Universal Turing Machine. Universal Turing Machine (UTM) can solve all sorts of solvable problems.

A Turing machine M is designed to solve a particular problem p , can be specified as :

1. The initial state q_{0} of the TM M.
2. The transition function δ of M can be specified as given :

If the current state of M is q_{i} and the symbol under the head is a_{i} then the machine moves to state q_{j} while changing a_{i} to a_{j}. The move of tape head may be :

1. To-left,
2. To-Right or
3. Néutral

Such a move of TM can be represented by tuple
$\left\{\left(q_{i}, a_{i}, q_{j}, a_{j}, m_{i}\right): q_{i}, q_{j}, \in Q ; a_{j}, a_{j} \in \Gamma ; m_{f} \in\{T o\right.$ - left, To-Right, Neutral $\left.\}\right\}$
UTM should be able to simulate every turing machine. Simulation of a Turing will involve :

1. Encoding behaviour of a particular TM as a program.
2. Execution of the above program by UTM.

A move of the form ($\left.\mathrm{q}_{i}, \mathrm{a}_{\mathrm{i}}, \mathrm{q}_{j}, \mathrm{a}_{j}, \mathrm{~m}_{\mathrm{f}}\right)$ can be represented as $10^{1+1} 10^{l} 10^{\mathrm{l}+1} 10^{\mathrm{J}} 10^{\mathrm{K}}$,
Where

$$
\begin{aligned}
& K=1, \text { if move is to the left } \\
& K=2 \text {, if move is to the right } \\
& K=3, \text { if move is 'no-move' }
\end{aligned}
$$

State q_{0} is represented by 0 ,
State q_{1} is represented by 00 ,
State q_{a} is represented by $0^{\mathrm{n}+1}$.
First symbol can be represented by 0 ,
Second symbol can be represented by 00 and so on.
Two elements of a tuple representing a move are separated by 1 .
Two moves are separated by 11.
Execution by UTM : We can assume the UTM as a 3-tape turing machine.

1. Input is written on the first tape.
2. Moves of the TM in encoded form is written on the second tape.
3. The current state of TM is written on the third tape.

The control unit of UTM by counting number of 0 's between 1 's can find out the current symbol under the head. It can find the current state from the tape 3. Now, it can locate the appropriate move based on current input and the current state from the tape 2 . Now, the control unit can extract the following information from the tape 2 :

1. Next state 2. Next symbol to be written
2. Move of the head.

Based on this information, the control unit can take the appropriate action.

Chapter 8 : Undecidability and Recursively Enumerable Languages [Total Marks - 7.5]

Q. 1(d) Explain Halting Problem.

Ans.:

Halting problem

The halting problem of a Turing machine states:
Given a Turing machine M and an input ω to the machine M, determine if the machine M will eventually halt when it is given thput ω.

Halting problem of a Turing machine is unsolvable.

Proof :

- Moves of a turing machine can be represented using a binary number. Thus, a Turing machine can be represented using a string over $\Sigma^{*}(0,1)$.
- Insolvability of halting problem of a Turing machine can be proved through the method of contradiction.

Step 1 : Let us assume that the halting problem of a Turing machine is solvable. There exists a machine H_{1} (say).
H_{1} takes two inputs :

1. A string describing M.
2. An input ω for machine M.
H_{1} generates an output "halt" if H_{1} determines that M stops on input ω; otherwise H outputs "loop". Working of the machine H_{1} is shown below.

Step 2: Let us revise the machine H_{1} as H_{2} to take M as both inputs and H_{2} should be able to determine if M will halt on M as its input. A machine can be described as a string over 0 and 1 .

Step 3: Let us construct a new Turing machine H_{3} that takes output of H_{2} as input and does the following:

1. If the output of H_{2} is "loop" then H_{3} halts.
2. If the output of H_{2} is "halt" than H_{3} will loop forever.

H_{3} will do the opposite of the output of H_{2}.
Step 4: Let us give H_{3} itself as inputs to H_{3}.

If H_{3} halts on H_{3} as input then H_{3} would loop (that is how we constructed it).
If H_{3} loops forever on H_{3} as input H_{3} halts (that is how we constructed it).
In either case, the result is wrong.
Hence,
H_{3} does not exist.
If H_{3} does not exist then H_{2} does not exist.
If H_{2} does not exist then H_{1} does not exist.

Q. 6(c) Witte short note on : Rice's Theorem.

Ans. :

Rice's theorem

"Every property that is satisfied by some but not all recursively enumerable languages is un-decidable". Any property that is satisfied by some recursively enumerable language but not all is known as non-trivial property. We have seen many properties of R.E. languages that are un-decidable. These properties include :

1. Given a $T M M$, is $L(M)$ nonempty ?
2. Given a $T M M$, is $L(M)$ finite ?
3. Given a TM M, is $L(M)$ regular ?
4. Given a TM M, is $L(M)$ recursive?

The Rice's theorem can be proved by reducing some other unsolvable problem to non-trivial property of recursively enumerable language.

Chapter 1 : Introduction [Total Marks - 10]

Q. 5(b) Convert the following grammars to the Chomsky normal form (CNF)

$S \rightarrow 0 A 0|1 B 1| B B$
$A \rightarrow \mathbf{C}$
$B \rightarrow S \mid A$
C \rightarrow S 1 ع
(10 Marks)
Ans.:
Step 1: Klimination of \in-production.
The symbols (A, B, C. S) are nullable and hence the given granular leads to the following granular :

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{OAO}|00| 1 \mathrm{~B}||11| \mathrm{B}| \mathrm{BB} \\
& \mathrm{~A} \rightarrow \mathrm{C}, \mathrm{~B} \rightarrow \mathrm{~S} \mid \mathrm{A}, \mathrm{C} \rightarrow \mathrm{~S}
\end{aligned}
$$

Step 2: Resolving 2 unit productions from \mathbf{G}_{1} and also receiving non-reachable symbol \mathbf{C},
We get,

$$
\begin{aligned}
& S \rightarrow O A O|00| 1 \mathrm{~B} 1|11| \mathrm{BB} \\
& \mathrm{~A} \rightarrow \mathrm{OAO}|00| 1 \mathrm{~B} 1|11| \mathrm{BB} \quad \text { Granular } \mathrm{G}_{2} \\
& \mathrm{~B} \rightarrow \mathrm{OAO}|00| \mathrm{B}\left||11| \mathrm{BB}^{\prime}\right.
\end{aligned}
$$

Step 3: Al the three variables are identical and hence, the granular becomes :

$$
\mathrm{S} \rightarrow \text { OSO } 100|1 \mathrm{~S} 1| 11 \mid \mathrm{SS} \quad \text { Granular } \mathbf{G}_{3}
$$

Step 4 : Substituting A_{1} for 0 and A_{2} for 1 ; we get,
$S \rightarrow A_{1} S A_{1}\left|A_{1} A_{1}\right| A_{2} S A_{2}\left|A_{2} A_{2}\right| S S$
$\mathrm{A}_{1} \rightarrow 0$
$\mathrm{A}_{2} \rightarrow \mathbf{1}$
Step 5 : Writing productions in CNF
$\mathbf{S} \rightarrow \mathrm{A}_{1} \mathbf{B}_{1}, \quad \mathbf{B}_{1} \rightarrow \mathbf{S A}_{1}$
$\mathbf{S} \rightarrow \boldsymbol{A}_{1} \boldsymbol{A}_{1}$
$\mathbf{S} \rightarrow \mathbf{A}_{\mathbf{2}} \mathbf{B}_{\mathbf{2}} \quad, \mathbf{B}_{\mathbf{2}} \rightarrow \mathrm{SA}_{\mathbf{2}}$
$\mathbf{S} \rightarrow \mathbf{A}_{2} \boldsymbol{A}_{\mathbf{2}}$
$\mathbf{S} \rightarrow \mathbf{S S}$
$\mathbf{A}_{1} \rightarrow 0$
$\mathrm{A}_{2} \rightarrow \mathbf{1}$

Chapter 2 : Finite Automata [Total Marks - 20]

Q. 1(a) Differentiate DFA and NFA.

(5 Marks)
Ans. : The difference between DFA and NFA ls as follows:

Biskiom		ME
1.	DFA stands for deterministic finite automata.	NFA stands for non-deterministic finite automata.
2.	The transition is deterministic.	The transition is non-deterministic.
3.	A deterministic finite automata is a quintuple, $M=\left(Q, \Sigma, \delta, q_{0} . F\right)$	A non-deterministic finite automata is a 5-tuple, $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$
4.	The number of states is finite.	NFA can be in several states at a time.

Q. 1(b) Design a DFA to accept string of 0 s and 18 ending with the string 100.
(5 Marks)
Ans.:
The substring 'abb' should be at the end of the string. Transitions from q_{3} should be modified to handle the condition that the string has to end in 'abb'.

	a	b
$\rightarrow q_{0}$	q_{1}	q_{0}
q_{1}	q_{1}	q_{2}
q_{2}	q_{1}	q_{3}
q_{3}^{*}	q_{1}	q_{0}

(a) State transition diagram (b) State transition table

Fig. 1-Q. 1(b) : Final DFA
q_{3} to q_{1} on input a : An input of a in q_{3} will make the previous four characters as 'abba'. Out of the four characters as 'abba' only the last character ' a ' is relevant to 'abb'.
q_{3} to q_{0} on input b : An input of b in q_{3} will make the previous four characters 'abbb'. Out of the four characters 'abbb', nothing is relevant to 'abb'.
Q. 2(a) Design NFA for recognizing the strings that end in "aa" over $\Sigma=\{a, b\}$ and convert NFA to DFA. (10 Marks)

Ans.:
(i) NFA for strings ending in " aa " is given below :

(ii) NFA to DFA using the direct method

Q. 1(c) Explain the applications of regular expressions.

Ans: : Please refer Q. 6(b) of Dec. 2018.
Q. 3(a) Obtain a regular expression for the FA shown below:

Ans. : Given FA:

Step 1 : Receiving loop between the states q_{0} and q_{1}, we get

Step 2 : Receiving the loop among $q_{0} q_{1}$ and q_{2}, we get

Required R.E. $=\left(\mathbf{b}+\mathbf{a b}+\mathbf{a a} \mathbf{a}^{*} \mathbf{b}\right)^{*}$ aaa*

Chapter 5 : Pushdown Automata (PDA) [Total Marks - 10]

Q. 4(b) State and explain pumping lemma for context free languages.

Ans.:

Let \mathbf{G} be a context free grammar. Then there exists a constant n such that any string
$w \in L(G)$ with $|w| \geq n$ can be rewritten as $w=u v x y z$, subject to the following conditions:

1. $I v x y I \leq n$, the middle portion is less than n.
2. $\mathrm{vy} \neq E$, strings v and y will be pumped.
3. For all $i \geq 0$, $u v^{\prime} y^{\prime} z$ is in L. The two strings v and y can be pumped zero or more times.

Proof:

Let us assume that the grammar
G is given by $(\mathrm{V}, \mathrm{T}, \mathrm{P}, \mathrm{S})$.
$\Phi(\mathrm{G})$ denotes that largest number of symbols on the right-hand side of a production in P .
In pumping lemma, it is a requirement that the constant n should satisfy the following condition
$\mathrm{n} \geq \Phi(\mathrm{G})^{\mathrm{IV}-\mathrm{TI}}$
Let us take a string w $\varepsilon \mathrm{L}(\mathrm{G})$, such that $|\mathrm{w}| \geq \mathrm{n}$. Let us construct a parse tree T with root as S . The parse tree T generates w with smallest number of leaves.

The tree T will have a path length of at least $\mathrm{V}-\mathrm{T} \mid+1$. This path will have
$|V-T|+2$ nodes with the last node labelled as terminal and remaining non-terminals.
Fig. 1-Q. 4(b) shows paths in detail.

Fig. 1-Q. 4(b) : Paths in the parse tree
x is generated by T_{2}
v is generated by Tl
u is generated by T
T_{1} excluding T_{2} can be repeated any number of times.
This will yield a string of the form uv'xy'z where $\mathrm{i} \geq 0$

Chapter 6 : Regular Grammar [Total Marks - 10]

Q. 5(a) Design PDA for the following language:
$L(M)=\left\{w c w \mid w\{a, b\}^{*}\right\}$ where w^{R} ls reverse of $w \& c$ ls a constant.
(10 Marks)

Ans. :

$W^{\mathbf{R}}$ stands for reverse of W . A string of the form $\mathrm{WcW}^{\mathbf{R}}$ is an odd length palindrome with the middle character as c .

Algorithm:

If the length of the string is $2 n+1$, then the first n symbols should be matched with the last n symbols in the reverse order. A stack can be used to reverse the first n input symbols.

Status of the stack and state of the machine is shown in Fig. 1-Q. 5(a). Input applied is abbcbba.

Fig. 1-Q. 5(a) : A PDA on input abbcbba
The PDA accepting through final state is given by
$M=\left(\left\{q_{0}, q_{1}, q_{2}\right\},\{a, b, c\},\left\{a, b, z_{0}\right\}, \delta, q_{0}, z_{0},\left\{q_{2}\right\}\right)$
Where the transition function δ is given below :

1. $\delta\left(q_{0}, a, \varepsilon\right)=\left(q_{0}, a\right)$
2. $\delta\left(q_{0}, b, \varepsilon\right)=\left(q_{0}, b\right) \quad$.
3. $\delta\left(q_{0}, c, \varepsilon\right)=\left(q_{1}, \varepsilon\right)$
4. $\delta\left(q_{1}, a, a\right)=\left(q_{1}, \varepsilon\right)$

[State changes on c]
5. $\delta\left(q_{1}, b, b\right)=\left(q_{1}, \varepsilon\right)$]

Last n symbols are matched with first n symbols in reverse order
6. $\delta\left(q_{1}, \varepsilon, z_{0}\right)=\left(q_{2}, z_{0}\right)$
[Accepted through final state]
A transition of the form $\delta\left(q_{0}, a, \varepsilon\right)=\left(q_{0}, a\right)$ implies that always push a, irrespective of stack symbol.

Chapter 7 : Turing Machine (TM) [Total Marks - 20]

Q. 3(b) Explain the types of Turing machine in detall.

(10 Marks)

Ans.:

The types of Turing machine are as follows :

1. Two-way infinite Turing machine

In a standard turing machine number of positions for leftmost blanks is fixed and they are included in instantaneous description, where the right-hand blanks are not included.

In the two way infinite Turing machine, there is an infinite sequence of blanks on each side of the input string. In an instantaneous description, these blanks are never shown.

2. Turing machine with multiple heads

A turing machine with single tape can have multiple heads. Let us consider a turing machine with two heads \mathbf{H}_{1} and H_{2}. Each head is capable of performing read/write /move operation independently.

Fig. 1-Q. 3(b) : A Turing machine with two heads
The transition behavior of 2 -head one tape Turing machine can be defined as given below :
$\boldsymbol{\delta}$ (State, Symbol under H_{1}, Symbol under $\left.\mathrm{H}_{2}\right)=\left(\operatorname{New}\right.$ state, $\left(\mathrm{S}_{1}, \mathrm{M}_{1}\right),\left(\mathrm{S}_{2}, \mathrm{M}_{2}\right)$)
Where.
S_{1} is the symbol to be written in the cell under H_{1}.
M_{1} is the movement (L, R, N) of H_{1}.
S_{2} is the symbol to be written in the cell under H_{2}.
M_{2} is the movement (L, R,N) of H_{2}.

3. Multi-tape Turing machine

Multi-tape turing machine has multiple tuples with each tape having its own independent head. Let us consider the case of a two tape turing machine. It is shown in Fig. 2-Q. 3(b).

Tape 1: $\frac{B / a|c| a|a| c|c| a|c| c|c|}{} \frac{b}{f}$

Fig. 2-Q. 3(b) : A two-tape turing machine
The transition behavior of a two-tape Turing machine can be defined as :

$$
\delta\left(q_{1}, \mathrm{a}_{1}, \mathrm{a}_{2}\right)=\left(\mathbf{q}_{2},\left(\mathrm{~S}_{1}, \mathrm{M}_{1}\right),\left(\mathrm{S}_{2}, \mathrm{M}_{2}\right)\right)
$$

Where,
q_{1} is the current state,
\boldsymbol{q}_{2} is the next state,
a_{1} is the symbol under the head on tape 1 ,
a_{2} is the symbol under the head on tape 2 ,
S_{1} is the symbol written in the current cell on tape 1 ,
S_{2} is the symbol written in the current cell on tape 2 ,
M_{1} is the movement (L, R, N) of head on tape 1 , $\mathbf{M}_{\mathbf{2}}$ is the movement ($\mathrm{L}, \mathrm{R}, \mathrm{N}$) of head on tape 2.

4. Non-deterministic Turing machine

_ ... Non-deterministic is a powerful feature. A non-deterministic TM machine might have, on certain combinations of state and symbol under the head, more than one possible choice of behaviour.

- Nondeterministic does not make a TM more powerful.
- For every non-deterministic TM, there is an equivalent deterministic TM.
- It is easy to design a nondeterministic 'TM for certain class of problems.
- A string is said to be accepted by a NDTM, if there is at least one sequence of moves that takes the machine to final state.
- An example of nondeterministic move for a TM is shown in Fig. 3-Q. 3(b).

Fig. 3-Q. 3(b) : A sample move for NDTM
The transition behaviour for state q_{0} for TM of Fig. 3-Q. 3(b) can be written as
$\delta\left(q_{0}, a\right)=\left\{\left(q_{0}, a, R\right)\left(q_{1}, x, R\right)\right\}$
5. Universal Turing machine

A general-purpose computer can be programmed to solve different types of problems. A TM can also behave like a general-purpose computer. A general purpose computer solves a problem as given below :

1. A program is written in a high level language and its machine-code is obtained with the help of a complier.
2. Machine code is loaded in main memory.
3. Input to the program can also be loaded in memory.
4. Program stored in memory is executed line by line. Execution involves reading a line of code pointed by IP (instruction pointer), decoding the code and executing it.

We can follow a similar approach for a TM. Such a TM is known as Universal Turing Machine. Universal Turing Machine (UTM) can solve all sorts of solvable problems.

A Turing machine M is designed to solve a particular problem p, can be specified as :

1. The initial state q_{0} of the TM M.
2. The transition function δ of M can be specified as given :

If the current state of M is q_{i} and the symbol under the head is a_{i} then the machine moves to state q_{j} while changing a_{i} to a_{j}. The move of tape head may be :

1. To-left,
2. To-Right or
3. Neutral

Such a move of TM can be represented by tuple

$$
\left\{\left(q_{j}, a_{i}, q_{j}, a_{j}, m_{l}\right): q_{j}, q_{j}, \in Q ; a_{i}, a_{j}, \in \Gamma ; m_{f} \in\{T o-\text { left, To-Right, Neutral }\}\right\}
$$

UTM should be able to simulate every turing machine. Simulation of a Turing will involve :

1. Encoding behaviour of a particular TM as a program.
2. Execution of the above program by UTM.

A move of the form ($\left.q_{j}, a_{i}, q_{j}, a_{j}, m_{f}\right)$ can be represented as $10^{1+1} 10^{1} 10^{1+1} 10^{\prime} 10^{\mathrm{K}}$,
Where
$K=1$, if move is to the left
$K=2$, if move is to the right
$K=3$, if move is 'no-move'

State q_{0} is represented by 0 ,
State q_{1} is represented by 00 ,
State q_{n} is represented by $0^{\mathrm{n}+1}$.
First symbol can be represented by 0 ,
Second symbol can be represented by 00 and so on.
Two elements of a tuple representing a move are separated by 1.
Two moves are separated by 11.
Q. 4(a) Design a turing machine that computes a function $f(m, n)=m+n$ i.e. addition of two integers.
(10 Marks) Ans.:

Addition of two unary numbers can be performed through append operation. To add two numbers 5 (say ω_{1}) and 3 (say ω_{2}) will require following steps :

1. Initial configuration of tape :

2. ω_{1} is appended to ω_{2}.

While every ' 0 ' from ω_{1} is getting appended to ω_{2}, ' 0 ' from ω_{1} is erased. ω_{2} contains 80 's, which is sum of 5 and 3 .

Chapter 8 : Undecidability and Recursively Enumerable Languages [Total Marks - 25]

Q. 1(d) What are recursive and recursively enumerable languages?
(5 Marks)
Ans.:

Recusive language

A language over an alphabet \sum can be described recursively. A recursive definition has three steps:

1. Specify some basic objects in the set.
2. Specify the rules for constructing more objects from the objects already known.
3. Declaration that no objects except those constructed as given above are allowed in the set.

Recursively enumerable language

There is a difference between recursively enumerable (Turing Acceptable) and recursive (Turing Decidable) language.
Following statements are equivalent :

1. The language L is Turing acceptable.
2. The language L is recursively enumerable.

Following statements are equivalent

1. The language L is Turing decidable.
2. The language L is recursive.
3. There is an algorithm for recognizing L.

Every Turing decidable language is Turing acceptable.
Every Turing acceptable language need not be Turing decidable.
Q. 6 Write detailed note on (any two):-
(a) Post correspondence problem
(b) Halting problem
(C) Rice's theorem
(20 Marks)
Ans.:
(a) Post correspondence problem

Let A and B be two non-empty lists of strings over $\sum . A$ and B are given as below :

$$
\begin{aligned}
& A=\left\{x_{1}, x_{2}, x_{3} \ldots x_{k}\right\} \\
& B=\left\{y_{1}, y_{2}, y_{3} \ldots y_{k}\right\}
\end{aligned}
$$

We say, there is a post correspondence between A and B if there is a sequence of one or more integers $i, j, k \ldots m$ such that :
The string $x_{i} x_{j} \ldots x_{m}$ is equal to $y_{i} y_{j} \ldots y_{m}$.
Example : To check whether

$$
\begin{aligned}
& A=\left\{a, a b a^{3}, a b\right\} \text { and } \\
& B=\left\{a^{3}, a b, b\right\}
\end{aligned}
$$

has a solution.
We will have to find a sequence using which when the elements of A and B are listed, will produce identical strings.
The required sequence is $(2,1,1,3)$

$$
\begin{aligned}
& A_{2} A_{1} A_{1} A_{3}=a b a^{3} a a a b=a b a^{6} b \\
& B_{2} B_{1} B_{1} B_{3}=a b a^{3} a^{3} b=a b a^{6} b
\end{aligned}
$$

Thus, the PCP has solution.
We are accepting the un-decidability of post correspondence problem without proof.

(b) Halting problem

The halting problem of a Turing machine states :
Given a Turing machine M and an Input $\boldsymbol{\omega}$ to the machine M, determine if the machine M will eventually halt when it is given Input \boldsymbol{a}.

Halting problem of a Turing machine is unsolvable.

Proot:

Moves of a turing machine can be represented using a binary number. Thus, a Turing machine can be represented using a string over $\Sigma^{*}(0,1)$.

Insolvability of halting problem of a Turing machine can be proved through the method of contradiction.
Step 1 : Let us assume that the halting problem of a Turing machine is solvable. There exists a machine H_{1} (say). H_{1} takes two inputs :

1. A string describing M.
2. An input ω for machine M.
H_{1} generates an output "halt" if H_{1} determines that M stops on input ω; otherwise H outputs "loop". Working of the machine H_{1} is shown below.

Step 2: Let us revise the machine H_{1} as H_{2} to take M as both inputs and H_{2} shonld be able to determine if M will halt on M as its input. A machine can be described as a string over 0 and 1.

Step 3 : Let us construct a new Turing machine H_{3} that takes output of H_{2} as input and does the following :

1. If the output of H_{2} is "loop" than H_{3} halts.
2. If the output of H_{2} is "halt" than H_{3} will loop forever.

H_{3} will do the opposite of the output of H_{2}.
Step 4: Let us give H_{3} itself as inputs to H_{3}.

If H_{3} halts on H_{3} as input then H_{3} would loop (that is how we constructed it).
If H_{3} loops forever on H_{3} as input H_{3} halts (that is how we constructed it).
In either case, the result is wrong.
Hence,
H_{3} does not exist.
If $\mathrm{H}_{\mathbf{3}}$ does not exist than $\mathrm{H}_{\mathbf{2}}$ does not exist.
If H_{2} does not exist than H_{1} does not exist.

(c) Rice's theorem

Every property that is satisfied by some but not all recursively enumerable language is un-decidable. Any property that is satisfied by some recursively enumerable language but not all is known as nontrivial property. We have seen many properties of R.E. languages that are un-decidable. These properties include :

1. Given a TM M, is $L(M)$ nonempty?
2. Given a TM M, is $L(M)$ finite?
3. Given a TM M, is $L(M)$ regular?
4. Given a TM M, is $L(M)$ recursive?

The Rice's theorem can be proved by reducing some other unsolvable problem to nontrivial property of recursively enumerable language.

Q. 1 (a) Explain Chomsky Hierarchy.
(5 Marks)
(b) Differentiate between PDA and NPDA.
(c) Define Regular Expression and give regular expression for:
(i) Set of all strings over $\{0,1\}$ that end with 1 has no substring 00
(d) Explain Halting Problem.
Q. 2 (a) Design a Finite State machine to determine whether ternary number (base 3) is divisible by 5.
(b) Give and explain formal definition of Pumping Lemma for Regular Language and prove that following language is not regular. $L=\left\{a^{m} b^{m-1} \mid m>0\right\}$
Q. 3 (a) Construct PDA accepting the language $L=\left\{a^{2 n} b^{n} \mid n \geq 0\right\}$.
(b) Consider the following grammar

$$
\begin{aligned}
& S \rightarrow \text { icts|ictses|a } \\
& C \rightarrow b
\end{aligned}
$$

For the string 'ibtaeibta' find the following:
(i) Leftmost derivation
(ii) Rightmost derivation
(iii) Parse tree
(iv) Check if above grammar is ambiguous.
Q. 4 (a) Construct TM to check well-formedness of parenthesis.
(b) Convert following CFG to CNF
$S \quad \rightarrow$ ASA|Ab
$\mathrm{A} \rightarrow \mathrm{B} \mid \mathbf{S}$
$B \rightarrow b \mid \epsilon$
Q. 5 (a) Convert $(0+1)(10)^{*}(0+1)$ into NFA with e-moves and obtain DFA.
(b) Construct Mealy and Moore Machine to convert each occurrence of 100 by 101.
Q. 6 Write short note on (any four)
(a) Closure properties of Context Free Language.
(b) Applications of Regular expression and Finite automata.
(c) Rice's Theorem.
(d) Mealy and Moore Machine
(e) Universal Turing Machine

Q. 1 (a) Differentiate DFA and NFA.
(b) Design a DFA to accept string of O's and 1's ending with the string 100.
(c) Explain the applications of Regular Expressions.
(d) What are Recursive and Recursively Enumerable Languages?
Q. 2 (a) Design NFA for recognizing the strings that end in "aa" over $\Sigma=\{a, b\}$ \& convert above NFA to DFA.
(10 Marks)
(b) Design moore m / c for following:

If input ends in '101' then output should be A, if input ends in '110' output should be B, otherwise output should be C and convert it into mealy m / c.
Q. 3 (a) Obtain a regular expression for the FA shown below :

Fig. 1 Q. 3(a)
(b) Explain the types of Turing machine in detail.
Q. 4 (a) Design a turing machine that computes a function $f(m, n)=m+n$ i.e. addition of two integers.
(10 Marks)
(b) State and explain pumping Lemma for Context Free Languages. Find out whether the language $L=\left\{x^{n} y^{n} z^{n} \mid n \geq 1\right\}$ is context free or not.
(10 Marks)
Q. 5 (a) Design PDA for the following language:
$L(M)=\left\{w \subset w^{R} \mid w\{a, b\}^{\eta}\right\}$ where w^{R} is reverse of $w \& c$ is a constant.
(10 Marks)
(b) Convert the following Grammars to the Chomsky normal form (CNF).
$S \rightarrow 0 A O|1 B 1| B B$
$A \rightarrow C$
$B \rightarrow S \mid A$
$C \rightarrow S \mid \varepsilon$
(10 Marks)
Q. 6 Write detailed note on (any two) :
(a) Post Correspondence Problem
(b) Halting Problem.
(c) Rice's Theorem.

Your Success is Our Goal

Semester V - Gomputer Englneerlay

Gomputer Networks

Database Management System MIGROPROGESSOR

Theory of Computer Science

Multimedia System (Dept. Elective I)

Advance Operating System (Dept. Elective I)

Paper Solutions Trusted by lakhs of students from more than 15 years

Distributors

MUMBAT

Student's Agencies (I) Pvt. Ltd.
102, Konark Shram, Ground Floor, Behind Everest Building, 156 Tardeo Road, Mumbai.
M : 99167290777.
Vidyarthi Sales Agencies
Shop. No. 5, Hendre Mansion, Khotachiwadi,157/159,
J.S.S Road, Girgaum, Mumbai. M :@98197 76110.

Bharat Sales Agency

Goregaonkar Lane, Behind Central Plaza Cinema, Charni Road, Mumbai. M : ©86572 92797
Ved Book Distributors - Mr. Sachin Waingade (For Library Orders)
M : 8097571421 / 9220877214.
E: mumbai@techknowledgebooks.com

