

Wes easy- -Solutions

wt Mumbai University Paper Solutions

| Strictly as per the New Revised Syllabus (Rev - 2016) of

Mumbai University w.e.f. academic year 2018-2019

(As per Choice Based Credit and Grading System)

THEORY OF
COMPUTER SCIENCE
Semester V - Computer Engineering

PTC OMe rR)

Se TechKnowledge
Publications

 Scanned by CamScanner

EMO46A

WH TechKnowledge iM SP publications
Scanned by CamScanner

Theory of Computer Sclence

Semester V - Computer Engineering (MU)

Copyright © with TechKnowledge Publications, All rights reserved. No part of this publication may be reproduced,

copied, or stored in a retrieval system, distributed or transmitted in any form or by any means, including photocopy,

recording, or other electronic or mechanical methods, without the prior written permission of the publisher.

This book is sold subject to the condition that it shall not, by the way of trade or otherwise, be lent, resold, hired out, or

otherwise circulated without the publisher’ s prior written consent in any form of binding or cover other than which it is

published and without a similar condition including this condition’ being imposed on the subsequent purchaser and |

without limiting the rights under copyright reserved above.

Edition 2019

This edition is for sale in India, Bangladesh, Bhutan, Maldives, Nepal, Pakistan, Sri Lanka and designated countries in |

South-East Asia. Sale and purchase of this book outside of these countries is unauthorized by the publisher. . |

Printed at : 37/2, Ashtvinayak Industrial Estate, Near Pari Company,

Narhe, Pune, Maharashtra State India, |

Pune — 411041 .

Published by

TechKnowledge Publications

Head Office : B/S, First floor, Maniratna Complex, Taware Colony, Aranyeshwar Corner,

Pune - 411 009. Maharashtra State, India

Ph : 91-20-24221234, 91-20-24225678,

Email : info@techknowledgebooks.com,

Website : www.techknowledgebooks.com

(Book Code : EMO46A)
Scanned by CamScanner .

| Chapter 1:

Chapter 2

Chapter 3:

| _Chapter 4:

| Chapter 5:

| Chapter 6 :

| Chapter 7 :

Chapter 8 :

Introduction

: Finite Automata

Regular Expressions and Languages _~

Context Free Grammars (CFG)

Pushdown Automata (PDA)

Regular Grammar (RG)

Turing Machine (TM)

Undecidability and Recursively Enumerable Languages

Scanned by CamScanner

Index .

Syllabus

Chapter 1

Chapter 2

Chapter 3

Chapter 4:

Chapter 5

Chapter 6:

Chapter 7

Chapter 8

Dec. 2018

~ May 2019

: Introduction

: Finite Automata

: Regular Expressions and Languages

Context Free Grammars (CFG)

: Pushdown Automata (PDA)

Regular Grammar (RG)

: Turing Machine (TM)

TCS-01 to TCS-01

TCS-02 to TCS-13

TCS-14 to TCS-22

TCS-23 to TCS-25

TCS-25 to TCS-36

TCS-36 to TCS-44

TCS-44 to TCS-56

: Undecidability and Recursively Enumerable Languages

University Question Papers

TCS-56 to TCS-59

D(18)-01 to D(18)-16

M(19)-01 to M(19)-11

Q-1 to Q-3

Scanned by CamScanner

SYLLABUS

SX ANSASASSSS

Basic Concepts and Finite Automata

® Alphabets, Strings, Languages, Closure properties,

e Finite Automata (FA) and Finite State machine (FSM). |

Deterministic Finite Automata (DFA) and Nondeterministic Finite

Automata (NFA) : Definitions, transition diagrams and Language recognizers

e NFA to DFA Conversion

e . Equivalence between NFA with and without e- transitions

e Minimization of DFA

e - FSM with output: Moore and Mealy machines, Equivalence

e _ Applications and limitations of FA

Regular Expressions and Languages

Regular Expression (RE)

Equivalence of RE and FA, Arden‘s Theorem

_ RE Applications

Regular Language (RL) —

Closure properties of RLs

Decision properties of RLs

Pumping lemma for RLs ,

Grammars

e Grammars and Chomsky hierarchy.

e Regular Grammar (RG)

e - Equivalence of Left and Right linear grammar

e —_ Equivalence of RG and FA

Context Free Grammars (CFG)

e Definition, Sentential forms, Leftmost and Rightmost derivations, Parse tree, Ambiguity.

e Simplification and Applications.

Normal Forms: Chomsky Normal Forms (CNF) arid

Greibach Normal Forms (GNF). CFLs - Pumping lemma, Closure properties

Scanned by CamScanner

Definition, Transitions ,Language of PDA

Language acceptance by final state and empty stack

PDA as genéritor: decider and acceptor of CFG.

Deterministic PDA, Non-Deterministic PDA

Application of PDA.

Turing Machine (TM)

Definition, Transitions

Design of TM as generator, decider and acceptor

Variants of TM : Multitrack, Multitape

Universal TM.

Equivalence of Single and Multi Tape TMs -

Applications, Power and ‘Limitations of TMs

Context Sensitivity and Linear Bound Automata.

Undecidability

Decidability and Undecidability

Recursive and Recursively Enumerable Languages.

Halting Problem

Rice‘s Theorem - Post Correspondence Problem

'

Scanned by CamScanner

Chapter 1 : Basic Concepts and Finite Automata

Write note on Chomsky Hierarchy.

MU - Dec. 2009, Dec. 2012, May 2013, May 2014,

Dec. 2014, May 2015, Dec. 2016,

May 2017, Dec. 2017

Q.1

Ans. : Chomsky Hlerarchy

A grammar can be classified on the basis of production rules.

Chomsky classified grammars into the following types :

1. Type 3: Regular grammar —

2. . Type 2: Context free grammar

3. Type 1: Context sensitive grammar

4. Type 0: Unrestricted grammar.

1. Type3 or Regular Grammar :

A grammar is called Type 3 or regular grammar if all its

productions are of the following forms :

“AE

A-a

A — 2B

A — Ba

Where,ae DandA,Be V.

A language ‘generated by Type 3 grammar is known, as

regular language.

2. Type2or Context Free Grammar

A grammar is called Type 2 or context free grammar if all its

productions are of the following form A => a where A € V and

ae (VUT)*.

V is a set of variables and T is a set of terminals.

The language generated by a Type 2 grammar is called a

context free language, a regular language but not the reverse.

3. Type 1 or Context Sensitive Grammar

A grammar is called a Type 1 or context sensitive grammar if

all its productions are of the following form.

a > 6

Where, p is atleast as long as o..

4. TypeOor Unrestricted Grammar

Productions can be written without any restriction in a

unrestricted grammar. If there is production of the a — f, then

length of «could be more than length of B.

Every grammar also is a Type 0 grammar.

A Type 2 grammar is also a Type 1 grammar

A Type 3 grammar is also a Type 2 grammar.

Q.2 State applications of Finite Automata in brief.

Ans. :

Applications of Finite Automata

Finite automata are used for solving several common types of

computer algorithms. Some of them are :

Gi) Design of digital circuit

(ii) String matching

(iii) Communication protocols for information exchange.

(iv) Lexical analysis phase of a compiler.

Finite. automata can work as an algorithm for regular

Janguage. It can be used for checking whether a string we L, where

Lis a regular language.

Qa.3 What I is Finite Automata?

Ans. :

Finite Automata

Finite automata are also called a finite state machine.

A finite state machine is a mathematical model for actual

physical process. By considering the possible inputs on which

these machines. can work, one can analyse their strengths and

weaknesses. :

Finite automata are used for solving several common types of

computer algorithms. Some of them are : :

1. Design of digital circuits.

2. String matching.

3. Communication protocols for information exchange.

4 Lexical analyser of a typical compiler.

 Q. 4 * Define the term : Unrestricted grammar

.
Ans. :

Unrestricted grammar

Productions can be written without any restriction in a

unrestricted grammar. If there is production of the & — B, then

length of c could be more than length of B.

Every grammar also is a Type 0 grammar.

A Type 2 grammar is also a Type 1 grammar

A Type 3 grammar is also a Type 2 grammar.

Scanned by CamScanner

s

Theory of Comp. Sci. (MU-Sem. 5-Comp.)

in a mealy machine is associated with: -
Q.1 Write short note on Mealy machine. An arc from state 4,

Ans. : ‘ 1, Input alphabet € 2

Mealy Machine 2. Anoutput alphabet € O.

, An arc marked as ‘a/0’ in Fig. 2.1 implies that :
Input ; : 7

ao Output 1. ais in inpu

2. °Ois an output.

State transition behavior and output behavior of a miealy

machine can be shown separately as in Fig. 2.2 and 2.3; or they can

be combined together as in Fig. 2.4. ‘

- Formal Definition of a Mealy Machine

A mealy machine M is defined as :

M = {Q,2,0,5,A, q9)

Ne Shen StstesBoprannolia Disshyanachie Where, Q = A finite set of states.

State transition function (8) (or STF) : = = A finite set of input alphabet

O = A finite set of output alphabet

6 = A transition function £xQ—>Q

2X = Anoutput function 2xQ—>O

M do € Q is an initial state.

Q.2 Distinguish between NFA and DFA.

transition function for Mealy machine of as Fig. 2.2 : State as . on Mealy maciane o ULE Lament ney ee
May-2015, May 2016. May 2017. Dec. 2017

_ Output function (2) (or MAF) : Ans. :

Difference between NFA and DFA

Transition Non-deterministic. Deterministic

No. of} NFA has fewer | More, if NFA
. . states. number of states. contains Q states then

Fig. 2.3 : Output function for mealy machine of Fig. 2.1 the corresponding
. : DFA will have < 2°

State table for both 6 and A (both STF and MAF) : states

Power NFA is as powerful as ‘DFA. is as powerful
q,/0 a DFA as an NFA
q,/0 Design Easy to design due to |: Relatively, more |
q/0 non-determinism. difficult to design as
ayo . . transitions ‘are |~

deterministic. :
Output Acceptance | It is difficult to find | It is easy to find

Next state Whether w € L as there | whether w € L as-

Fig. 2.4 : State table depicting both transition and output fe ‘ — Paths. transitions . are
vior of mealy machine of Fig, 2.1 ng is | deterministic. beha' y

required to explore
several parallel paths,

Gs GH ETImnn =

 Scanned by CamScanner

° ’
W Theory of Comp Sci. (MU-Sem. 5-Comp.) TCS-3

Q.3 Define DFA.

Ans. :

Definition of DFA

A deterministic finite automata is a quintuple.

M = (Q,2,5,4q,, F), where

Qisaset of states,

Lis a set of alphabet.

qy © Qis the initial state,

F ¢ Qis the set of final states, and 6, the transition function,
is a function from Q x ¥ to Q.

Q.4 Obtain a grammar to generate the language
L={0"1"1n20)}. Coen

Ans. :

Productions for the required language are as follows.

P = {S—>0Si1 le}

CFG for the above language is ({S}, {0, 1}, P, S) _

Q.5 Give deterministic finite automata accepting the

following languages over the alphabet {0, 1}

(a) Number of 1’s is even and number of 0’s Is

even.

(b) Number of 1’s is odd and number of 0’s is

odd. Tazo
Ans. :

(a) - Number of 1’s is even and number of 0’s is even.

At any instance of time, we will have following cases for

number of 0’s and number of 1’s seen by the machine. °

Even Even co

Even Odd qr

Odd Even q

Odd Odd 4,

An input 0 in state q,, will make number of 0’s odd.

5 (qd, 0) = 4,

An input | in state q,, will make number of 1’s odd.

5 (dy 1) > 49,

An input 0 in state q,, will make number of 0's odd.

5 (q,,0) > 4,

An input | in state q,, will make number of 1’s even,

§q) 1) > %

An input 0 in state q,, will make number of 0's even,

5 (q,, 0) = qd

Teasy-sorutions

An input 1 in state q,, will make number of 1’s odd.

8@,1)>4,
An input 0 in state q,, will make number of 0’s even.

§ (q,,0) > q,

An input 1 in state q,, will make number of 1’s even.

§(q,,0) > 4,
qy is the starting state. An empty string contains even number

of 0’s and even number of 1’s. q, is a final state. q, stands for even

number of 0’s and even number of 1’s.

(a) Transition diagram (b) Transition table

Fig. 2.5 : Final DFA for Q .5(a)

(b) Number of 1’s is odd and number of 0’s is odd.

In solution of Q. 5(a), the state q, stands for odd number of

0’s should be declared as final state.

(c) Transition diagram (d) Transition table

Fig. 2.5 : Final DFA for for Q .5(b)

Q.6 Give the finite automation M_ accepting

(a,b)*(baaa).

Ans. :

The R.E. = (a, b)* (baaa), represents strings ending in baaa.

The FA is given below

a,b

@
O--_@+@©+ ©+ ©

Fig. 2.6

Q.7 Give applications of Finite Automata.

Ans. :

Applications of Finite Automata

Finite automata are used for solving several common types of

computer algorithms. Some of them are :

‘ J “

Scanned by CamScanner

¥ Theory of Comp. Sci. (MU-Sem. 5-Comp.) ! TCS-4 0°

(i)' Design of digital circuit

(ii) String matching

ii) .Communication protocols for information exchange.
(iv) Lexical analysis phase of a compiler.

Finite automata can work as an algorithm for regular
language. It can be used for checking whether a String we L, where
Lis a regular language. 4

Q.8 Design a DFA to accept strings over the alphabet
set {a, b} that begin with ‘aa’ but not end with ‘aa’,

Fig. 2.7. |

A string not starting with aa will reach the dead state q, .

Astring starting with aa will reach the state q,.

A string starting with aa and not ending in aa will be either in q,

OF qs. |

The DFA is given by,

Ms = (os Gas Gar Fa» Gas Gs Go) s (8, B}, 8, doy {Gus Gs})

Q@.9 Design a MOORE and MEALY machine to
decrement a binary number.

Ans. :

One can decrement a binary by adding 11...1 (all 1's is 2’s

complement of 1) to the given number. ‘The addition should start

from the least significant digit.

‘Mealy machine

Fig. 2.8

(qo — Previous carry as 0, q, — Previous carry as 1)

ies all trailing 0’s are written as 1 and the first 1 is written as 0.

Moore machine: -

Fig. 2.9

Q.10 Design minimized DFA for accepting strings
ending with 100 over alphabet (0, 1).

Ans. :

All strings ending in 100 :

The substring ‘100’ should be at the end of the string.

Transitions from q, should be modified to handle the condition that

the string has to end in ‘100’.

(a) State transition diagram (b) State transition table

Fig. 2.10 4

q, to q, on input 1 :

An input of 1 in q, Will make the previous four characters as

*1001°. Out of the four characters as ‘1001° Only the last character
‘I’ is relevant to ‘100°.

q, to q, on Input 0:

An input of 0 in q, will make the previous four characters

*1000°, Out of the four characters 1000”, nothing is relevant to
‘100°.

Q. 14 Design Moore Machine t generate ‘output Alt . string Is ending with abb, B if string ending with aba and C otherwise over alphabet (a, b). and convert It to mealy machine. “i:

Gs PITT Tt

Scanned by CamScanner

\

WF theory of Comp. Sci. (MU-Sem, 5-Comp.,) '

‘Ans. :

~ Design of Moore machine

‘Fig. 2.11

Conversion Into Mealy machine :

’ Step1:

output associated with a state to transition entering

into that state.

_ La . b

9 1 4»C do Cc

41] 4C dC

| 4B gy A

G3 | GC dC

q. | GC. d c

Step2: . Minimization

The two states q, and q, can be merged into a single state, say qj.

Go} Gr dos C

Gi | dC dC

| 4B a,A

93} 4»C doC

The two state qo, q, can be merged into a single state, say qo.

jab
G | div© dor ©

qi} dv aC

42} 4B do A
The final Mealy machine is

bic aC
b/A

Fig. 2.12

Construction of a trivial Mealy machine by moving

<TCS-5

Q.12 Convert following €-NFA to NFA without €.

Fig. 2.13

‘Ans. :

To convert €-NFA to NFA without € -

Step1: To remove é€ transition from q state to r state, we do

following

(a) “Duplicate transitions of r state on q state

(b) Since ris the final state, we make q as well as the

final state.

Step 2: To remove € transition from p state to q state do

following : /

(a) Duplicate the transitions of q state on p state

(b) Since q is a final state we make p as weil as the

final state.

Thus, the NFA is :

a : b c

OG. G
OOO

Fig. 2.14

Since all 3 states in the NFA are final states, we can merge all

3 states

.«. NFA — without € is

a,b,c

Fig. 2.15

Q.13 Design the DFA to accept the language containing ,

all the strings over > = {a, b, c} that starts and

ends with different symbols.

Ans.:

M = (Q,2,8.4.F}

Q = (Gos Qs Gas Vas As Ws» Gg» 7}

2X = {a,b,c}
qo = initial state

F = (43.45: 47)

PToasy solutions)

| Scanned by CamScanner

“

WF theory of Comp. Sci. (MU-Sem. 5-Comp.)

Fig. 2.16

. 8 = Transitions are:

8 dy a) >a 35°) > ds

8b) > q °8@)a >&

5@>°c) > ds §@,b) >a
5(q,8) > 5(@,¢) >q .

5 (qb) => 4 5(qs,a) => qs

8(q,¢) => a 8 (qs.b) =>

5 Ga) => ds “8 (dsc) => qs

5@.c) > 4; 5(4,8a) > %

8(q,b) > §(q,b) => q

85a) > 4, Spc) > 4

8 (qb) => Gg,

Q.14 Convert the following grammar into finite

automata.

S$—aXIbYlalb

X—>aS|bYIb

Y—aXIbS

Ans. :
’ The above grammar can be converted to FA as follows :

” For every non terminating symbol we consider it as a

different state

M = {Q,2%,4,5S, F}

Q = {S,X,Y)

z= {a,b)

S = initial state

F = {X,Y}

5: Transition functions are ;

5(S,a) => X

6(S,b) = Y-

@ 5
. @GSEHETIIIIS

>S5

>yY

=X

=>S

5X, a)

5 (X, b)

. &(Y,a)

8 (Y, b)

Q.15 Design the DFA to accept all the binary strings

over = = {0, 1} that are beginning with 1 and

having Its decimal value multiple of 5.

Ans. : :

" Running remained is maintained through the states qo, q,, %

dy, Gy: If the number start with 0, itis rejected|

Fig. 2.18

Reminder calculation for finding the next state

A 0 00 + 5 = 0(q,) 01+5=1(q)

a 1 10+5=2(q,) 11+5=3(q)

& 10 100+5=4(q,) | 101+5=0(q)

a 1 M0+5=1(q) 111 +5=2(q)

a | 100 1000+5=3(q;) | 1001+5=4(q)

The operator + is for reminder.

Q.16 Design mealy machine to find out 2's complement
of a binary number.

Ans. :

2's complement of a binary number

2's complement of a binary number can be found by not
changing bits from right end till the first ‘1" and then
complementing remaining bits. For example, the 2’s complement
of a binary number 0101101000 is calculated as given below :

010110 1000 .
=> 1010011000

Complement No change
every bit

Fig. 2.19

- *

Scanned by CamScanner

TCS-7

Wrneory of Comp. Sci. (MU-Sem. 5-Comp.)

The required mealy machine is given below.

The input is entered from right to left.

Gg "1 ey"

Fig. 2.20

 n equivalent DFA

qo | {90 a1} | {41} {}

q { q2} {4142} | CF

“qo | {ao} { qo} { q3}

Ans. :

The transition graph of the given NFA is :

€-closure of states :

Go — Go)

q, — Gy)

G — (G»%)

NFA to DFA using direct method.

Fig. 2.22

If ‘a’ is followed by ‘a’ then the machine enters the failure

state q, -

A ‘b’ immediately after ‘a’ takes the machine to the accepting

state qo : .

Q. 18 Design a DFA over an alphabet = = {a, b} to

recognize a language In which every ‘a’ Is

followed by ‘b’

Ans. :

Q.19 Design a mealy machine to determine the residue

mod 3 of a binary number. |

Ans. :

® Fig. 2.24

State qyis for the running reminder as 0.

State q, is for the running reminder as 1.

State q, is for the running reminder as 2.

Output 1 indicates divisibility by 3

Output 0 indicate that the number is not divisible by 3.

. Required R.E. = (0 + 1 (1 + 01)* 00)*

Q: 20 Convert the following NFA to an equivalent DFA

qo | {405 41} q {}

a {42} | £4192} | {}

*d2 | {40} {q.} | (a3

Ans. :

€- closure of states

State |: €- closure

qo { %}

1 {a}

ke (a, 9}

Constructing DFA using the direct method

Step1: — Transitions for the state {qo}

MV Jeasy-solutions

Scanned by CamScanner

Step 2:

 Step 3: Writing transitions for the state {qo> 91}

Writing transitions for the: states {q,, q,} and

{dos divd}o
Step 4;

Q.21 Draw DFA for the following language over {a, b} :

(a) All strings starting with abb.

(b) - All strings with abb as a substring i.e., abb
anywhere in the string.

(c) All strings ending in abb.

Ans. :

(a) All strings starting with abb

___ First input as ‘b’ will take the machine to a failure state.

First two inputs as ‘aa’ will take the machine to a failure state.

First three inputs as ‘aba’ will take the machine to a failure state.

First three inputs as ‘abb’ will take the machine to a final state,

(b) State transition table

Fig. 2.25 : Final DFA for Q. 21(a)

= : Teasy-sorutions)

(a) State transition diagram

2 . 7 ‘ . . ~ + i

WF Theory of Comp. Sci. (MU-Sem. 5-Comp.) a ross.

Writing transitions for the state {q,} A DFA without explicit failure state is given in Fig. 2.25(a)

(a) State transition diagram (b) State transition table

Fig. 2.26 : Final DFA for Q. 21(a), without a

failure / dead state

(b) All strings with abb as a substring

The machine will have fours states :

State q, -It is the starting state and indicates that nothing of

relevance to complete ‘abb’ has been seen.

State q, — preceding character is ‘a’ and ‘bb’ is required to

complete ‘abb’.

State q,» — Preceding characters are ‘ab’ and ‘b’ is required to

complete ‘abb.’ ,

State G5 - Preceding dlinestiers are ‘abb’ and the substring

‘abb’ has been seen by the machine.

Cys Cs
d-9+6@

(a) State transition diagram (b) State transition table
Fig. 2.27 ; Final DFA for Q. 21(b)

y to dy On input ‘b’ ;

First character in ‘abb’ is a.
Qy to q, On input ‘a’ :

q, is for preceding characters as ‘a’, first character of abb.
q, to : on input ‘a’ ;

N input of ‘a’ in state q, Will make the preceding two i
et aa’, Last ‘a’ will stil] constitute the first ‘a’ of 7

q, t0g, on input ‘b? ;

q, is for preceding two nen as ‘ab’ of ‘abb’.
q, to q, On input ‘a’

An input ‘a’ in 4, Will make the preceding three characters a8 ‘aba’. Out of the three characters ‘aba’, only the last character ‘a’ is relevant to ‘abb’,
i

 Scanned by CamScanner

W theory of Comp. Sci. (MU-Sem. 5-Comp.)

q, to q, on input b: .

q, is for preceding three characters as ‘abb’.

q, to. q; on input a orb:

The substring ‘abb’ has been seen by the machine and a new
input will not change this status,

(c) All strings ending In abb
As the substring ‘abb’ should! be at the end of the string.

Transitions from q, Should be modified to handle the condition that

the string has to end in ‘abb’.

' (a) State transition diagram (b) State transition table

Fig. 2.28 : Final DFA for Q. 21(c)

q, to q, on input a:

An input of a in q, will make the previous four characters as

‘abba’. Out of the four characters as ‘abba’ only the last

character ‘a’ is relevant to ‘abb’.

q, 0 q, on input b :

An input of b in q, will make the previous four characters

‘abbb’. Out of the four characters ‘abbb’, nothing is relevant

to ‘abb’.

Q.22 Design a DFA which can accept a binary number

divisible by 3,

Or

Design of a divisibility - by - 3 — tester for a

binary number. [DERELUEAIE eA ed

Ans. :

"A binary number is divisible by 3, if the remainder when
divided by 3 will work out to be zero, We must device a

mechanism for finding the final remainder.

We can calculate the running remainder based on previous

remainder and the next input.,

The running remainder could be :

0 — associated state, dy

1 — associated state, q,

2 — associated state, q,

Starting with the most significant bit, input is taken one bit at

.a time, Running remainder is calculated after every input. The

process of finding the running remainder is being explained with

the help of an example.

TCS-9

Number to be divided: 101101. .

| oO tf ft 0 4 + pe aitod by 3

Next inputis1 1 | (1), MOD 3 = (1),

Remainder1 1 0
next Input 0 (10)2 MOD 3 = (10)2

Remalnder10 1 9, 1 101), MOD 3 = (10
next Input 1 (1012 (2

Remainder 10 4 0 1 (101), MOD 3 = (10)
next Input 4 .

Remainder 10 | 0 0 (100), MOD 3 = (1)
next Input 1

y
Remainder 4 (11)p MOD 3 = (0),
next input 1

Fig. 2.29

The calculation of next remainder is shown below,

Previous Next . Calculation of Next

remainder input remainder remainder

0@) 0 00%3 = 0 (q)

0 (q,) 1 01%3 => 1(q))

1@) 0 100%3 => - 10(q,)

1) 1 1%3 = 0q,)

10(q,) 0 100%3 = 1@)

10 q,) 1 101%3 => 10 (q,)

Po\
Binary Binary decimal Binary

(b) State transition diagram (c) State transition table
Fig. 2.30 : DFA for Q, 22

Q. 23 Design a DFA for a mod 5 tester for ternary input.

Ans. : . ;

A temary system has three alphabets >

Z-= {0,1,2}

Base of a ternary number is 3.

@ENEIS

Scanned by CamScanner

WF theo of Comp. Sci. (MU-Sem. 5-Comp.)
'_ TCS-10

The running remainder could be :

(0); = O— associated state, qy

(1); = 1—> associated state, q,

(2); = 2— associated state, q,

(10); = 34 associated state, qy

(11), = 4— associated state, q,

tT fT

Fig. 2.31

Q.24 Design DFA that accepts the following language :_

(il) Set of all strings with odd number of 1’s
followed by even number of 0’s = = {0, 1}.

(ii) Set of all strings which begin and end with
different letters & = {x, y, Z}.

(iil) Strings ending with 110 or 111.

Ans. :

(i)

(il)

Fig. 2.32(b)

@3 GRESInn

(ill)

Fig. 2.33(c)

.25 Construct the minimum state automata equivalent

° to given DFA.

> a o

q, cf q

% ; qs qh

. a3 qs, Qo

4 G3 as

qs qs Ms

G6 / ds Ge

q7 Ge G3

Ans. :

Step1: — Finding 0-equivalence partitioning of states by

putting final and non-final states into independent

block.

Po = (qo q» q,> Qy> qs5> de> q,)

block 1

(q,)

block 2

Finding 1-equivalence partitioning of states by
considering transition on ‘0’ and transition on ‘1’.

I TY
Go, 91, 92,94, 45 46 47 (Qs) +— Transition on 0

Step 2:

block 1. block 2

On input 0, block 1 is successor of Gor Vy Qs gp G+
On input 0, block 2 is successor of GQ» Gy:
“+ Gy q, are distinguishable from or Fi, Ag Ig Gy

CRs Be fe oe gs 9 a7) (Qs) +—Transition on 1
block 1 block 2°

On input 1, block 2 is successor of q,.
On input 1, block 1 is successor of o> 4, I»
4, i8 distinguishable from or Qs Qs
PL= (dy. Gy ys I) (4, 44) (G,) (G5)

Ip Ws » Ip
15 » dy

Scanned by CamScanner

Wincor of Comp. Sci. (MU-Sem. 5-Comp.) TCS-11

Step3: Finding 2-equivalence partitioning of states by
‘ considering transition on ‘0’ and transition on ‘1’.

|
block 10 block 11

(97) ny as eH (d2° 4)

block 12

+—Tranaltion on 0
Cag)

+—Tranalttion on1

block 2

- On input 1, block 11 is successor of q,. 4,

On input 1, block 10 is successor of Go» Ig

qy G, is distinguishable from Pe

P= Gy 9) (q,. 45) G,, 9.) (G,) (q,)

Step4: ~ Finding 3-equivalence partitioning of states by

we transition on 0-and 1.

To

to

I -—— +— Transition ond

(Gq +96) (9, 45) {ta u) (4) G4) (47) (43)
“it LiU_+

Blocks can not be divided further.

<P; =P, = (qy 4.) (d,> 45) (G,, 4, (G,) (G,) which is final set

of blocks of athe classes.

Step 5: Construction of minimum state DFA.

0 1

HM» G,) | (,-45) . Gy 4)

(ys) | Gy Ig) ~ Go» Ie)

(q»4,) | (4) (dy 45)

@t| @ Ga
(q,) | Gy 4.) (q,)

(a) State transition diagram for minimum-

(b) State transition diagram for minimum-state DFA state DFA

Fig. 2.34.

oy (CT easy-solutions

<— Transition on 1

Q.26 A language L Is accepted by some NFA if and

only if It is accepted by some DFA.

oR.

For every NFA, there exists an equivalent DFA.

Ans. :

Proof’

Given theorem has two parts :

1. "If Lis accepted by a DFA M,, then L is accepted by some
NFA M,.

2. If Lis accepted by an NFA M,, then L is accepted by some

_ DFAM,.

First part can be proved trivially. Determinism is a case of

non-determinism. Thus a DFA is also an NFA.

Second part of the theorem is proved below :

Construct M, from M, using subset generation algorithm as

explained earlier. We can prove the theorem using induction on the -

_length of a.

Base case : Let w = € with | w 1 = 0, where | «1 is length of w.

Starting state for both NFA and DFA are taken as q,, When

9 = €, both DFA and NFA will be in q,. Hence, the base case is

proved.

Assumption : Let us assume that both NFA and DFA are

equivalent for every string of length. n. We must show that the

machines M, (NFA) and M, (DFA) are equivalent for strings of

length (n + 1). Let @, , ,; = @,a, where «, is a string of length n and

@, ,, iS a string of length (n + 1). ‘a’ is an arbitrary alphabet from

x.

5,4, w,) = 5.) w,), where 6, is transition function of DFA

(M,) and 8, is transition function of NFA (M,).

If the subset reached by NFA is given by

{Py Boy +++ Py}
k wo

then, 84,1) = U 80,2) 4)
. . i=l

k

or {Pp P»---Pya) = U 80,2) ii)
i=l

also, 5,4 ®,) = {P,'P» + Pt Gi)

from (i), (ii) and (iii) we get, .

BxQy M41) = 8, Gy.) a) -
B,({P,» Py» «++ yb @)

k

U 5@,a= Ba S40)
i=1

u

Thus, the result is true for | | =n + 1, hence it is always true.

Scanned by CamScanner

WF tcoy of Comp. Sci. (MU-Sem. 5-Comp.)

Q.27 Convert the following NFA to a DFA and
Informally describe the language It accepts.

Ans. :

Step1: — {p} is taken as the first subset.

, O-Successor of {p}_ = 8 ({p}, 0) = {p,q}

I-Successor of {p}_ = 8 ({p}, 1) = {p}
Step2: The new subsets (p, q} is generated. Successors of ©

{p, q} are calculated.

5({p,q}.0) = 5(p,0)U8(q,0)
= {pg}u {rs}
= {p.q.1,8}

» 8Cpgh.D = 6@DUVb@D= (pu {t}

= {p,t}
Step3: Two new subsets tp. q, tr, S} and {p, t} are generated.

Their successors are calculated. :

5 ({p, q, 1, s}, 0) = 8(p, 0) U 8 (g, 0) U8 (7, 0) U8 (s, 0)

= {p.q}Utrs}Ufp.Ud
= {p.q.r,8},

8({p.q.1 5}, 1) =p, 1) V8q@ ILS,)U86s, 1

= {q}U lt} U {t}Uud

= {p,t}

8 ({p,t},0) = 8p, 0) U8 (t, 0)

= {p,q} U= {p,q}

S(pt}.1) = 6, DUS 1)

= fphUo=tP)
No, new subset is generated. Every subset containing either s

or tis marked as a final state.

Informal Description: Strings over {0, 1} with second digit

from the end is 0,

 —{p) | {p.4) {p)

{p.q) | {p,a.15) (Pst)

{p.q.t8}* | {p,q.rs) (Pt)

{p.t}* | {pq}. {P)

a) Btate table

 @anntinnn

_TCS.49 "|

(b) State diagram

Fig. 2.35 : Final DFA for Q. 27

Q.28 Construct a NFA that accepts a set of all strings

over {a, b} ending in aba. Use this NFA to

construct DFA accepting the same set of strings. |

Ans. :

a,b

G6 ©+©6
Fig. 2.36 (a) : Non-deterministic finite automata

Non-determinism should be utilized to full extent while

designing an NFA. A string of length n, ending in aba can be |

recognized by the NFA given in Fig. 2.36(a). First n-3 characters
can be absorbed by the state q, by making a guess. On guessing the

last three characters as aba, the machine can make a transition from
dy to q,.

NFA to DFA conversion :

Step 1: {q,} is taken as first subset

a-successor of {q.} = -8(qy, a) = {q..q,}

= 8(qb) = {q,}
A new subset { q..q,} is generated. Successors of

{ dg. G,} are calculated.

5 (dy dy}. a) = S(qy a) V8 Gy a) = {q9, 4,} 0.0 = (4%)
B (ay ay} b) = B(qy, bY VE Gy, b) = (4, U {a,} = Lay}
Step3: A new subset (qo q,} is generated. Successors of.

(qo) q,) are calculated,

B (ld Qh a) = Sq, a) V8 Gy a) = (ay, 4.) U {a5}
{dg ys Wg}
5(qy b) US @, b) ={q,}Ud= {qo}

b-successor of {qo}

Step 2:

ul

B({q.4,},b)

Step 4; A new subset (q,, 4,4} is generated. Successors of

{dy 4,9} are calculated,

5 (dg, 4,95), 8) A . 8q.a) US , 2) U 5 (ay)

{dy 4,} VOU O= (ay 44}

B
o
s
s

Scanned by CamScanner

W theory of Comp. Sci. (MU-Sem. 5 Comp.) TCS-13 -

5 ((44,4,)b) = B(q,, b) U8 (q,,b) U8 (qy, b) dy — Running remainder is 4 = (11).

= {q.) ¥ (a,} UV >= (ay4,) { ;

No, new subset is generated. Every subset containing q, is : |

marked as a final state. In decimal Internary '
system system

(b) State diagram of the DFA -

a : b _ ;

rq) {ay 4} {a} — Fig. 2.37(b) : Moore machine
ya

{44} | {aya} {ay 4} _ | Q.30 Design a mealy machine for a binary input
sequence such that if the sequence ends with 100

{494} | {943} {4g} the output is 1 otherwise output Is 0.

{qq 4y 45)"] {49-9} {4 43}

(c) State table of the DFA Ans. :

Fig. 2.36

Q,29 Give Mealy and Moore machine for the following :

From Input £*, where = = (0, 1, 2) print the residue
modulo 5 of the Input treated as ternary (base 3).

May 2006; Dec. 2015

Ans. :

(a) Mealy machine

(b) State table .
Fig. 2.38

Meaning of various states :

“1/0 qo— Start state
3 hi

+ Fig. 2.37(a) : Mealy machine q,— previous symbol is 1

Meaning of various states is : / d:preceding two symbols are 10

Qo ~ Running remainder is 0 7

R . inder is 1 A transition from q, to qo will make the preceding three
q, — Running remainder is

”

q, ~ Running remainder is 2 symbol as 100 and hence the output 1.
— Running re .

q; ~ Running remainder is 3 = (10),

wade

Scanned by CamScanner

‘TCS-14
W theory of Comp. Sci. (MU-Sem. 5-Comp.) S|

Q.1 Write short note on Myhill-Nerode theorem.

Dec. 2005, May 2006, Dec. 2006, May 2007,

May 2008, Dec. 2008, Dec. 2012, May 2013

Ans. :

Myhill-Nerode theorem

Given a language L, two strings x and y are said to be in the

same class if for all possible strings z either both xz and yz are in L

or both are not.

The Myhill-Nerode theorem says :

1. A language L divides the set of all possible strings into

mutually exclusive classes.

2. If Lis regular, the number of classes created by L is finite..

3. Ifthe number of classes L creates is finite, then L is regular.

In finite automata, each state can be thought of as creating a

class of strings. Two strings are said to be in the same class if they

both trace a path from starting state q, to some state q; (say).

Number of strings is infinite.

_ Number oftstates in an FA is finite.

Many strings when applied to the FA will end up in the same

state. Each state of FA can stand for a class of strings.

Chapter 3 : Regular Expressions and L anguages

In the string xy'z with i = 0, at least one ‘a’ or atleast

one ‘b’ will be erased from (ab)" * U of (aby" * 1a,

This will lead to one of the following situations :

1. Number of a’s in (ab)" is equal to number of as

“in at of (ab)"a".
2, — xy°z will not be of the form (ab)"a“.

Step 3:

Therefore, xy'Z eL.

Hence, this is proved by contradiction.

3

5. Complementation 6.
5

1

Q.2 Show that

(1 + 00"1) + (1 + 00°1) (0 + 10*1)'(0 + 101) = 0"1

(0 + 10*1)" Rene 2006

Ans. :

LHS. = (1+00*1)+(1+00*1) (0 + 10*1)'@ + 10*1)

= (1 400") [e+ + 10*1)"O+ 10*1)]

= (1+00*1) (0+ 10*1)"

i = [(e+00*) 1] + 10*1)* = 0*1(0 + 10*1)"

= RAS.

Q.3. Prove L={ (ab)"a": n>k, k2 0} Is not regular.

Ans. :

Step1: Let us assume that L is regular and L is accepted'by

, an FA with n states.

Step 2: Let us choose a string

o = (oy 1

‘lol = Un¢l)tn=3ne220
Let us write w as xyz, with

_lyl > 0 and Ixyl S$ n-

The string xy will contain a maximum of n symbols from (ab)".

M7 {easy-solutions)

Q.4 Write short notes on closure prop erties of regular

language. Dec. 2006, May 2013. Dec. 2014

Ans. :

Closure properties of regular language

If an operation on regular languages generates a regular

language then we say that the class of regular languages is closed

under the above operation. Some of the important closure

properties for regular languages are given below.

1. Union 2. Difference

Concatenation 4. Intersection

Kleene star

Transpose or reversal.

‘ Regular Language is Closed under Union

Let M, (S, 2, 1, So, F) and

M, (Q, 2, 5,, do, G) be two given automata.

To prove the closure property; we must show that there is
another machine M, which accepts every string accepted by either

M, or M, and no other string. The construction M, is quite simple

as shown in Fig. 3.1.

G

Fig. 3.1 M; is constructed such the L(M,) = L(M,) ULM).

wy

Scanned by CamScanner

Ww Theory of Comp. Sci. ~Sem. 5-Comp.)
Machine M, is constructed to accept L(™,) VU L(M,).

M; = (R, ©, 85, 9, H) where ry is a new start state. Two
g-moves, one from Tp to Sy and another from r, to qa are added.

R= SUQY [m)}

H = FUG .

8, = 8, V8, 0 (tye, 8), (rp, & ay)
Machine M, can non-deterministically choose either M, or

M,, Therefore,

LM) = LOM) ULM) |
2. Regular Language Is Closed under Concatenation

Let M, = G&ES.s.F-)
; and M, = (Q,%,8,, qo, G) be two given automata.

To prove that closure property under concatenation, we must

show that there is. another machine M, such that L(M,) = L(M,)-

L(™,). The construction of M, is shown in Fig. 3.2.

—&)

© 9O

—@)

Fig. 3.2 : M, is constructed such that L(M,) = L(M,) - L(M,)

M, is constructed by adding ¢-move from every final state of

M, to start state of M,.

Machine M, is given by :

M, = (R,Z, 53, 8 G) where

8, = 8, U,V {e-move from every final state of M,

to start state of M,}

Machine M, recognizes L(M,) + L(M,) by going non-

deterministically fromyhe final state of M, to start state of M,.

3. Regular Language Is Closed under Kleene Star

Let M, = (Q, 5 8, do F) be the given automata, We can
17 , . ? .

construct a non-deterministic finite automata M, such that

LM.) = L(M,)*. The’ construction of M, from M, is shown in

Fig. 3.3.

ol

+~@ |O
©

Fig. 3.3 : M, is constructed such that L(M,) = LM™,)*

M, is constructed as given below :

(a) A new start state 8, is added with an ¢-move from Sy to do.

(b) A new final state f, is added with e-moves from every state of

F to fy, An €-move is added from s, to f, as € is a member of

L(v,)*.

Machine M, = (QU (5 fo}, 2, 8, So, {foh)

Machine can accept a string € L(M,) and resume back from

the start state q, through the e-move from f, to q,. Thus accepting

L(™,)*.

4. Regular Language is Closed under

Complementation

Let M = {Q, &, 5, qo, F) be the given automata. To prove the

closure property under complementation, we must show that there

-is another machine M which accepts L(M) where

LM) = LM) = Z*-L™M)

| I

Given Machine after
machine complementation

_ If M is a deterministic finite automata then M can be

constructed by interchanging final and non final states of M.

(Q, 2, 8, qo, Q- F)

5. Regular Language is Closed under Intersection

M =

If L, and L, are two regular languages, then

Lal, = (LoL) =@, UL
= E*-[@*-L)U@*-L))

Closeness under intersection follows directly from closeness

under union and complementation.

6. Regular Languages are Closed under Difference

Let L, and L, are two regular languages. The difference

L, - L, is the set of strings that are in language L, but not in L,.

Construction of a composite automata for L(M,) - L(M,) is

explained in Chapter 2, Thus regular languages are closed under

difference, "

Doon :
@s EIS

Scanned by CamScanner |

Wrtticory of Comp. Sci, (MU-Sem. 5-Comp.)

7. Regular Languages are Closed under Reversal

 (Ill) L = fe (a, b)* | (number of a’s In o) mod if

i
3 = 0} ad 4 Reversal of a language L is obtained by reversing every string ww) L={a HI n>= 4,m<= = 3} : a a

inL. Reversal of a language L is represented by L®
ae

For example, . Ans. : vy

if L = {aab, abb, aaa}; then L¥ = (baa, bba, ana} Gi) The set of all strings over {0, 1} without length two.

: * Let M, = (Q, &, 5, qo: F) be the given automata. To prove the e+ (0+1)+(0+1) +1) +1) OF 1)
closure property under reversal, we must show that there is another (ii) Le {a’b” | (n + m) is even}
machine M, which accepts L(M,)*. ((aa)* ab + bb) (bb)*

_ R ‘ ; q ea (ii) L= {w € (@, b)* I (number of a’s in «) mod 3 = 0)
M, can be constructed from M, by : (b+ ab*ab*a)*

1,» By reversing every transition in Mj. Gv) L={ab™|n>=4 in <= 3}

2. — Start state of M, is made the only final state. " aaaaa*[e +b + bb + bbb]

. 3. A new start state s, is added with e-move to every final state Q.7 ProveL= {(ab)"a‘ In>k, k >= 0} Is not regular.

of M,. 4 _
\ Q.5 Design a NFA to accept (a + b)*aba convert it toa | Ans. : ag

; reduced DFA. Step1: | Let us assume that L is regular and L is accepted by
Ans.: an FA with n states. 7 .
(a+b)" aba -Step2: Let us choose a string

RE to NFA : o°= (ab)"*!a"

(a+b)* aba

= Omen ©) lol = An+1)+n=3n+22n
* Let us write w as xyz, with . (a+b) a

= 70 O-O +O ly! > 0
Oy. : y

& b a and Ixy] < na - +O O+O- ©
as : The string xy will contain a maximum of n symbols from (ab)".

-_ = 3 a @— @ a Step3: In the Sting xy'z with i = 0, at least one ‘a’ or atleast

one ‘b” will be erased from (ab)"*! of (ab)"* 1a".
Fig. 3.4: RE to NFA This will lead to one of the following situations :

NFA to DFA . 1. Number of a’s in (ab)" is equal to number of a's ©
,

in a‘ of (ab)*a*

2. _xy°z will not be of the form (ab)"a*
Therefore, xyz eL.

< b Hence, this is proved by contradiction.

’ Fig. 3.5 : NFA to DFA . Q.8 Construct a NFA for the RE (01* + 1) and convert it. | to DFA. “
Q.6 Write RE for the following languages Ans. :

(Il) The set of all string over {0, a without (01* + 1)
length two.

RE to (Il) L={a"b” | (n + m) Is even} NFA

@s CHET eg é;
ae
|

Scanned by CamScanner

TCS-17

Ne WW theory of Comp. Sci. (MU-Sem. 5-Comp.)

\ o1*

1

; Fig. 3.6(b) : NFA to DFA

Q.9 Construct an NFA with e-moves forthe

RE 10(0 + 01 + 0110)*

Ans. : ,

10(04+01401 10)%-—

-O——_©
(0+0140110)*

1 e o & y

= O-O-0-0-0——-_O

a . Teasy-sorutions)

Qa. 10 State the pumping lemma for regular language.

Ans: ,

Pumping lemma for regular language

‘Pumping lemma gives a necessary condition. for an input

. String to belong to a regular set.

Pumping lemma does not give sufficient condition for a

language to be regular. ‘

Pumping lemma should not be used to establish that a given
_ language is regular.

Pumping lemma should be used to establish that a given

language is not regular.

The pumping lemma uses the pigeonhole principle which

states that if n pigeons are placed into less than n holes, some holes

have to have more than one pigeon in it. Similarly, a string of

length 2 n when recognized by a FA with n states will see some

states repeating.

Definition of Pumping Lemma

Let L be. a regular language and M = (Q, &, 8, dp: F) be a

finite automata with n-states. Language L is accepted by m. Let

@ € Land | @l 2 n, then w can be written as xyz, where

@ tlyl>o

Gi) Ixylsn

(iii) xy’ z €L for all i 2 0 here y denotes that y is repeated or

pumped i times. :

Interpretation of Pumping Lemma

Fig, 3.8 : FA considered for interpretation of pumping lemma

Let us consider the FA of Fig. 3.8

No. of states = 5 (qp to qy)

Let us take a string @ with|@125, recognized by the FA.

@ = abcabcb

To recognize the string w = abcabcb, the machine will transit

through various states as shown in Fig. 3.6.2.

q, is repeating

Ls a b c a b c b
0 > Fa Fg > 91 92 913 > 4

States ,

Fig. 3.9 : Transitions of FA on input abcabcb

As the input abcabcb takes the machine through the loop

qi — 93 — 43 —> q,, this loop can repeat any number of times. In

terms of abcabcb, we can say that if abcabcb is accepted by FA

Scanned by CamScanner

\

Wtheory of Comp. Sci, (MU-Sem. 5-Comp.)

then every string in a(bca)*bcb will be accepted by the FA of
Fig. 3.8. The portion bea is input during the loop.

Gi > > G3 > Oy.
Thus, if abcabcb is accepted by the FA then abcabcb can be

"written as xyz, with ‘
x =a.

y = bea

z = beb.

Length of abcabeb is > n

xy'z for every i = 0 or a(bca)'beb for every i 2 0 will be
accepted by the FA of Fig. 3.8. :

Q.11 Construct NFA from (0+ 1)*(00 + 11) and convert
Into minimized DFA. Cee

Ans. :.

(0 + 1)*(00 + 11)

RE to NFA (0+1)* (00+11) : © 3
(O+1)" ey 00411 ZR = O—O—_©

Fig. 3.10 : RE to NFA

x - 00 .

- O+0+6 ©
11

Fig. 3.10(a) : RE to NFA

NFA to DFA

Fig. 3.10(b) : NFA to DFA_

@sGNETIIS

¢

_TCS-18. |

Q.12 Explain decision properties for regular languages,

CT)
Ans. :

| 4

Decision properties for regular languages

1. Is aregular set empty ? - Emptiness property. ; /

2. Whether a finite automata accepts a finite number of strings 2”

— Finiteness property.

3. Whether a finite automata accepts an infinite number of

strings ? —Infiniteness property.

In addition to above decision problems, we can formulate a

number of other decision problems. Some of them are :

1. Given a regular expression R and a string w, does w belong to

LR)? ”

Given two FAs M, and M,, is L(M,) = L(M,) ?

Given two FAs M, and M,, is L(M,) subset of L™,) ?

Given an FA M, is M a minimum state FA accepting L(M).?

Decision Algorithm for emptiness :

Finite automata will fail to accept any string if it does not
have a final state, -

Finite automata will fail to accept a string if none of its

accepting states is reachable from the initial state.

We can determine the emptiness of language accepted by an

FA by calculating Q,, the set of states that can be reached from q,

by using strings of length k or less.

{45} ifk=0

*"UQ_1U (8 G,a)} IqeQ_,andae D} ifk>0

We can go on computing the Q, for each k > 0 until one of
the two cases arise :

1. Q, contains a final state.

The language is not empty.

2 Q=Q-)

The language is empty as the final states are not reachable
from qo.

Decision algorithm for finiteness / infiniteness :
The set of strings accepted by a finite automata M with 0 states is finite if and only if the finite automata accepts onl: strings . of length less than n, espe
The set of strings acce;

States is infinite if and only
nslwl<2n,
From the pumping lemma we know :
1. If @ with length of w 2 n is accepted by M then @ can be

pted by a finite automata M with 0
if it accepts some string w such that

written as xyz.

2. Forevery, i xy'z will be accepted by M,
We can always design an algorithm to generate all strings

over & with length between n and 2n.

Scanned by CamScanner

W Theory of Comp. Sol. (MU-Sem. 5-Comp.)
If any of these strings is accepted i M then ony: is infinite

else L(M) is finite.

Q.13 Using pumping lemma for regular sets, prove that
the language L={oo"loe {0, 1}*} Is not regular.

Ans. :

Step1: Letus assume that L is regular and L is accepted by a
~ FA with n states.

Step2: Let us choose a string
, n n

@= ab ba
. ~

a 4 +—from
om

lal = 2n+22n

Let us write w as xyz with

~tlyl >°Q and Ixyl < n

Since | xy | <n, x must be of the form a’.

Since I xy | <n, y must be of the form a’ |r> 0.

Now,

© =a'bba'= + + abba’

xy z

Step3: Letus check whether xy’ z for i = 2 belongs to L.

xy'z = a’a“a"~*"'bba"=a" *"bba”

Since r > 0, a * ‘bba’ is not of the form ow" as the

strings starts with (n + 1) a’s but ends in‘(n) a’s.

Therefore, xyz ¢ L. Hence by contradiction, we can

say that the given language is not regular.

Q.14 Using pumping lemma for regular sets. Prove that

the language L = { ww | w € {0, 1}*} Is not regular.

Dec. 2006, Dec. 2010

Ans. :

Step1: Let us assume that the given language is regular and

L is accepted by a FA with an states.

Step2: Let us choose a string

sab ab o=a
@ o

2n+22n

+— from ww

lol =

Let us write @ as xyz with

lyl > O

andixy! $< n

Since|xy| < n,x must be of the form a’,

Since Ixy! < n, y must be of the form a' Ir > 0.

TCS-19

Now, w=a'ba'b= a® a’ a’*“ba’b

x y z
Step3: Let us check whether xy! z for i = 2 belongs to L.

xy’z = a’a“a"*~'ba’b

a"*"ba"b

Since r > 0, a" * ‘ba’b is not of the form wo" as the
number of a’s in the first half is n + r and in the

second half is n.

Therefore, xyz é L. Hence by contradiction, the

given language is not regular.

Q.15 Show that the language L {a"ba" | n > 0} Is not
regular.

Ans. :

Step1: Let us assume that L is regular and L is accepted by

an FA with n states.

Step2: Letuschoosea string ;

0 = aba’

lol = 2n+1l2n

Let us write w as xyz, with

lyl > 0

and |xyl-< n

Since, Ixy | <n, y must be of the form a I r>0

Since, | xy | <n, x must be of the form a’.

Now, ab" can be written as :

a’a'a"~°-" ba”

Step3: Let us check whether xyz for i=0 belongs to L.

0 10 n-s-r,
xyz = a(a)a ba"

= a ‘ba’

Since, r> 0 the string a’ ‘ba €L.

Hence by contradiction we can say that the given

language is not regular. ‘ ,

Q.16 Write short note on application areas of R.E.

Ans.:

Application areas of Regular Expression

1. R.E. in Unix ,

The UNIX regular expression lets us specify a group of

characters using a pair of square brackets []. The mules for

character classes are :

1. [ab] Stand for a+b

2. [0-9] Stand for a digit from 0 to 9

3. [A-Z] Stands for an upper-case letter

Gahan

Scanned by CamScanner

\

WF theory of Comp. Sci, (MU-Sem. 5-Comp.) _1CS-20 -

. ding to the regular - 4.. [a-z] Stands for a | Q.17 Design a DFA correspon 5 ora lower-case letter : expression. (a + b)* aba (a + b)* May 2013

([0-9A-Za-—z] Stands fora letter or a digit. A !
ns. : ‘

The grep utility in UNIX, scans a file for the occurrence of a
pattern and displays those lines in which the given pattern is
found.

The language associated with the R.E. (a+ b)*abata +b)* =

‘strings with “aba” as substring.

DPA for-strings with aba as substring. For example :

$ grep president emp.txt

It will list those lines from the file emp.txt which has the

pattem “president”. The pattem in grep command can be

specified using regular expression. . Fig. 3.11
6. * matches zero or more occurrences of previous character. a 48 Construct an NFA with epsilon transition for the

7. @ matches a single character. / . following RE. (00 + 11)* (10)*

8. [pqr] Matches a single character which is not a p, q or r, Ans. :

_ 9... “pat Matches pattern pat at the beginning of a line

10. pat$ = Matches pattern at end of line. / ‘

Example , y a \ ‘ by
c x

t \

(a) The regular expression [aA] g [ar] [ar] wal stands for either O SO E @ (10)* O

“Agarwal” or ‘agrawal”, i \ :
(b) g* stands for zero or more occurrences of g.

(c) $grep “A-* thakur” emp.txt will look for a pattern starting

with A. and ending with thakur jin the file emp.txt.

2. Lexical Analysis

Lexical analysis is an important phase of a compiler. The

lexical analyser scans the source program-and converts it into a

steam of tokens. A token is a string of consecutive symbol defining

_ an entity.

For example a C statement x = y + z has the following tokens :

x — An identifier

= -— Assignment operator

y = Anidentifier

+ — Arithmetic operator +

z -— An identifier
ag Fig. 3.12

Keywords, identifiers and operators are common examples of

tokens. ’ Q.19 Convert (0 + €) (10)* (€ 4 1) Into NFA with

The UNIX utility lex can be used for writing of a lexical €-moves and hence obtain a DFA. CoE

analysis program. Input to lex is a set of regular expressions for Ans. :

each type of token and output of lex is a C program for lexical Step1: REtoNFA for +e) U9) +n

’ analysis.

@OhETnnIIn — ae

Scanned by CamScanner

- SF Theory of Comp. Sci. (MU-Sem. 5-Comp.)

Fig. 3.13

_ (Note : States have been removed.)

Step 2: &€-NFA to DFA

€-closure of states

Go {> Ga» Is} + qi 7 {a1}

o> {4,95}, d3 > {a}

The DFA using the direct method is given below.

: Q

Fig. 3.14

Q.20 Using pumping lemma for regular sets, prove that

the language, L = {0"lnisa prime} Is not regular.

Dec. 2007, Dec. 2009, Dec. 2015, May 2016

Ans. :

Step1: Let us assume that the given language is regular and

Lis accepted by a FA with n states.

Let us choose a string © = a’, where p is a prime and

p>no.

lm! = la’i=pen

Step 2:

Let us write w as xyz with

lyl > 0,

and Ixyl So

We can assume that y = a" for m>0.

Step 3: Length of xy'z can be written as given below :

Ixy'z! = Ixyzl+lyo' l= p+G-1)m

assy! = la'l=m

Let us check whether P (i - 1) m is a prime for every i.

Fori=p+1,p+(i-1)m=P+P,,=P(1+m).

P (1 + m) is not a prime as ‘it has two factors p and

(1+4m)and

Ip! > 1,

ll+ml > 1

So xy’ * 7 ¢L Hence by contradiction the given

language is not regular.

Q. 21. Draw a state diagram and construct a regular

expression corresponding to the following state

transition table.

‘State o|1

— "di | G1 | Ge

Gz | 43 | Ge

Gs | G1 | Ge

Ans. :

State diagram

R.E. form state diagram

Step 1: Removing loop between q, and q, we get

Step2: Removing the main loop, we get

(0 + 1(1 + 01)*00

|
 Q. 22 Show that the language L = {a"b’} Is not regular.

 Dec. 2006, May 2010, Dec. 2010, Dec. 2012, May 2013,

May 2014, Dec. 2016, May 2017, Dec. 2017

 ae Q@OnETInI

Scanned by CamScanner

W theo of Comp. Sci. (MU -Sem. 5-Comp.

Ans.: ;

Step 1: Letus assume that L is regular and L is accepted by a
FA with n states. ‘

Step2: Let us choose a string \

o= ab

lol = 2n2n

Let us write w as xyz, with

lyl > 0

andixyl < n

Since, I xy I<n, y must be of the form a‘ I r> 0

Since, | xy | <n, x must be the form a’. °

Now, ab" can be written as
t a 7 a’*'b" .

TTT

y

Step3: Let us check whether xyz fori = 2 belongs to L.
xy’z = ai (a’)’a sip ;

= ‘ata2tat —s= 2

ai t@tn-s-rpn

Derino |
a ob

a+r Since r> 0, number of a’s in a" b" is greater than number

of b’s. Therefore, xyz é L. Hence by contradiction we can say that

the given language is not regular.

Q.23 Construct NFA for given regular expressions :

(i) (a+b)*ab

(li) aa(a + b)*b

- (iil) (aba) (a + b)*

' (Iv) (ab/ba)*I(aa/bb)*

Ans..:

@) (a+b)*ab: NFA

ae 5

Q-O-®

(ii) aa(a+b)*b: NFA

TCS-29°

(iv) (abiba)*I(aalbb)* : NFA

.

Q. 24: Convert (0 + e) (10)*(e + 1) into NFA with e-moves .

and obtain DFA.

Ans. :

Step 1:

NEFA for the given expression :

Step2: €-closure of states :

do — {do a. 4 }

qi > (495)

% > {a}

G3 > (a) -

Step3: DFA using direct method :

@s easy-solutions . ; Scanned by CamScanner

. 1

Wneory of Comp. Sci. (MU-Sem. 5-Comp. TCS-23

_ Chapter 4 : Regular Grammar (RG).

A dead state is added to handle transition. The

resulting DFA is shown in Fig. 4.1(c).
Q.1 Construct right linear grammar and. left nea | Step 3:

grammar for the language (ba)*,

Ans. =

Transition system for (ba)* is given by :

ba

We can write left linear grammar and the right linear

grammar form the transition systems,

.

Right linear grammar :

S—> baS le

Left linear grammar :

S— Shale

Q.2 Final the equivalent DFA accepting the regular
language defined by the right linear grammar

given as :

S—+aAIbB,A—>aAlbclaB>aBlbC—>bB

Ans. :

Anew final stateF is being introduced to handle productions like,

A7>a B-b

Step1:. Adding transitions corresponding to

production, we get the FA shown in Fig. 4.1(a).
a

every

Fig. 4.1(a)

Step2: Drawing an equivalent DPA, we get :

Fig. 4.1(c)

 Fig. 4.1(b)

Q.3 Construct left linear and right linear grammar for

_ the regular expression.

May 2009 ((01 + 10)"41)*00)*

The given expression can be represented using a transition

system as shown below :

(1 + 10y"11%)00 ((O1+10y"11*) LC)

Ans. :

Fig. 4.2(a)

io -
QO ETI

Scanned by CamScanner

W Theory of Comp. Sci. (MU-Sem. 5-Comp.)

Removing é — transitions, we get :

01,10

Fig. 4.2(b)

Writing of right linear grammar we get,

S$— 00S 111A 101B110B le

A+ 11A101B110B100S

B-OIBI10BI 1A

For writing of left linear grammar, we interchange the start

state and the final state and change direction of all transitions. The

resulting transition system is given by :

Fig. 4.2(c)

Writing of left linear grammar we get,

S— S001 A00le ,

A> A111B111S11,

B— B01 110B1S011S10! A011 A10

i
n
a

i

TCS-24 : |

a
Step1: Adding transitions corresponding to every ‘4

production, we get
4

Fig. 4.3(a)

Step2: Adding a state E to handle 6-transitions, we get the

final DFA.

a

Fig. 4.3(b) : Final DFA

Q.4 Convert the following right-linear grammar to an

equivalent DFA.

S—bB

B—obC

B-aB

C-a

Bob

Ans. :

Re-writing the production we get

S — bB

B — bClb

B — aB

c-oa

@onETs

Q.5 Convert following RG to DFA

S— 0A11B, A—0C11A10,

‘B>1BI1AI1, C—+O010A.

Ans. : :

A new final state F is being introduced to handle productions like, _

A -0,B7>1,C>50.

Step1: Adding transitions corresponding to

production, we get the FA shown in Fig. 4.4(a).

every

Fig. 4.4(a)

Step2: Drawing an equivalent DRA, we get

Fig. 4.4(b)

Scanned by CamScanner

Wtneory of Comp. Sci, (MU-Sem. 5-Comp.)

States {S}, {A}, {B}, (C,F}, and {A, F) are renamed

8S Go» Gi G2» ry and a dead state q, is introduced to

handle $ — transitions. The resulting DFA is shown

in Fig. 4.4(c) : ,

Step 3:

Fig. 4.4(c) : Final DFA

Q.6 Write an equivalent left linear grammar from the
given right linear grammar.

'S—>0A11B

A> O0CI1A10

B-1BI1AI1

C-O0I10A

Ans. : 7

Step 1: Transition system for the given right linear grammar

_ is-as shown in Fig. 4.5(a).

Fig. 4.5(a) : Transition graph

-TCS-25

Step 2: — Interchanging the start state with the final state and

reversing direction of transitions, we get

Fig. 4.5(b)

‘Step3: Writing of left linear grammar from the transition

system, we get :

— COIAOIBI

— A1ICOIBIIO

— Bilt

= Ad.

“a
A

w
P
r
n
u
n

Q.1 Write an unambiguous CFG for arithmetic

expressions with operators: +, *, /, “4, unary

minus and operand a, b, ¢, d,e, f.Also, If should

be’ possible to generate brackets with your

rammar. Derive (a + b) 4 d/e + (— f) from your

oaminer)
Ans. :

An unambiguous grammar is given below.

EB+E4+TIT [+ has lowest priority with L — R associativity]

Chapter 5 : Context Free Grammars (CFG) —__

T—oT*FIT/FIF (* and / has higher priority over

+ with L > R associativity]

F>FAGIG [4 has higher priority over * and / with

L- R associativity] ,

G+-HIH [unary — has the highest priority]

H-albleldleltfl(B) — [to handle brackets and identifiers]

Derivation tree for (a + b) Ad/e+(-f)

@GSnnD

Scanned by CamScanner

W theory of Comp. Sci. (MU-Sem. 5-Comp.) TCS.26

E

i

1 F
/\
T/ OF a

/ |
F G H

JN 1 AN
FA@ H { E)

| | |
G H e T

| |
H d F

/\

+
>
m
 a

+

»
—
x
z
—

9

—
—

7

4

—
mm

o
—

I
—

9
—

1
—

4

Fig. 5.1 : Derivation tree for (a +b) 4d/e+(-f)

Where, a € T is a terminal and © is a string of Zer0 OF more 4

variables.

The language L,(G) should be without €..

Right hand side of each production should start with a

terminal followed by a string of non-terminals of length zero op

more.

Q.4 Prove that the language L = {a° | p Is a prime} te

Ane. :

A, ; Let us assume that L is a CFL.

2. Letn be the natural number for L, as per the pumping lemma,

Let p be a prime number greater than n. Then z = ae L. We
can write z = uvxyZz. :

4. By pumping lemma uv’xy"z = uxz € L, Therefore,

| uxz | is a prime number.

Let us assume that | uxz 1 = q.

Now, let us consider a string uv"xy*z,

The length of uv"xy’z is given by :

luv'xy’zl = q+q(lvl+ly), which is not a-prime with

qis a factor.

Thus, uv’xy°z ¢ L. This is a contradiction.

Therefore, L is not a context free lan guage.

Q.2 Convert the following CFG to GNF :

S—aSalbSble

’ Ans. :

_ The grammar can be brought to GNF through. simple

substitutions C, + a and C, — b.

S — aSC,IbSC,IC

Cc7a

C76

Q:3 Write short note on GNF.

Ans. :

‘Grelbach Normal Form (GNF)

A context free grammar G = (V, T, P, S) is said to be in GNF

if every production is of the form :

A — ad,

Teasy-sorutions)

@.5 Given a CFG G, find G’ in CNF generating L (G)-e
S+ASBle A—+>AaS!a B-—>SbSIAIbb

May 2006, May-2009, May 2010. Dec. 2011

Step 1: Simplification of grammar

Symbol S is nullable.

After removing -

Ans. :

Productions, the set of productions is given by
S —> ASBIAB

A — AaSlAala

B — SbSISbIDSIDIAIbb
Unit production B + A is re

productions is given by

S + ASBIAB

A > AaSlAala
Bo SbS|Sb1bS1b1 AaS | Aalal bb Step 2: "Every symbol in

A

Moved, the resulting set of

, in productions of the form — O where lod 2 2 should be a variable.
This can be done by adding two Productions : Coa

and Cy > bd

Scanned by CamScanner

PC me May 2006, May 2012

W Theory of Comp. Scl. (MU-Sem. 5-Comp.

The set of productions after the above changes is

S — ASBIAB

A — AC,SIAC,la

B — SGSISC,IC,S1b/AC,S1AC,1a1C,C,

Qcwaa

CQ -7b

Step 3: Finding an equivalent CNF

, Original production: ‘Raquiva

S— ASB S— AC,

Cc, > SB

‘S— AB S— AB

A> AC,S A+ AC,

C,->C,s

AAC, AAC,

Aa Aa

B-—SC,S B+ SC,

= Cc, 9 Cs

B>SC,ICSIb | S3SC,ICSIb

B-— AC,S BAC,

| BAC, lalG,C, | B>AC,lalC,C,

: | Ca Ca

Cb C,—b

Q.6 Convert the following grammar into GNF

S$ 3 XY1I0. X—00XIY Y-> 1X1

May 2006, May 2012

Ans. :

Simplification of grammar

The unit production x —>-y is removed, the equivalent set of

productions is given by :

S > XYI1I0

X — OOXIIX1

Y —> 1X1

The symbol X is non-generating.

The set of productions after elimination of X is given by :

S — 0, itis in GNF
—.

Q.7 Find CFG for generating

(1) String containing alternate sequence of 0’s

and 1’s, D = {0, 1}

(ll) The string contalning no consecutive ‘b’s

but ‘a’s can be consecutive.

The set of all string over alphabet {a, b} with

exactly twice as many a’s as b’s.

Language having number of a’s greater than

number of b’s.

Dec. 2006, May 2009, Dec. 2009

(It!)

(iv)

TCS-27

Ans. :

(i) String containing alternate sequence of 0’s and

1's, = (0, 1}

Since, any binary number will satisfy the condition of

alternate sequence of 0’s and 1’s, the nena L=(0+1)*

The set of productions are :

S > 0S11Sle

. CFGG = ({S), {0,1}, {S>bS11S1e},S)

(ii) The string containing no consecutive b’s but a’s can be

consecutive.

The set of productions for the given language L are :

P= {
S — aSlbXIble

xX -— aSla

}

These production can easily be written from the FA for the

above language. The FA is shown in Fig. Ex. 5.2.33.

a

Fig. 5.2

Set of variables V = {S, X}

Set of terminals T = {a,b}

Start symbol = S’

(iii) The set of all strings over alphabet {a, b} with exactly twice

as many a’s as b’s.

The CFGG = (V,T,P,S)

Where V = {S}

T = {a,b}

P = {S-— aSaSb& | aSbSaS | bSaSaS | e}

S = Start symbol

(iv) Language having number of a’s greater than number of b’s.

The set of productions for the grammar are given by :

P ={

— SaS1|aSS1SSalalaX! Xa

— aBlbA

— aX|bAAla

-— bXlaBBlb

}
The variable X generates a string having equal number of a’s

and b's, Group of excess a’s over b's are generated by

S-productions. |

n
p
r

x
u

@ GEESE SNE

Scanned by CamScanner

¥ Theory of Comp. Sci. (MU-Sem. 5-Comp.)

Where

Set of variables V = (S.X,A,B)

Set of terminals T = {a,b}

Start symbol = §

Q.8 Convert the given grammar to GNF.
S — SSlaSblab

Ans. :

Step 1: Other than the first symbol on the RHS of every
production, every symbol must be a variable.

We can make the substitution X for b.

The resulting set of productions after the above
substitution is :

S —SSlaSXlax

xX —b

Removing left recursion from s-production, we get :

S > aSXS,laXS laSXlaX

S, > SS,IS

xX -—b

S}-productions are not in GNF. They can be brought

to GNF by substituting S.

S — aSXS,laXS,laSXlaX

S, — aSXS,S,laXS,S,laSXS ,laXS laSXS lax, laSXlaX

Step 2:

Step 3 :

xX >—b

Q.9 Prove thatL=(0 12a 1is=4 and j > = 1} is not
context free.

Ans. :

Let us assume that L is CFL

2. Let us pick up a word w = 0" 1" 2° 3", where the constant n is
given as per the pumping lemma.

3. wis rewritten as uvxyz where Ivxyl < n and v-y # € i.e. both v

. and y are not null.

4. From pumping lemma, if uvxyz € L then uv'xyz is in L(G)

for each i = 0,1,2,...

There are two case :,

CaseI: vy contains three symbols, These three symbols

could be 0,1,2 or 1,2,3.

The exact ordering of 0,1,2,3 will be broken in

uv’xy’z and hence uvxy’z ¢L(G)

Case Il: If vy does not contain three symbols then uv’xy’z

will have either unequal number of 0’s a a8 or

unequal number of 1’s and 3’s. Hence, uv xy'z ¢ L

(G).

Thus, proved by contradiction.

TCS.08

‘ Ll

Q.10 Prove that L = {abe 112 1} Is nota CFL.

Ans. :

1. Let us assume that L is CFL.

2. Let us pick up a word w = a'b’c” where the constant p is

given as per the pumping lemma. ;

3. wis rewritten as UVXyZ.

Where | vxy | <n and v-y#€i.e., both v and y are not oul, 4. From pumping lemma, if uvxyz € L then uv'xy' zis inL @)

foreachi=0, 1,2, ... ;

There are two cases :

Case I: vy contains all three symbols a, b and c.

If vy contains all three symbols a, b and c then either

v or y contains two symbols. The exact ordering of a,

b and c will be broken in uv xyz and hence

uv'xy"z ¢ L(G)

If vy does not contain three symbols a, b and c then

uv’xy7z will have unequal number of a’s, b’s

and c’s and hence uv’xy"z € L(G). :

Case II:

Hence, it is proved by contradiction.

Q.11 Convert the following grammar to CNF S 3 AACD
A>aAble C—+aCla A-aDalbDble

Ans. :

- First of all, the grammar must be simplified.

Step1: Removing null productions.

Nullable set = {A}

Null productions are removed with the resulting ‘set of
production as :

S - AACDIACDICD

A — adAblab

C > aCla

A — aDalbDb

Step 2: Removing non-generating symbol
Symbol § and D are non-generating.

Since, the startin & Symbol itself is - ting, it is 8 invalid grammar. ; non-generating,

| SEIS

Scanned by CamScanner

W Theory of Comp. Sci. (MU-Sem. 5-Comp.

Q.12 Given a CFG G, find G’ In CNF generating L (G) -€

. TCS-29

Q.13 Let G = (V, T, P, S) be the CFG having following

Ss > ASBle set of productions. Derive the string “aabbaa”

A-AaSla aoe leftmost derivation and rightmost

B—» SbSIAIbb derivation.
S$ aAS|a,A—> SbAISS Iba

May 2006, May 2009, May 2010, Dec. 2011
Ans. :

Ans. =

Step 1: . Simplification of grammar (I) Leftmost. derivation :

Symbol S is nullable. , Leftmost derivation of aabbaa is being phown with the help of

After removing &-productions, the set of productions is given by 7 parie'tree.

A-— AaS|Aala 7 : AS

B — SbSISbIbSIbIAIbb S— aAS A,
Unit. production B > A is removed, the résulting set of

ction: b produ s is given by Ao ees

S — ASBIAB °

A — AaSlAala
3S 4. = § 5. NK

B — SbS|SbIbS1bI AaS | Aalal bb /\, f\\, ft Ss

Step2: . Every symbol in a, in productions of the form A 30. /| \ / | \ AN |

where Ia) 2 2 should be a variable. ¢ 5A gp gp, A a

This can be done by adding two productions : / | ; / \ | / \

C, 7a a aba ab oa

and C, > b Soa Aba Sa

The set of productions after the above changes is Fig. 5.4(a)

S — ASBIAB » S > aAS — aSbAS — aabAS — aabbas —> aabbaa

A > AC,SIAC,|a (ii) Rightmost derivation :
AC, lalC,

B > SGSISCIGSIDIACSTAC!2 1 Rightmost derivation of aabbaa is being shown with the help
Ga of the parse tree.

—>b ‘

Step 3 ° CNF ' SS tep3: Finding an equivalent \ \

Sue = (Nf
S— ASB S—7 AC, S>aAS |

C, > SB Soa

S— AB s> AB

A AC,S AAC, 5 Ss ;

oes NX A NK, / G76, ‘fi | | [°
AAC, A> AC, S aa

Aa: - Aza /\ | \ | J \ | / | \ |

B-SC,S BSC, b Aa PN S$bA a

Cc, 7¢,8 | / \

B IC,S1b A- SDA boa ab a
> SC,IC,S Ib $3 SC,1C, A->ba S58

B- ACS B— AC,
: Fig. 5.4(b)

B~AC,1alC,C, | BA ACI alGG
S > aAS > aAa— aSbAa > aSbbaa — aabbaa

Ca Cc,7a - t

Gb cC,7b

ee > =

(a Teasy-solutions,

Scanned by CamScanner

ww Theory of Comp. Sci. (MU-Sem. 5-Comp. .) ‘ |

Q.14 L1G be te grammar 8 0B BA A= a0
bAA B -b|bS | aBBFind
(1) Left most derivation
(Il) Right most derivation

(ill) Parse Tree

(Iv) Is the grammar unambiguous ?
For given strings ak aaabbabbba aes bbaaabbaba
(C)'00110101 .

Ans. :

(A) For string “asabbabbba”
Tt will be worthwhile to draw the parse tree and from the

Parse tree, one can easily write left most and right most derivation.

@) Left most derivation :

S —aB ~> aaBB — aaaBBB —> aaabBB

—> aaabbB — aaabbaBB — aaabbabB > aaabbabbS

— aaabbabbbA —> aaabbabbba

Gi) Right most derivation :

S—aB—aaBB—aaBaBB—aaBaBbS—aaBaBbbA

—aaBaBbba

—aaBabbba—aaaB Babbba=»aaaBbabbba—aaabbabbba

(iii) Parse tree :

Fig. 5.5

(iv) The grammar is ambiguous as we can draw two parse trees

for aababb : 8

JS .

A™
a B B A
i

co
.

o
=
—
w

SOE

‘ i

s : of ag

.

a
i
e

L
a
n

Mr
 a

ai

o
_
O

(b)
Fig. 5.5

(B) For string "bbaaabbaba”

(i) Leftmost derivation

S — bA— bbAA —> bbaA — bbaaS

— bbaaaB — bbaaabs —> bbaaabbA

— bbaaabbas — bbaaabbabA — bbaaabbaba

Gi) Rightmost derivation

S + bA—> bbAA > bbAaS > bbAaaB
+ bbAaabS —+ bbAaabbA — bbAzabbaS —
— bbAaabbabA — bbAaabbaba — bbaaabbaba

(iii) Parse tree for bbaaabbaba |

Ss

b A A

/é™s
/~

B

v™ .

~~
A

“™
s

MN
|

Fig. 5.5(c)

(C) For the String 00110101

(i) Leftmost derivation

S— OBB — OOBB — 001B - 0011S

— 00110 B-001101S —) 0011010B

+ 00110101 Ha
rt
a

on

bi

Scanned by CamScanner

W. Theory of Comp. Sci. (MU-Sem. 5-Comp.)

(ii) Rightmost derivation CO

S— 0B — 00BB + O0B1S + 00B10B

— 00B101S - 00B1010B > 00810101

— 001110101

(iii) Parse tree

Ss

is
i,

//,
i,

“ \,

Y \,
/

1
Fig. 5.5(d)

_Q.15 Obtain a grammar to generate the langua

L={0"1"1n20)}. [re
Ans. :

Productions for the required language are as follows.

iP = {S50SI1 le)
CFG for the above language is ({$}, {0, 1}, P, S)

Q.16 Reduce the following grammar to GNF.S — AB,

A— BSBIBBIbB—aAbla

Ans. :

Step1: | Making every symbol other than the first symbol (in

derived string o in A > c) as a variable :

. Variables C, is substituted for b with resulting set of

productions give as :

S — AB

_A ~ BSBIBBIb

B — aAC,|a,C,>b

Step2: The variables S, A, B and C, are renamed as A,, A,,

A, and. A, respectively. The resulting set of

productions is given below.

A, — AA,

Ay > AgAy As! AgAg!b

A, > aA,A,la

A, 3b

TCS-31__

Step3: Convert to CFG

Given production
‘ ’ fn GNF

Agob —> Ayob

Ag >aAjAg|a —> Ag >ahsAgla

Ag Ag Ay Ag .

Substituting Ag An aA, Ay AjAg| aAyAg

Aa Aghg

Substituting Ag » Ag > aA, AA, | aAg

Ao +b — A>b :

Ay ApAg

Substituting A, » Ay > aA, AgAyAgAg| aAyAgAg

| AAyA,AAgAg | 2AgAg | DAg

*. The final set of productions is :

A, aA,A,A,A,A, | aA,A,A, 1 aA,A,A,A,1aA,A, 1 bA,

A, aA,A,A,A,1aA,A,1aA,A,A,1aA,1b

A, aA,A,la

Ay b.

Q.17 Reduce the following grammars to GNF

Bo>aAblaS3AAl 1A 3SS11

Ans. : . .

Step1: Renaming of variables by substituting A, for S and A,

for A.

A, 7A, A,11

A, A, A, 11

Every production of the form A; — A; with i > j

must be modified to make is j.

A, — production, A, —> A, A, should be modified. We

must substitute A, A, | 1 for the first Ay. .

[MAA] 3 [BeBe

The resulting set of productions is :

Apo A, A Il

A, >A, A, A, 11 A, 11

Removing left recursion :

The A, — production contains left recursion. Left

recursion can be removed through

Step 2:

Step 3;

A, 71 A, B,11B,
 3

@s LES ee

Scanned by CamScanner

2

¥ Theory of Comp. Sci. (MU-Sem. 5-Comp.

B, 3A, A, B,1A, A,

The resulting set of productions is :
AAAI .
A, 91 A,B,I1B,ILA, 11
B, >A, A, B,1A, Ay

Step4: A, —productions are in GNF.

, A, and B, productions can be converted to GNF with
the help of A, — productions.

A, >1A,B,11B, 11 A, 11
A, 71 A,B, A,11B,A,11 A, A,11 A, 11
B, —1 A,B, A, B,¢1B, A; B,11 A, A, B

IV A,B, 11 A,B, A,11B,A,11A, A, 11 A,

Q.18 Let G be the grammar S— aB1bAA> alaS|
bAA B > b | bS | aBB Find

(i) _ Left most derivation

(ii) Right most derivation

(iii) Parse Tree

(iv) Is the grammar unambiguous ?

For given strings (A) aaabbabbba (B) bbaaabbaba

(C) 00110101
Ans. : .

’ (A) For string “aaabbabbba”

It will be worthwhile to draw the parse tree and from the

parse tree, one can easily write left most and right most derivation.

G) Left most derivation :

S >aB — aaBB — aaaBBB —> aaabBB

— aaabbB — aaabbaBB — aaabbabB aaabbabbS

> aaabbabbbA — aaabbabbba

Gi)" Right most derivation :

S—aB—aaBB—aaBaBB—aaBaBbS—aaBaBbbA

—aaBaBbba

—aaBabbba—aaaB Babbba—aaaB babbba— aaabbabbba

(ii) Parse tree :

A!

JN LN,
Li “és

Fig. 5.6

Gas ee

TCS.99)

(iv) The grammar is ambiguous as we can draw two PATSC.tregg

for aababb : 5

. 1

J, A,
| /N A

Me
(b)

Fig. 5.6

(B) For string “bbaaabbaba"

(i) Leftmost derivation

S > bA —>.bbAA —- bbaA — bbaaS

— bbaaaB — bbaaabs > bbaaabbA

— bbaaabbas — bbaaabbabA — bbaaabbaba

(ii) * Rightmost derivation

S— bA— bbAA + bbAaS > bbAaaB

— bbAaabS —> bbAaabbA > bbAaabbaS

— bbAaabbabA —> bbAaabbaba > bbaaabbaba

Parse tree for bbaaabbaba
Ss

wo,
J,

an

(iii)

Fig. 5.6(c)

(c) For the string 00110101

(i) Leftmost derivation S— OBB > 00BB + 001B g Oks _

Scanned by CamScanner

WwW Theory of Comp. Sci. (MU-Sem. 5-Comp.) TCS-33
a a

00110 B+ 0011018 > 0011010B

— 00110101.

Gi). Rightmost derivation

S > 0B - 00BB ~ 00B1S — 00B10B
— 00B101S — 00B1010B > 00B10101
—> 001110101

Gii) Parse tree
Ss

oN,

“\,;

ffs

v™,
IN
aN

/
1

0

Fig. 5.6(d)

- @.19 Consider the following grammar :

S$ > iCtS | iCtSeS | a C > b For the String |-

‘ibtibtaea’ find the following (i) Leftmost

derivation (ii) Rightmost derivation (iii)Parse Tree

(iv) Check if the above grammar is Ambiguous

Ans. :

(i) Leftmost derivation :

(ii) Rightmost derivation :

S>iCtS [usingS—>iCtS] | S—iCtS [usingS > iCtS]

—ibtS [using C > b] > iCtiCtSeS

— ibtiCtSeS [using S > iCtSeS]

[using S > iCtSeS] = iCtiCtSea [using S— a]

Q.20 Convert the following Grammar to CNF form :

S— ABAA->aAlbAle B>bBlaAle

Ans. :

1. The non-terminals {S, A, B} are nullable. Null productions

are removed, The resulting grammar is :

S— ABAIBAIABIAAIAIB

A aAlbAlalb

“Bo bBlaAlbla

2. Removing unit productions, we get

S— ABAIBA!ABI AAI aA/bAlalb/bBIaA

A aAlbAlalb

B—bBlaAlbla

3. Every symbol in a, in production of the form A — o where |

a | > 2 should be a variable.

This can be done by adding two productions.

C,7a

C,—-b

The set of productions after the above changes is :

S— ABAIBAIABIAAIC, AIC,Alal bIC,BIC,A

A>C,AICAlalb

B>CBIC,Albla

C,7a,C,>b

Finding an equivalent CNF.

S>AC,C,>BA

— ibtibtSeS [using C > b]

—>ibtibtaeS [using S > al

— ibtibtaea . [using S > a]
— iCteCtaea [using S > a]

— iCtebtaea [using C > b]

"+ ibtebtaea [using C > b]

(Ill) Parse Tree :

S— BAIABIAAICA

1C,AlalbIC,BICA

S—> BAIABIAAICAIC AI
albIC,BICA

ASCAICAlalb. A>C,AICAlalb

B>C,BICAlbla B>C,BICAlbla

Ca Cra

Cb Cb Q.21 Obtain leftmost derivation, rightmost derivation
and derivation tree for the string “cccbaccba”.

The grammar Is S > SS al SSb | ¢

® @URETIMIS

Scanned by CamScanner

¥. Theory of Comp, Sci, (MU-Sem. 5-Comp.)

Ans. ’

Derivation tree :
X we . . s

—_— Se.

/\ /*
/ s a | | b

. b cc

c Cc

Fig. 5.8

Left most derivation Right most derivation

Ss —SSa Ss 7 SSa

‘ _4$SaSa — SSSba

- => cSaSa — SScba

— cSSbaSa — Sccba

— ccSbaSa, — SSaccba_

— cecbaSa - — SSSbaccba

— cccbaSSba — SScbaccba

— cecbacSba — Sccbaccba

— ccecbaccha — cccbaccba

Q.22 Convert following grammar to CNF and GNF.

S + ASB lal bb

A> aSAla

B— SbSI bb

Ans. :

S— ASB lal bb .

A vaSAla

B— SbS I bb

Converting to CNF :

Re-writing the grammar, we get,

S > ASB lal V,V,

A>V,SAla

B—>SV,SIV,V,

V,—b

V,7a

Now, re-writing each production in its equivalent CNF form,

we get,

Productions

S— ASB

Sa

Teasy-solutions

CNF forms

so AV;, V; — SB

Sa

Ss S>VVi

$73 V,Va.V47> SA

A>V,SAla

Aza

BOSV,SIV, V; B SVs, Vs> VS

, B-> V, V,

V,7b vb

V,7a Vv,7a

Converting to GNF :

Step1: Substituting symbols, we get,

S— ASBlalbX,

A-aSAla

B>SX,SIbxX,

Xpob

X,7a

Step2: Re-writing production in GNF :

Productions CNF forms

(il) X,>b X,>b

(2) X,->a XxX, a

(3) A-»aSAla A >aSAla
(4) S—ASBlalbX, S — aSASB | aSB [substituting A]

SalbX,

(5) B-SX,SIbxX Ss + aSASBX,S | aSBX,S | aX,S |

bX, X,S

[substituting for S]

S— bx

Q.23 Consider the following grammar G = (V, T P, §),

V =(S, X), T = {0, 1} and productions P are

~ $30 10X11 0181

X— 0XX111S

S is start symbol. Show that above grammar is
ambiguous.

Ans. :

A grammar is said to be ambiguous grammar if the languag® generated by the grammar contains some strings that has 2 parse trees,

Ex. : Let us consider the given grammar
S > 010X110181

X > OXXILIS

where, S is the start symbol,

\
ia

mh The grammar generates the string 010011 in 2 different Way® |
© 2 deviations are shown in Fig. 1(a)-Q. 61 and Fig. 1(b)-Q- 61: | As the same String has 2 di gramsat : ifferent e trees. i

is ambiguous grammar, ws The given a

A string 010011 is generated by the given grammar.

\

Scanned by CamScanner :

w Theory of Comp. Sci, (MU-Sem. 5-Comp.)

S s
ISN

e 1s 3 ce
MIN LM
Ox1:. £¥

{ XD
0 0X 1

{

(a) - (b) :
Fig. 5.9

Q.24 Consider the following grammar G = (V, T, P, S),
_ V={S, X}, T= {a, b} and productions P are
S— aSb | aX

X- XalSala

Convert this grammar in Greibach Normal Form
(GNF).

Ans. :

Given set of productions

S - aSblaX
X — XalSala

' Substituting C, for a, C, for b, A, for S and A, for X.

A; > aA,C,laA,

A, > A,C,1A,C,la
Coma

GQw7b

Removing left recursion form A, production, we get

Gla C,>b

A; 7 aA,G,laA,

A, 2A,C,A,1aA,1A,C,la

_ A; 2% C,A,1A,

Re-writing productions in GNF from

A; 7 aA,C,laA,

A, 7 aA,C,C,A,1aA,C,A,laA,laA, OC,

laA,C,la

A, — aA,laA,C,C,A,1aA,C,A;1a Ay

laA,C,C,laA,C,la

CGC7a

Cc, 7 b

Q.25 Construct a grammar In GNF which Is equivalent

to the grammar S — AA] a, A> SS |b.

May 2008, Dec. 2011, Dec. 2016

Ans, :

Step1: Grammar is already in a simple form without :

1. e-productions, 2. Unit productions.

3. Useless symbol.

TCS-35

We can proceed for renaming of variables, Variables S and A
are renamed as A, and A, respectively. The set of productions after

renaming becomes :

A, > A,A,

A;>a Productions after renaming

A, > ASA,
A,—>b

Step2: Every production of the form A, > Aa with i > j

must be modified to make i<j.

A, — production A, A, A, should be modified.

4
We must substitute A,A, | a for the first A,. We should not

: touch the second A, of A, A).

A Aas [eo eee]

The resulting set of productions is :

A, > A,A,la

A, — A,A,A,1aA, 1b

Step3: Removing left recursion :

The A, — productions A, > A,A,A, | aA, | b contains left

recursion. Left recursion from A,-production can be removed

through introduction of B,-production.

A, — aA,B,1bB,

B, > A,A,B,1A,A,

The resulting set of productions is :

A, > A,Ajla

A, — aA,B,1aB,1aA,1b

B, > A,A,B,1A,A,

Step4: A, — productions are in GNF.

A, and B, productions can be converted to GNF with the help

of A2-productions.

A, — aA,B,|bB, aA, Ib... in GNF

A, 7 A, A,

YJ Substitute aA,B, | bB, | aA, |b for first A,

A, — aA,B,A, 1 bB,A, 1 aA,A, 1 DA,

A, 7 a... in GNF

Now, for B, - Production

B, — A,A,B,

Substitute aA,B, | bB, | aA, |b for the first A,

B, — aA,B,A,B, | bB,A,B, | aA, A,B, | bA,B,

B, > A,A,

Y Substitute a A, B, 1 B, 1a A, |b for the first A,

Qn ETM

Scanned by CamScanner

¥ Theory of Comp. Scl. (MU-Sem. 5-Comp.)

B, — aA,B,A,|bB,A, | aA,A,|bA,

The final set of productions is :

A, — aA,B,1bB,1aA, 1b

A, — aA,B,A,1bB,A, |aA,A,| bA, la

A set of productions P "

B, — aA,B,A,B, 1 bB,A,B, | aA, A,B, 1bA,B, |

a A,BoA, | bB,A; |aA,A, | bA,

where,Set of variables V = (A,, A,, B,)

Set of terminals T = (a, b)

Start symbol = Ay

Set of productions P = Given above.

Q.26 Consider the following grammar :

S > ictslictSeSla |

C4 b

For the string ‘ibtibtaea’ find the following :

(i) Leftmost derivation

(ii) Rightmost derivation

(iii) Parse tree

(iv) Check if above grammar is ambiguous.

| Boreal A

Ans. :

(I) Leftmost derivation

Cb s-icts
S=> iciSeS=—ibtSeS =———

Cb Sa
ibtictSeS=—— > ibtibtSeS=——ibtibtaesS

>ijibtibtaea

(ii) Rightmost derivation
Soa $—icts

s>ictSeS=——iCtSea =—_—~>

Soa
ictictSea=——iCtiCtaea

Cob Cob.
=> iCtibtaea —— ibtibtaea

Q.1 Distinguish between NPDA and DPDA.

Ans. :

Distinguish between NPDA and DPDA

A NPDA provides non-determinism to PDA.

In a DPDA there is only one move in every situation, Where

as, in case of NPDA there could be multiple moves under a

situation. DPDA is less powerful than NPDA.

OnE

(iii) Parse tree s

(iv) It is an ambiguous grammar due to laughing if problem.

Q. 27 Reduce following grammar to GNF.

S > AB

A — BSBIBBIb

B — alaAb

(i) Ss — 018/01

s > 108/10

S > 00le

Ans. :

Removing € -production, we get,

S — 01S101110S!10100

It can be converted into GNF in an easy way by introducing

two production

X71 and YOO

“. Productions in GNF are

S > OXSIOXIL1YSI1 YIOY

X->1

Y-0

Every context free language can not be recognized by *

DPDA but it can be recognized by NPDA. The class of language #

DPDA can accept lies in between a regular language and CEL. A

palindrome can be accepted by NPDA but it can not be accepted bY
-aDPDA ff

Scanned by CamScanner

wo ey: «
WF Theory of Gomp. Sci. (MU-Sem, 5-Comp.)

Q.2 Design a PDA to accept (bdb)"c",

Ans. : .

To solve this problem, we can take a stack symbol x. For
every ‘bdb’, one x will be pushed on top of the stack. After. reading

\ (bdb)’, the stack should contain n number of x's. These-x’s will be
matched with c’s. The transitions for the PDA accepting through an
empty stack are given in Fig. 6.1.

b,x/x

bizo/Zp
d,x/x

d,Z/Z

Fig. 6.1

A cycle through qq —> q; — q, — dg traces a group of bdb.

The PDA M = (Q,3,T,8, dp.» 0}
Where,

Q’ = _ {49 Gis Go 3}, B= {b, d, c}, P= {x, 2}

Gp is the initial state, z, is initial stack symbol.

The transition function 6 is given by,

8(dp, b, 2%) = (Gy. 2)
5(qy, b,x) = (qq, x)

8(q,.d, 2%) = (Gy 2)

8(q,,d,x) = (qx)

5(qa. b,%9) = Qo» XZ)
5(q,,b,x) = (qo, Xx)

5(q,c,x) = (qs)

5(q,,¢,x) = (q3,€)

53, £,Zo) = (3) Accept through empty stack.

Q.3 Design a PDA for detection of even palindrome
over {a, b}.

Dec. 2005, May 2006, May 2007, May 2016

Ans. :
R

An even palindrome will be of the form ww

iba, aa, aa aaa es a
wiw w 1 w ow {w

Centre Centre Centre

If the length of w is n then a palindrome of even length is :

First n characters are equal to the last n characters in the

Teverse order,

—
G@s EER BS Pee

The character immediately before the middle position will be

identical to the character immediately after the middle position.

Algorithm :

There is no way of finding the middle position by a PDA;

therefore the middle position is fixed non-deterministically.

1. First n characters are pushed onto the stack. n is non-

deterministic.

2. The n characters on the stack are matched with the last n

characters of the input string.

3. nis decided non-deterministically. Every character out of first

n characters, whose previous character is same as itself

should be considered for two cases :

(a) It is first character of the second half.

- Pop the current stack symbol using the transitions: _

5(qy,a,a) = (q,,8)

5(ayb.b) = ,,€)

Must be identical

(b) It belongs to first half. -

- Push the current input ~

5(qy a £) => (Gy a)

(qyb,£) => (qy.b)

4. — nis decided non-deterministically. Every character out of first

n characters, whose previous character is not same as itself

should be pushed onto the stack.

- Push the current symbol using the transitions :

8(q, a,b) => (q,, ab)

(qq, b, a) | => (qy, ba)

The transition table for the PDA is given below :

B(dy 2) => {(qg, a%)}
54) b, 2%) => {Gy bz)}

Sy aa) => {(qy, aa) (GQ, ©}

By a,b) => ((q, ab)}

Bqy bya) => {(qy, ba)}

5(qy bb) => {(q,, bb), (q,.£)}

5q,aa) = (q,®)}
Sq. b,b) => {(q,,£)}

By €. %) => {(q, €)} [Accept through an empty stack]
Where, ,

the set of statesQ = (q,.q,}
the set of input symbols & = {a,b} -
the set of stack symbols T = {a,b, Zo}

Starting state = %

Initial stack symbol = Zo

Scanned by CamScanner

Ww Theory of Comp. Sci. (MU-Sem. 5-Comp.
| . TCS-38

Q.4 Construct a PDA equivalent to the following CFG.

S$ —> 0BB

> 0811810
Test If 010° Is In the language

Me Way 2006, May 2011, May 2012

Ans. :

The equivalent PDA, M is given by

M = ({q},{0, 1},{0, 1,8, B}, 5, q, S, 4),

where 6 is given by

&q.e,S) = {(q,0BB)} For each production

 &q,,B) => {(q, 0S), (q, 1S), (q, 0)}

5(q,0,0) => {(q,®)}

§@1,1) => {@©)}

in the given grammar

 For each terminal

Acceptance of 010° by M:

8(q, 010000, $) —8(q, e, S) = (q, OBB)

Q.6

————_—__——> (4, 0, 0)

5(q, 0, 0) = (q, e)

——————— (4, €, e)

Thus the string 010° is accepted by M using an empty stack.

. 010 EL

Construct a PDA accepting { anbman|m,n2 1} by

null store.

Dec. 2006, Dec. 2010. May 2012. May 2013

Ans. :

Algorithm :

1. The sequence of a’s should be pushed onto the stack in state

o

5(dy» &% Zo)

5(q, aa) =

(dp, 2p)

(qq; 22)

2. On first b, the machine moves to q, and remains there for b’s.

———_ (a, 010000, 0BB) b’s will have no effect on the stack.

59, 0, 0) = (q, €) 3. For every ‘a’, an ‘a’ is erased from the stack.

—————_ (4, 10000, BB) The PDA accepting through empty stack is given by

8(q, €, B) = (q, 18) M = ({4 Gy 4,}, {a,b}, {a 29}, 5, dys ZO)

————__ (q, 10000, 1$B) Where the transition function 8 is :

&(q, 1, 1)=(q,€) ; 1. 8. a %) = (Gy, 2%) [First ‘a’ is pushed]

———> _ (4, 0000, SB) 2. 8(qya, a) = (q2a) [Subsequent a’s are pushed]
8(q, €, $) = (9, 0BB (q ;) = (q, OBB) 3. 8(q). b, a) = (q,, a) [Input symbols b’s are skipped]
————————— > (9, 0000, 0BBB ,

& 4, 8(q,.b, a) = (q,, a)
3(q, 0, 0) = (q, €) 5. 8q.a.a)=(a,8)

. q,- 4 a) = (q,, € Anai ed , (a, 000, 8B) 1 2 [An ais erased on first a of last a’s]

6. 8(q,,a,a) =(q, : sg” 8 (a, €, B) = (a, 0) (Qa a) = y €) [An a is erased on subsequent a’s

: of last a’s]
——— (4,000, 0BB) 5

7. 8(Q,. & 29) = (q,, ©) [Accepting thro’ 8(4,0,0)= (4) Pung through empty stack]

———_ (4, 00, BB) . 0.6 Design a PDA to accept (ab)"(cd)",
Ans. :

8(q, é, B) 5 (q, 0) .

(4,00, 08) re ote this feolieay, we can take a stack symbol x. For
every ‘ab’, one x will be pushed on top of the stack. After reading

8(q, 0, 0) = (q, €) (ab), the stack should contain n number of x's. These x's will be -
—_——_——»_ 40,8) matched with (¢d)", For every. ‘ed’ one x will be popped.

The transitions for the PDA accepting through an empty stack
5(q, e, B) = (4, 0) are given in Fig. 6.2. i

oe . @sGHEIMITN

Scanned by CamScanner

WF theory of Comp. Scl. (MU-Sem. 5-Comp.

Fig. 6.2

PDA accepts through the final state q,.

The PDAM = {Q,2,T, 5,qo, 2, F}

‘Where, :

Q = {dp Gi Go G3, Ig}

x = {a,b,c,d}

P= {x,2Z}

The transition function 6 is given by,

5(do a, Zo) = (Gy, 2)
~ yx) = (GX)
5qy. b. Zo). = do» X Zo)
&(q,.b.x) = (dy. xx)

5g, ¢,x) = (G2, X)

5(q,,4,x) = (q,®)

5(q3,¢,x) = (Gy, X):

54a» €%) = (Gyr Zp)
p is initial state,
Zp is initial stack symbol.

Set of final states F = {q,)}

Q.7 Design a PDA for detection of odd palindrome

over {a,b}.
” Ans.:

An odd palindrome will be of the form :

1, waw*
a, a cain, goa e008 By

w ww we

2 wow :
: [ab, b ba, aba, baba, aa b aa,

Ww w Ww Ww Ww W

Gs Tr

If the length of w is n then a palindrome of odd length is :

First n characters are equal to the last n characters in reverse

order with middle character as ‘a’ or ‘b’.

Algorithm :;

There is no way of finding the middle position of a string bya

PDA, therefore the middle position is fixed non-deterministically.

1. First n characters are pushed onto the stack, where n is non-

deterministic.

2. The n characters on the stack are matched with the last n

characters of the input string.

3. nis decided non-deterministically. Every character out of first

n characters should be considered for two cases :

(a) It is not the middle character — push the current

character using the transition :

(qo a £) => (dy a)

5(qyb,£) => (Gy b)

(b) It is a middle character — go for matching of second half

with the first half. .

5(qya,£) => (q,-®)

5(qy b,£) => (q, &)

The status of the stack and the state of the machine is shown

in the Fig. 6.3. Input applied is ababa.

Left child — current input is taken as the middle character

Right child — current input is not a middle character.

——_—>
After first
Input ‘a’

After second
input b

——_ Zq
After third :

Input a |

fal

Uy

 —_——_—>

After fourth
Input b

oo
After tifth
input a

: fall
Fig. 6.3 : Processing of string by the PDA. String is taken as

“ababa”

Scanned by CamScanner

Ww Thoory of Comp, Sol, (MU-Som. 5-Comp,) a : nae
Tho tranaition table for the PDA 1s given below,

B qy te) => (Cds 8s Cy ad)

G = Indicates that frrespectlve of the current

stack symbol, porform tho transition,

=> ((y C)s (yy b))

=> {(q,8))

=> {(q,e))

=> {(q,,e)) [Accept through an emply stack]

5(qy be)

5(q,. a 0)

5(q,.b, b)

BCA. 6%)
Where, The set of states Q = {qo q))

Tho set input alphabet % = (a, b)

The set of stack symbols P= (a, b, 2)

Starting stato = q) ,

“ Tnitlal stack symbol = z

Q.8 Give the CFG generating the language accepted
by the following PDA : M = ({ qo, 44}, {0, 1}, {Zo X}s

& Go Z») when 6& Is given below :

(dor 1, Zo) = {(Gor XZo)} 84a, 1, x) = (Go, xx)}
8(qo 0, x) = ((q1, x)} 5(qo, g, 2) & {(Go; e)}

5(qyy 1, x) = {(qy, &)} 8(Qy, 0, Zp) = {(4o, Zo)}

Dec. 2007

Ans. :

Step1: Add productions for the start symbol

%
S > [do “4

1,
S > [dq °a)

Step2: Add productions for 8(qy, 1, 2) = (dos XZy)}

Z, Z

[qo * a) > 1 [a9 * dol [4 ° ol

Z, x Zz

[do ao) 9 Vg” aI Lay ° ao)
ZL Z,

[a ° ay] 9 1 E40 * Go) [dg ° ay)

[dg ‘° 41] > 1 [49 * ql (a rn)

Step3: Add productions for 5(qo, 1, x) => {do XX)}

[4 * dg) 1 Uy * aol Ey“ dg)
(4a * do) 9 1 Edy” a4) fu * ol

“Ea” Gs) 1 Eay™ Gol Eo * 4
(4) q)) 1 fo * 4,1 £4, * a)

Step4: Add productions for 5(q, 0, x) => ((qys x))

[49 Gg) -» 0 £44” Go]

lay * ay) > Ofq, * ay]

Gas YT 3 Ee

TCS49

Step 5: Add productions for 8(do: & Zo) = {Cy ©)

%
[Iq de

Step 6: Add production for 8(q,, 1.x) => {i ©}

(a * ail i

Step 7: Add productions for 8(q,, 9, 2g) = {o> Z)}

Z, Zz

(a; "dol = [40 ° dol
ZL, Z,

[41 "qd = Old ° 4)

Q.9 Design a PDA for accepting a language

L={wew'l We {a, b}* }

May 2008, May 2010, May 2011

Ans. : .
T

w' stands for reverse of W. A string of the form WeW is an

odd length palindrome with the middle character as c.

Algorithm :

If the length of the string is 2n + 1, then the first n symbols

should be matched with the last n symbols in the reverse order. A

stack can be used to reverse the first n input symbols.

Status of the stack and state of the machine is shown in

Fig. 6.4, Input applied is abbcbba. ‘

+— Input

 t| | 20] [20] +— stack
+— State

4 G2

Fig. 6.4: A PDA on input abbcbba

The PDA accepting through final state is given by

M = ((4 4p 4.) (4, b,c}, (a, b, Zo}, 5, Gy, Zs {4,})

Where the transition function 5 is given below :

5(qy, a, €) = (yy a) | First n symbols are pushed onto

5(qy, b, €) = (do, b) the stack

8(dy. ¢, €) = (q,. €)

8(qy a, a) = (q,, €)
5(q,, b, b) = q,, €) |
5(q,: €, 29) = (Gy. 2p) [Accepted through final state] *

A transition of the form 8(q), a, &) = (do. a) implies that
always push a, irrespective of stack symbol.

(State changes on c]

Last n symbols are matched with

first n symbols in reverse order

A
w
a

Y
N

=

 Q.10 Convert the following expression grammar to
PDAI>albllalIbIIOIMEOIIE*EIE*E!

(E)
Ans. ;

The equivalent PDA, M is given by,

Scanned by CamScanner

W theory of Comp. Sci. (MU-Sem. 5 Comp.) TCS-41
See RRR IIR UU UU Ta

Me (a {0, 1, a, b, *, +, ()}{0, 1, a, b, *, +, (\, |, E}, 5, qa E, 0)

where, 5 is given by,

&q.6,E) = {(q,D, (q, E * B), (q, +B), (q, &))}

5@,&1) = {(q,a), @, b), (q, Ib), (q, Ia), (q, 10), (q, 11)

80,0) = {qe}
8q@1,1) = {(q,©)

&qa,a) = {(q,£)}

5(q,b,b) = {(q,£)}

8q++) = {(q,e))

&q,*,*) = {(q,£)}

84GQ = {(q,e)}

5q,),)) = {(q, €)}

Rule 7
————-—

Rule 5
————

Rule 8
—

Rule 7
———

Rule 9
—_——>

(dr 1), (2p)

(dq 1): [(29)

(dy»)s (Zp)

(doy &+ Zp)

(dp € 29)

Q.11 Design a PDA for CFL that checks the well
. formedness of parenthesis i.e. the language L of

all “balanced” string of two types of parenthesis

say “()” and “[]”. Trace the sequence of moves |

made corresponding to input string (([])[]).

Ans. :

. The transition function of the PDA is given below :

1. 5(dy, 6 2) = (Gos (Zp)

2 Faye GO =@.©O

Push the opening bracket ‘(’

3. 86D = Gy)

4, 5p [, 20) = Gy [Zo Push the opening bracket ‘[’

5. yl O= Gy lO

6. Sq, [-L)=(@, (1)

POP an opening bracket for a 7. 8qy).)) = (ay)

closing bracket.

8. Sqy 1,1) = Gy &)

9, Sy &,2) = Op 2)] Accept through a final state.

Simulation of PDA for the input string (([])1])

le 1

(ay, (DD, 2)? yy CVD, 2)

Rate? Cay (Ds (20)

Rates (ay DD: (20)
Rule 8
———— dy) 1 (C26)

Q.12 Consider the PDA with the following moves :
5(qos @, Zo) = {(4os AZp)} (qq, a, a) = {(Qo, 28)} 5(4o;

b, a) = {(q1, &)} S(q, b, a) = {(as5 €)} 5(G1, € Zo)
= {(q;, &)} Obtain CFG equivalent to PDA.

Ans. :

Step1: Add productions for the start symbol.

Zo :
S— [do © ol

Zp:
S> [qd 41

Step2: Add productions for (qp, a, a) = {(qg, 2a) }
a a a

[do dol ldo dol [do Aol
a a a

[qo Gol > aldo alla: dl

a a a
[qo dil—aldo dol ldo 4

a a a
Iq a)—aldg alla 4)

Step 3: Add productions for 5(qp, b, a) = {(q,, &)}

a
[q a]—-b

Step4: Add productions for 5(q,, b, a) = {(q,, ©)}

a
(Iq; a)—>b

Step5: Add productions for 3(q,, &, 2) > {(q,, ©)}
. 25

Iq, a)—-e

Q.13 Write short note on DPDA. Dec. 2009

Ans. :

DPDA

In a DPDA there is only one move in every situation. A

DPDA is less powerful than NPDA.

Every context free language cannot be accepted by a DPDA.
For example, a string of the form ww" can not be processed by a

DPDA.

The class of a language a DPDA can accept lies in between a

regular language and CFL.

A DPDA is defined as :

M = (Q,2,9,8,q,2,F), where

5(q, a, x) has one move for any qe Q, XE Pandae X.

a |
@Teasy-soiutions]

\

Scanned by CamScanner

Wtheory of Comp. Sci. (MU-Sem. 5-Comp.)

Q.14 Design a PDA for detection of palindromes over
{a, b}. elem 4

Ans. :

_ A palindrome will be of the form :

1 wit - even palindrome

2. waw*

3. wbw* - odd palindrome
If the length of w is n then a palindrome is:

First n characters are equal to the last n characters in the
reverse order with the middle character as :

(1) a [For odd palindrome]

(2) b [For odd palindrome]

(3) .¢ [For even palindrome]

The transition table for the PDA is given below :

, 5g 2%) => (4G), 2) (Gy 229)}

5(dy, b, %) => {(q,, Zp)s (dy, bz)}

5d, a, a)

5(q,, a, b)

5(q,, b, a)

5(q,, b, b)

8(q,, a, a)

5(q;, b, b)

5(q:, €, Z)

= (@, aa) @,, a), (q,, €)}

=> {(dy ab), (G,,b)}
=> {(q,, ba), (q, 4)}

=> {(q,, bb), (q,, b), (q,, &)}

=> (@, 8}

= {G8}

= (@,,©)}

[Accept through an empty stack].

Details of important transitions :

The transaction, (q9,8,a) => { (Qo,84), (44.4), (44.2) }

Input
‘a’ is part

of w

Input 'a' is middle
point of odd palindrome

Input 'a' Is first

character of wi
of even palindrome

The transition rule for 5(qp, a, a), must consider the three cases :

1. Input ‘a’ is part of w of the palindrome.

2. Input ‘a’ is middle character of waw*

3. Input ‘a’ is the first character of wt

TCS-42

The transaction, 5(q9,4,b) => { (dg» ab), (4b))

- |
Input ‘a' is Input ‘a’ is
part of w middle point

of waw"

rae Q.15 Write application of PDA.

Ans. :

Applications of PDA

PDA is a machine for CFL.

A string belonging to a CFL can be recognized by a PDA.

PDA is extensively used for parsing.

PDA is an abstract machine; it can also used for giving proofs

of lemma on CFL.

Q.16 areas a AA to accept language

fa n2 1}
Ans. :

For every ‘a’ in the input, 2 b’s are pushed onto the stack.

For the first ‘b’ in the input, 2 b’s are pushed onto the stack.

For every ‘b’ in the input, 1 ‘b’ is popped out from the stack.

Finally the stack should become empty.

Transitions

8(dp, a 2) = (dg, bb zy)

(dp, a,b) = (dg, bbb)

5 dob, 2) = (q,, bbz)

5p b,b) = (q,, bbb)

8q,,b.b) = (q,€)

5(qy €,%>) = (q,€)

[Accept using empty stack]

Q.17 Design PDA to check even palindrome over
== {0, 1}

Ans. :

An even palindrome will be of the form ww*

010 Pr 242, 210,,00, 2%
Ww tw" Ww we w we

Centre Centre Centre

If the length of w is n then a palindrome of even length is :
First n characters are equal to the last n characters in the = reverse order.

The character immediately before the middle position will be. identical to the character i immediately after the middle position.

GENEID

Scanned by CamScanner

4
2
4

7
4
1

]

:

]
|

me |

W theory of Comp. Sci. (MU-Sem. 5- Comp.)

Algorithm :

There is no way of finding the middle position by a PDA;
therefore the middle position is fixed non-deterministically,

1, First n characters are pushed onto the stack. n is non-
‘ deterministic.

2. The n characters on the stack are matched with the last n
characters of the input string.

3, _ nis decided non-deterministically. Every character out of first
n characters, whose previous character is same as itself
should be considered for two cases : .

(a) _Itis first character of the second half.

- Pop the current stack symbol using the transitions :

5(q, 0,0). => @,.e)

8q. 1.1) >@,2)
Must be identical

(b) It belongs to first half.

- Push the current input

5(qy,0,€) => (q,, 0)

Sy le) => (q, 1)

. 4. nis decided non-deterministically. Every character out of first
n characters, whose previous character is not same as itself

' should be pushed onto the stack.

- Push the current symbol using the transitions :

8(q,0,1) => (q, 01)

S(qy 1,0) => (q, 10)

The transition table for the PDA is given below : ©

5(ag. 0,29) => {(Ay, 02,)}
5(qy. 1,2) = {(dy 12))}

5(q,,0,0) = {(do, 00) (q,. €)}

5(q,9,1) = {(qy. 0D}

S(q, 1,0) => {Cy 10)}

Sq) 1.1) = {Cy 1), G,.©))

&(q,.0,0) = (() ©}

&q, 1,1) = {G@, ©}

5(q,,&%) = {(q,€))

[Accept through an empty stack]

Where,

, = {dy 4,}

the set of input symbols © = {0, 1)

the set of stack symbols I" = {0, 1,29)

Starting state = q)

Initial stack symbol = Zp

the set of states Q

TCS-43

Q.18 Design DPDA to accept language L = {x € {a, b}*
N,(x) > N,(x)}, Ng(x) > N,(x) means number of a’s
are greater than number of b’s In string x.

TARE

Ans. : ,

The PDA is being designed to accept the string using final

state. The stack is being used to store excess of a’s over b’s or

excess of b’s over a’s out of input seen so far.

Transitions

1. 8 (qq a, Zp) = (dg, a Zp) (Extra ‘a’ is pushed]

2. 8 (qo, b, Z) = (Gg, b Zp) [Extra ‘b’ is pushed]

3. 8 (dg, a, a) = (qq, aa) [Excess a’s are pushed]

4. 8 (qg, a, b) = (Gy, €) [Excess b’s decreased by 1]

5. 8 (qb, b) = (qy bb) [Excess b’s are pushed]

6. - 5 (dp. b, a) = (dp, €) [Excess a’s decreased by 1]

7. 8 (qo, €, a) =(q;, €) [Input ends with excess a’s on

the stack]

The PDA is given by:

M = ({qo- 41} {a,b}, {a, b, 2}, 8, dg. Z {q,)

Q, 18 Construct PDA accepting the language
L= {a’ "bi n> QO}.

Ans. :

Algorithm :

1. Forevery pair of leading ats, one X is inserted in the stack.

2. X’son the stack are matched with trailing b’s.

The PDA is given by

M = ({4 4,4). 43} {a,b} (X, Z,},8,q,, Zo)

where the transition function & is

1 5(qy.a,Z,) = (q,,2,)

2. 8(q,..Z,) = XZ)
3 5q,.a,X) = (q,.X)
4: 8q,.a,X) = (q,, XX)

5 ~ BG@,bX) = |e)
6 5(q,.b,X) = (q,,€)

7 5q,.€,Z)) = (q,€)

Accept through empty stack.
 Q.20 Design a PDA-corresponding to the grammar :

S-> aSAle

A + bB

Bb
Ans. ;

The equivalent PDA, M is given by :

—e - |=» esis

Scanned by CamScanner

, W theory of Comp. Sci. (MU-Sem. 5-Comp.)

iq

TCS-44 |

M = ({q), {a,b}, {a,b, S, A, B}, 5, q, S, 4)
‘where 6 is given by :

5(q, €, S)=> ((q, aSA), (q. 6)}

5(q.€, A) > ((q, bB))

5(q, €, B)= ((q, b)}

5(q.a,a)= ((q,€))

5(q.b, b) = {(q, €)}

Q. 21 Design a PDA to accept language
{a"~ pnt! In>=1 }

-Ans. :

1. 84g. a, Zp) => (Gy 84Zp) «

2. 8(q,,a,8) => (Gy 24)

3. 8(q,,b,a) > (qa)

4. &(q,,b,a) => (dy €)

5 5(qy €, Zp) => (d €)

Accept through empty stack.

Chapter 7 : Turing Machine (TM)

Q.1 Write short note on : Universal TM.

Dec. 2005, May 2007. Dec. 2007, May 2008. Dec. 2008,

May 2009, May 2010, Dec. 2011, May 2012,

Dec. 2012, Dec. 2015

Ans.:

Universal TM

A general-purpose computer can be programmed to solve

different types of problems. A TM can also behave like a general-
purpose computer. A general purpose computer solves a problem

as given below :

1. A program is written in a high level language and its
machine-code is obtained with the help of a complier.

2. Machine code is loaded in main memory.

Input to the program can also be loaded in memory.

4. Program stored in memory is executed line by line. Execution
involves reading a line of code pointed by IP (instruction
pointer), decoding the code and executing it.

- We can follow a similar approach for a TM. Such, a TM is.
known as Universal Turing Machine. Universal Turing Machine
(UTM) can solve all sorts of solvable problems.

A Turing machine M is designed to solve a particular
problem p, can be specified as :

1. The initial state qy of the TM M.

2. The transition function 5 of M can be specified as given :

If the current state of M is q, and the symbol under the head is
a; then the machine moves to state q, while changing a, to a,. The

move of tape head may be : ' ,

1. To-left,

2. To-Right or

Neutral

Such a move of TM can be represented by tuple

{Gp Gp2 9M) = udp Q 5 aya,E Tr; m, € (To- left, To-

Right, Neutral) }

Gs easy-solutions

UTM should be able to simulate every turing machine.

Simulation of a Turing will involve :

1. Encoding behaviour of a particular TM as a program.

2. Execution of the above program by UTM.

A move of the form (q;,a;,q,,a;,m,) can be represented as 10

10'10°*' 10' 10%,

Where K =

K =

K =

State q, is represented by 0,

State q, is represented by 00,

State q, is represented by 0}.

I+ 1

1, if move is to the left

2, if move is to the right

3, if move is ‘no-move’

First symbol can be represented by 0,

Second symbol can be represented by 00 and so on.

Two elements of a tuple representing a move are separated by 1.

Two moves are separated by 11. .

Execution by UTM :

We can assume the UTM as a 3-tape turing machine.

1. Input is written on the first tape.

2. Moves of the TM in encoded form is written on the second
tape.

The current state of TM is written on the third tape,
The control unit of UTM by counting number of 0's between

1’s can find out the current symbol under the head. It can find the
Current state from the tape 3. Now, it can locate the appropriate
move based on current input and the Current state from the tape 2. Now, the control unit can extract the following information from’
the tape 2:

l. Next state

3. Move of the head.

2. Next symbol to be written

Based on this information, the control unit can take the
appropriate action. Ts

Scanned by CamScanner

TCS-45_ W Theory of Comp. Sci. (MU-Sem. 5-Comp.) besa

Q.2 Design a TM which recognizes palindromes over
alphabet {a,b}

May 2006, May 2009, May 2014, Dec. 2017

Ans. :

A palindrome can have one of the following forms :

1. oo

2, aaoa®

aba®

Where @ is a string over {a,b} with 1a 120

Algorithm :

1. Algorithm requires n cycles, where | o | =n.

2. In each cycle, first character is matched with the last

character and both are erased.

Fig. 7.1(a) : Transition diagram

If the leftmost character is ‘a’ the machine takes a path

through qy —> 4; > 43 > 4s — >, looking for last character as ‘a’.

If the leftmost character is ‘b’, the machine takes a path

through |
a> 74,7 6 4 q>. looking for last character as ‘b’.

The Turing machine M is given by :

M = (Q,2,T,5,q).B.F)

Where, Q = {hop Gi» Gor s+ Gar Q5» Ies rr a}

z= {a,b}

r = {a,b,B)

The transition function 6 is given in Fig. 7.1(a)

G = _ initial state

B = blank symbol

F = {q,}, halting state

Working of TM for input abbabba is shown in Fig. 7.1(a) :

> : @EnETImMnND

BabbablsB}BBbbebbas HHBbsabbaBl-BebabbaP

qo 4 q %
|-Bbb abbaB|-BbbabbaB|-BbbabbaB rpbhabba®

A) ‘ 3

| BbbabbaBl BbbabbBBt Bbb oe PBbpAree

qr
|-BbbabbB|-B bbabb B|-BbbabbB/|- BbbabbB

t t t t
a h h %

-BB babies + BusubEPBbePOB pete.

t
2 qa ’ Ws Ns

|-BbabbB} BbabbB} BbabBB}BbabB
t 1
GN Gs dD

-BbabB} BbabB} BbabB} BBabB
tt t

G Co qo ‘ 2

+ BabB|-BabB|BabB} BaBB | BaB
t ~ tft + ft
ds % 4 dh %

}+-BaB} BBB} BBB

£ a 4
Fig. 7.1(a)

Q.3 Design a TM to compute multiplication of two

unary numbers. May 2007

Ans. :

Multiplication algorithm is being explained with the help of

an example. .

3x 5 will require three cycles.

Initial |B000-# 00000 # B
rT
3 5 Product will be

stored here

Cycle 1 | BX00.# 00000 # 00000B = 1x5=5
—”

1x5 =5

Cycle2 | BXX0 # 00000 # 000000000B 2x5=10
—~”

2x5=10

Cycle 3 | BXXX # 00000 # 00000 00000 00000 B | 3x5 = 15
3x5 = 15

To calculate 3 x 5, three times, 5 zero’s are appended.

Unary representation of 3 is 000.

Unary representation of 5 is 00000.

3, 5 and the result, are separated by #.

Inside each major cycles (three cycles for 3), there will be a

number of minor cycles (5 minor cycles for 5) to append 0’s one at

atime.

Scanned by CamScanner

¥ Theory of Comp. Sci. (MU-Sem. 5-Comp.)

WAR
0/0.R 0/0,.R

OfR a WR’ KR

Fig. 7.2 : Transition diagram for TM

Let us assume that the two numbers to be multiplied are.x, and x,.

X, is represented by w,, where 0, is a string of 0’s.

X, is represented by @,, where 0, is a string of 0's.

X, * X, is represented by w,, where (, is a string 0’s.

separates @, and 0),, ®, and @.

In the TM shown in Fig. Ex. 7.3.6, there are two cycles.

The cycle qg > q,; > 4, — Gs Mp appends , to w, for

every zero in w,, with the help of cycle q, — q, > q, > q,

Working of TM for 2 x 2 is shown in Fig. 7.2(a) :

B00#004B | Bx0#00#B | Bx0#00#B |-Bx0 #00#B

t t t t
D qh hh : &

-LBx0#x0#4B LBx0#x0#B

t +
4s 4s

-LBx0#x0#B | Bx0#x0#0B

t t
45 de

-LBx0 #x0#0B LBx0#x0#0B

t t
% q

-LBx0 #00#0B LBx0#0x#0B

t t
% %

t-Bx0 #0x#0B FBx0#0x#0B

t t
qs q3

-Bx0#0x#00B -Bx0#0x#00B

t t
Py qa

+ Bx0#0x#00B L Bx0#00#00B

t ft
% 2

-Bx0#00#00B +} Bx0#00#00B |}-Bx0#00#00B

t t t
qs qs ds

+Bx0#00#00B + Bx10#00#008 |-B00 #00#005

tT t t
qs % qo

-LBOx#00#00B } BOx#00#00B x

t t
qq Ar

Fig. 7.2Contd...

TCS-48

LBOx#x0#00BL-BOx#x0#00B
t

4 q
LBOx#x0#00BLBOx#x0#00B

4 4
LBOx#x0#00BELBOx#x0#000B

4 d
LBOx#x0#000BLB 0x #x0#000B

qu du
-BOx#x0#000BLB 0x #x0#000B

t

d 4
+BOx#00#000BLB 0x #0x#000B

t t
h %

+ BOx#0x#000BEB Ox #0x #000B

t t .
Gs %

-BOx#0x#000B/ B Ox 40x #000B

t t
qs cr)

FBOx#0x#0000B]B0x#0x#0000B

t t
% %

FBOx#0x#0000BLBO0x#0x#0000B

t t
4 4a

1BOx#0x#0000BLB0x#00#0000B
t t
% au

EF BOx#00#0000B]}L BOx#00#0000BLB0x#00#0000B

t t t
qs qs 4s

FBOx#00#0000BELB00#00#0000BLB00#00#0000B

7 Tt t
Qs % Gs

Fig. 7.2(@)

Tesalt

Q.4 Design a TM to find the value of log.(n), where n is

any binary number.

Ans. :

by n.

ie. if 2"<n<2"*' then log,(n) =n

Let us consider the case of a number

n = 36

2 < 36<2°

log,(36) = 5

36 can be written as 100100.

Therefore,

Any number n satisfying the condition 2° < n < 2° can be
written as IXXXXX (where X stands for either 1 or 0). log, —

(1XXXXX) can be calculated by erasing the most significant bit 1
and renaming other bits as ‘0°, Unary representation of 5 is 00000.

 5 , Teasy-soluions
————

|

log,(n) of any number n lying between 2° and 2"*! is given

 1

Scanned by CamScanner

WH Theory of Comp. Sci. (MU-Sem. 5-Comp.) TCS-47

0/0,R
O/B.R 10.R

(VB () BIB. ,

=~ G)_“@©
Halting

state

Fig. 7.3(a) : Transition diagram

lo 41 5
9 | oB.R) BR) -

qi (q:,0,R) (q,,0,R) (q,,B,L)

qa | & % %

Fig. 7.3(b) : Transition table :

Working of TM for (36),9 is shown in Fig. 7.3(c) :

< Halting state

(36) = (0100100),

B0100100B}B100100B -B00100B

tT t tT
. Io qo q)

+B00100B/800100B} B00000B

Tt t t
qh cof q)

-B00000BELB00000B/-B00000B

t t +
qh h q2

Fig. 7.3(0)

Q.5 Designa Turing machine to compute n!.

Ans: : ~

It is assumed that n is represented in unary system. ,

Factorial of n can be calculated through repeated application of :

1.. Multiplication

2. Copy —

Operations.

Algorithm is being explained with the help of example.

Algorithm for [3 .

Initial configuration |O#OOO#BB...
=—

Cycle 1: n

O#OOOHOOOB...
=

Product

1. Multiplication

2. Copyn=l,ie.2 | O0#000#000#00
SS ay

n nxt n-1

Cycle 2:

1. Multiplication

O#OOOHOOO#HOO#OO000N
Ss

n nxt n-1— nx(n-1)

2. Copyn-2,i.€. 119 4000#000800#000000#0

n nx1

 Sa +
nits nx(n-1)_—n-2

Cycle 3:

1. [0#000#000#00#000000#0#00000084

So
n 1xn

—

nx(n-1) n-2 nx(n-1)(n-2)-

©)

n-1

Subroutine for
multiplication,

Subroutne to
ye Copy N=1

Fig. 7.4(a)

O/0,R

Fig. 7.4(b)

Subroutine to copy n—1:

Fig. 7.4(c)

® -
@s easy-solutions

Scanned by CamScanner

s . ‘

a Theory of Comp. Sci. (MU-Sem. 5-Comp.)

Q.6 Write note on ‘Multiple Turing machine’.

Ans. :

Multiple Turing machine

1. A Turing Machine with Multiple Heads

A turing machine with single tape can have multiple heads.

Let us consider a turing machine with two heads H, and H,. Each

_ head is capable of performing read/write /move operation

independently.
BabaabbaBBB

H, 4H,

Fig. 7.5 : A Turing machine with two heads

The transition behavior of 2-head one tape Turing machine

can be defined as given below :

5 (State, Symbol under H, Symbol under H,) = (New state,

(S;, M,), (S2, M,))

Where,

S, is the symbol to be written in the cell under H,.

M, is the movement (L, R, N) of H,.

S, is the symbol to be written in the cell under H,. ©

M, is the movement (L, R, N) of H,.

2 Miulti-Tape Turing Machine

Multi-Tape turing machine has multiple tuples with each tape

having its own independent head. Let us consider the case of a two

tape turing machine. It is shown in Fig. 7.6.

Tapel: [Bla] blalalo[b]a[B]B[B —|

Tape 2: | B| a [alo]o] alb|[a[B | B | —

Fig. 7.6 : A two-tape turing machine

The transition behavior of a two-tape Turing machine can be

defined as :

5(q).4;,2,) =(q2,(S,.M,),(S2.M,))

Where,

_ q, is the current state,

g, is the next state,

a, is the symbol under the head on tape 1,

a, is the symbol under the head on tape 2,

S, is the symbol written in the current cell on tape 1,

S, is the symbol written in the current cell on tape 2,

M, is the movement (L, R, N) of head on tape 1,

M, is the movement (L, R, N) of head on tape 2.

Q.7 Design a TM which recognizes words of the form

a’b’c" | n21. .

ones yyR bbR
w/a zwzR

cf2,L

w2L
b/b,L.
yyL
a/a,L

yyR

w2,R BBN

Fig. 7.7(a) : Transition diagram

| a b ¢ x y z B

240] (41.%R) = - = (ay,R) = -

qh (q1,a,R) (q2y,R) - = (a1,y,R) _ _

@} - (Gab,R) (432A) - — (ez) -

Qs} (Qs.a,L) (qabl) - (daXR) (dsy,L) (qa.2,L)

Gl - - - — — (qsy,R) (q4.2,R) (as,B,N)

a5] ds qs a5 Qs 95. Gs qs

Fig. 7.7(b) : Transition table

The Turing machine M is given by :

M = (Q3,7.8,q,B.F)
= {o> Qs Gas Qs Gas Os} »

= {ab,c}

Where,

= {a,b,c,x, y,z, B}

The transition is given Fig. 7.7(a, b)

= Initial state

= Blank symbol

= {q5}, Halting State n
m
w
e
P
F
f
o
a

s
a
s
M

©

"

(as easy-solutions

Scanned by CamScanner |

wW Theory of Comp. Sci. (MU-Sem. 5-Comp.)

“Algorithm : |

For a string a’b"c’, the TM will need n cycles. In each cycle :

1. Leftmost ais written as x

2. Leftmost b is written as y

3. Leftmostc is written as z

At the end of n cycles, the tape should contain only x’s, y’s
and z's.

Working of the TM for input abc? is shown in Fig. 7.7(c) :

. BAanbbeeoni=Bayehbt cccB] BxaabbbeccB
*

h 1 . qa

FBxaabbbcccB} Bxaay bbcccB} BxaaybbcccB
t tT T
Gh ab) &

PBxeey ibs ceBir axauybhz ccB|-BxaaybbzccB
t

% qs &

- FBxaaybbzccB}] BxaaybbzccB|-BxaaybbzccB
te t t
G3 - & 43

-BxaaybbzccB] BxaaybbzccB|-BxxaybbzccB

t+ et |
qs D qi

FBxxaybbzccB}/ BxxaybbzccB/L BxxayybzccB
+ | t ot
i qa - Oy

-BxxayybzccB} BxxayybzecB} BxxayybzzcB
t t
[2 i) 43

EBxxayybzzeBl-BxxayybzzeB Bxxa ybzzcB

t f ‘d
FBxxayybzzcB|-BxxayybzzcB} BxxayybzzcB

t
qo

FBxxxy ybzzcB]}-BxxxyybzzcB}/BxxxyybzzcB
+. t
qh qi - Wh

-BxxxyyyzzcB|-BxxxyyyzzcB|-BxxxyyyzzcB
* t t

q2 : % s))

FBxxxyyyzz =BPBxxxyyys22BB xxxyyyzzzB
‘ 7?
b & 4

FBxxxyyyzzzB PRxaxpyy2z28 PBxxtyyyz2zB
tT
qs qs

Fig. 7.7(c)

TCS-49

Fig. 7.8(a) : State transition diagram

Q.8 Design a turing machine to check whether a

string over {a,b} contains equal number of a’s and

b’s. Dec. 2009, May 2008, Dec. 2015

Ans.: .

Algorithm :

1. Locate first a or first b.

2. If itis ‘a’ then locate ‘b’ rewrite them as x.

3. If itis ‘b’ then locate ‘a’ rewrite them as x.

4. Repeat steps from I to 3 till every a or b is re-written as x.

® (Teasy-solutions

a b . x . B.

9p | Qy-XR) (@).X,R) (dgpX.R) (q,,.B.N)

% | GpaR) -G@sXL) @XR) -

q | (43-X.L) (q,,b.R) (GX R) -

G3 | (q;,a,L) (q3.b,L) (q3-X,L) — (qo,B.R)

a |G % a © Hahing
state

Fig. 7.8(b) : Transition table -

The turing machine M is given by :

M = (Q,3,°,8,q9,B,F)

Where, Q = {4g Gis Gar Gy Gy}

z= {a,b}

T = {a,b,X,B}

Qo = Initial state

B = Blank symbol

F = {q,)

Working of machine for an input abba is shown in Fig. 7.8(c)

-+BabbaB|-BxbbaB}] BxxbaB} BxxbaB
t t te
qo oh 3 3

.|-BxxbaB|-BxxbaB} BxxbaB} BxxxaB
t t _ ft t
qo qo do OF)

Fig. 7.8(c) Contd....

Scanned by CamScanner

2

WF Theory of Comp. Sct (MU-Sem.§-Comp)
-BxxxxB- BxxxxB|-BxxxxB -BxxxxB

t t t t
qs 93° 3 o

|-BxxxxB} BxxxxB|-BxxxxB -BxxxxB t t t t

qo qo qo D
|-BxxxxB}- BxxxxB

Fig. 7.8(c)

Q.9 What Is Turing machine ?

Ans. :

Turing machine : Formal Definition of Turing Machine

A Turing machine M is a 7-tuple given by :

M = (Q%,T,8, a, B, F)

where

Qis finite set of states

~ is finite set of input alphabet not containing B.

Tis a finite set of tape symbols. Tape symbols include B.

Gp € Qis the initial symbol.

B & Iisa special symbol representing an empty cell.

S
w

F
Y

DN

F c Qis the set of final states, final states are also known as

halting states.

7. The transition function 6 is a function from

QxPtoQxPx LRN)

A transition in turing machine is written as,

&(dg, a) = (q,, b, R), which implies, when in state Qy and

scanning symbol a, the machine will enter state q,, it will rewrite a

as b and move to the right cell.
A transition 5(qp, a) = (q;, a, R), implies that the machine will

enter state q,, it will not change the symbol being scanned and

move to the right cell.

Movement of Read / Write head is given L, R or N

L => Move to left cell

R — Move to right cell

N ->: Remain in the current cell (No movement)

Q.10 Design a TM to compute proper subtraction of

two unary numbers. The proper subtraction

function f Is defined as follows :

m-n ifm>n
f(m, n) = { 0 otherwise

May 2009, Dec. 2009

Ans. :

The working of the TM is being explained with subtraction of

3 from 5.

In unary system, 5 is represented as 00000,

In unary system, 3 is represented as 000. |

In unary system, 0 is represented by a blank tape.

Subtraction will require several cycle. In each cycle :

1. Leftmost 0 is erased

2. Rightmost 0 is erased.

Situation of tape after each cycle is shown below :

‘Initia ([B]Ol0 0 0 0 # 0 0 0 BI

After I cycle [B]B] 000 0 0 # 0.0} B|B]—|

After 2™ cycle [B/B]B] Oo. oo # o]B|B}B|-]

After3“cycle [B]B]B] Blo 0 # /[B[BI =-=]

Transition diagram and transition table are given ‘in

Fig. 7.9(a) and (b).

HR
0,R

OBR R BBL ~~
wy 2

men ——=$ m>n won

#AL

OBR ((% _ ©

Fig. 7.9(a) : Transition diagram

Lo 8 3
3% | @.BR) GBR -

ai | GOR) (@ttR) (@.BL)
2 | (4yB,L) (q50,N) -

M3 | (@.0.L) (qy#L) — (qg.B.R)

a] GBR) - — @,BN)
qa; | 4% Ws qs < Halting state

Fig. 7.9(b) : Transition table

The Turing machine M is given by : ,

M = Q30,3,q,B,F
where,

Q = (4p Gi da» G5; Is 45)
z= (0, 8}

r= (01,48)

The transition function 8 is given in Fig. 7.9(a) and (b)

initial state, % =

qeasy-solutions Scanned by CamScanner

W Theory of Comp. Sci. (MU-Sem. 5-Comp,)
B = blank symbol

F = {q,}, Halting state |

The working of TM is being simulated for 5-3 is shown in

Fig. Ex. 7.3(c) : ‘

89000 0#000BF-BB900G#O0OR-BBODDOHOOOB

qd hh
‘BB 0000#000B/-B BoOoO O#000B|-BB0000#000B Tt t / a hd a
-BB C000FSOOBEBBO00 OnOO0B FBBOOOO#000B

: t
h 1

t ; hh
LBB 0000#000B} B0000#000B}B0000#00BB

+B0000#00B}B0000#00B}B0000#00B}-B0000#00B
t t t t

. & a3 & %

-B0000#00B +B 0000#00B}B0000#00B}-B00 00#00B

t t t t
h i) G q

+BB000#00B}BB000#00B}BB000#00B]-B000#00B

t tT: . 7 .
q 4 4

+B000#00B}-B000#00B}/B000#00B}B0G0#00B

ft t t t
q qi qi h

-BO000#0BBLBO000#0B]-BO00#0BLBO00#0B

g ¢ ¢ 4
-B000#0B}B000#0B PB SORUBE BB orO®
tt '
4 & % q

+B00#0B}B00#0B}B00#0B} B00#0B}-B00#0B

t t t t t
q G 4 4 h

B0O#BB}-BOO0#B}-BO0#BLBO0#B

" t " + ft fT
4 & % &

- FBOO#BEBBOFBEBBOFB
if

4

-BO#B}BO#B}- BOOB
{ -

H h

Fig. 7.9(c)

TCS-51

Q.11 Write short note on Variants of TM.

Dec. 2006, Dec. 2008, Dec. 2009, Dec. 2010.

May 2014, May 2015, May 2017

Ans. :

1. Two-way Infinite Turing Machine

In a standard turing machine number of positions for leftmost ;

blanks is fixed and they are included in instantaneous description,

where the right-hand blanks are not included.

In the two way infinite Turing machine, there is an infinite

sequence of blanks on each side of the input string. In an

instantaneous description, these blanks are never shown.

2. ATuring Machine with Multiple Heads

A turing machine with single tape can have multiple heads.

Let us consider a turing machine with two heads H, and H,. Each

head is capable of performing read/write /move operation

independently.

BabaabbaBBB

H, #H,
Fig. 7.10 : A Turing machine with two heads

The transition behavior of 2-head one tape Turing machine

can be defined as given below :

5 (State, Symbol under H,, Symbol under H,) = (New state,

(S,, M,), (S,, M,)) : :

Where,

S, is the symbol to be written in the cell under H,.

M, is the movement (L, R, N) of H,.

S, is the symbol to be written in the cell under H,.

M, is the movement (L, R, N) of H,.

3. Multi-Tape Turing Machine

Multi-Tape turing machine has multiple tuples with each tape

having its own independent head. Let us consider the case of a two

tape turing machine. It is shown in Fig. 7.11.

Tape 1: | a [> | a| a lb | b}a |B/ BIB. =

 Tape2: [Bl afalb]ofalo[a[B]B] — |

Fig. 7.11 : A two-tape turing machine

The transition behavior of a two-tape Turing machine can be

defined as :

5(q).4,:,) = (q,,(S,.M,)(S,M,))

Where, ,

@s CEE EIDE

Scanned by CamScanner

°

Comp. Sci, (MU-Sem.5-Comp)
Q, is the current state,

q, is the next state,

a, is the symbol under the head on tape 1,

a, is the symbol under the head on tape 2,

S, is the symbol written in the current cell on tape 1,

S, is the symbol written in the current cell on tape 2,

M, is the movement (L, R, N) of head on tape 1,

M, is the movement a, R, N) of head on tape 2.

4. - Non-deterministic Turing Machine

Non-deterministic is a powerful feature. A non-deterministic

TM machine might have, on certain combinations of state and

symbol under the head, more than one possible choice of

behaviour.

Non-deterministic does not make a TM more powerful.

For every non-deterministic TM, there is an equivalent.

deterministic TM.

It is easy to design a non-deterministic TM for certain class of

problems.

A string is said to be accepted by a NDTM,, if there is at least

one sequence of moves that takes the machine to final state.

An example of non-deterministic move for a TM is shown in

Fig.7.12.

alaR

B ©
Fig. 7.12 : A sample move for NDTM

afkR

The transition behaviour for state Qo for'TM of Fig. 7.12 can

be written as

8 (do 2) = {(Gy- a, R) (qy, x R))

Q.12 Design a turing machine to replace string 110 by

101 in binary Input string.

Ans. :

The turing machine will Jook for every occurrence of the

string 110.

State q, is for previous two symbols as 11.

Next symbol as 0 in state q,, will initiate the replacement

process to replace 110 by 101.

Replacement cyl?

Fig. 7.13

The turing machine M is given by :

M = (Q,2%,T,8, gy, B, F)

Where, Q = {qo Gd: I Uy Is}

x = {0,1}

r= {0,1,B}

6 = Transition function is shown using the transition

diagram

B = Blank symbol for the tape

F = {qs}, halting state

Working of the machine for input 0101101 is shown in
Fig. 7.13(a):

0101101B F 0101101 fF 0101101B F 0101101

qo qo hh 40

f0101101B F 01011018

q Cord} 57

fF 0101111B F 01010118

qs | Qa

F010111B 010111B- 01011148

0 4

Fig. 7.13(a)
5 (halt)

Q.13 Design Turing machine as generator to add two
binary numbers and he or “1104-10”, nce simulate f 4

Ans, :

This problem can be solved using a 3-tape Turing machine.
First machine T1 Stores the

machine T2 stores the second bin
stores the result.

first binary number. Second

ary number. Third machine T3’”

(@s EEL

4
4

|

Scanned by CamScanner

WF Theory Comp. Sci. (MU-Sem. 5-Comp.)

The Turing machine will have 3 states : |
p — previous carry as 0

; — Previous carry as 1

q2 — Halting state

(0, 0, L) (0, 0, L) @, 0, L)
(1, 1, L) (0, 0, L) @, 1, L)

(0, 0, L) (1, 1, L) (B, 1, L)

(B, B, L) (0, 0,L) @B, 0, L)
(0, 0, L) @, B, L) B, 0, L)

@, B, L) (1, 1, L) , 1, L)

(1, 1, L) @, B, L) @, 1, L)

(1, 1, L) (0, 0, L) (B, 0, L)

(1, 1,L) B, B, L) B, 0, L)
(0, 0, L) (1, 1, L) @B, 0, L)

(B, B, L) (1, 1, L) B, 0, L)

(1, 1, L) (1, 1, L) B, 1, L)

(B.8,R) (8,B,R) (B,0,R)

(1,1,L) (1,1,L) (B,0,L)

(0,0,L) (0,0,L) (B,1,L)
(0,0,L) (B,B,L) (B,1,L)
(B,B,L) (0,0,L) (B,1,L)

(B,8,R) (B,B,R) (B,1,R)

Fig. 7.14

Simuiation for 116 + 10

o
l
o
l
o

|
&

t

q, (Halt)

Q.14 Design a Turing machine as acceptor for the

language {a" b™ | n, m>0 and m2 n}.

Ans. : ‘

ala,R

Fig. 7.15

Q.15 Construct turning machine that accepts the string

over Z = {0, 1} and converts every occurrence of

111 to 101. May 2015

Ans. :

1/0,R

Fig. 7.16

The turing machine M is given by :

M = (Q3,0.8,.B.P)

Where, Q = (40 is Ga» GU 45}
B= (0,1)

Tr = (0,1,B}

8 = Transition function is shown using the transition

diagram

B = Blank symbol for the tape

F = {qs}, halting state

® :
@GsGbEYIInes

Scanned by CamScanner

W thoory of Comp. Sei. (MU-Sem.5-Comp) _
Q.16 Construct a TM for checking well for medness of

parentheses.

Ans. :

May 2012, May 2015, May 2017

In each cycle, the left-most ‘)’ is written as X, then the head

moves left to locate the nearer ‘(’ and it is changed to X.

The cycles of computation are shown below.

Input string is assumed to be (QO)0.

Cycle No. Tape

Initial B(QO)0B

1. B (XX0)0B

2. B(XXXX)0B

3. B XXXXXX()B

4. BXXXXXXXKB
xR

 BBR
7 Halt state

Fig. 7.17(a) : State transition diagram

| () x B

Go| GoGR) @uxL) ox) BL)

aq |GxR) - @xl) -
% - a (q2,x,L) (q3,B,R)

a3 qs 45 qs qs

Halting

state

Fig. 7.17(b) : State transition table

The Turing machine M is given by :

M = (Q,2,7,5,4)B, FP

where, Q = {4442-45} .

Z= {G)}

r= {(,)%B)

TCS-54

§ is given in Fig. 7.17(a) or 7.17(b)
% = Initial state

B = Blank symbol

F = {q;}, halting state

Making of the machine for input (()))0 is given in Fig. 7.17(c) :

B(()Q)OBEB(OO) OBE B(QO)O
7 t t
qo ce) ®

-B((x())Q BEB(xxQ))OBEB(xxQ)OB
t t 1
% qo qo

EB(xx())OBEB(xx{%) OBEB(xxxX)OB

. qh 40

HBC xxx) BEB(xxxex(BEB(xxexx0 B

qo qo 1

| B(xxxxx()B|-B(xxxxx()B}B(xxxxx()B

t t ft
Ud seh TT

|-Bxxxxxx()BEBxxxxxx()B]-Bxxxxxx()B

0

|-Bxxxxxx()B/- Bxxxxxx()BEBxxxxxx()B

t tT t
qo % qo

}--Bxxxxxx()B}Bxxxxxx(xB

% eT

|-BxxxxxxxxB|-BxxxxxxxxB

qo qo

-BxxxxxxxxB-BxxxxxxxxB|-BxxxxxxxxB

qa G e

FBxxxxxxxxB]/-BxxxxxxxxB|-BxxxxxxxxB

d d
/BxxxxxxxxB-EBx xxxxxxxBL BxxxxxxxxB

qa 2 ¢

-BxxxxxxxxB

3
Fig. 7.17(c)

Q.17 Design a turing machine to check whether 4
string over {a,b} contains equal number of |
a’s and b’s. Dec. 2009, May 2008. Dec. 2015

Ans. :

Algorithm :

1. Locate first a or first b.

2. — Ifitis ‘a’ then locate ‘b” rewrite them as x,
3. — Ifitis ‘b’ then locate ‘a’ rewrite them as x,
4. Repeat steps from 1 to 3 till every a or b is re-written as x.

@s easy-Solutions
——

4
Scanned by CamScanner

“WH theory of Comp. Sci. (MU-Sem. 5-Comp,) _

Fig. 7.18(a) : State transition diagram

a b x B

qo | GiXR) (GR) (XR) (4,.B.N)

q, } @paR) (GX) (q,-%-R) -

XL) (q,b.R) (G,%R) -

sal) (sbL) (XL) (dyB.R)

a] & % dG 4% € Halting
State

Fig. 7.18(b) : Transition table

The turing machine M is given by :

M = (Q2,7,8,4,B.PF)

Where, Q = {Gor i» er Gs, Ga}

z= = {a,b}

Tr =. {a,b, X, B}

qo = Initial state

B = Blank symbol

F = {q}

Working of machine for an input abba is shown in

Fig. 7.18(c) :

|-BabbaB|-BxbbaB|-BxxbaB|-Bxx baB

t t t t
qo qo q3 qs

+BxxbaB|-BxxbaB F BxxpaBl Buxxan

4, ‘ d, qo q2

Fig. 7.18(c) Contd....

I-BxxxxB}E Bx xxBLBxxxxB}BxxxxB
t t 4 t
os 3 qs &

PB axxxBE BxsxxBhBxxexB +B <=

qo 0 do

|-BxxxxB/- BxxxxB

Fig. 7.18(c)

Q.18 Design a Turing machine as an acceptor for the

language

{a"b"In, m20 and m2 n)

Ans. : ,
ala,R
b/b,R

b/Y,L

b/b,L
a/a,L

B/B,L

Halting state
(Final state)

Fig. 7.19

M = (Q2.0.8.4)B,F)

Where, Q = = {dy q+ Gas G3» G4)

x = {a,b}

r = {a,b,X, Y, B}

dy = initial state

B = Blank symbol

F= {a4}

Q.19 Design a TM to add two unary numbers.

Ans. :

Addition of two unary numbers can be performed through

append operation. To add two numbers 5 (say @,) and 3 (say @,)

" will require following steps :

1. Initial configuration of tape :

[Blofofofolo[#[olofo[s..]

5(@,) 3(@4)

50) : :
Gs basy-solutions

Scanned by CamScanner

TCS-56

¥ Theory of Comp. Sci. (MU-Sem. 5-Comp.)

2. — @, is appended to o.. .

 Blelofolopepojopoelap.y
@2

While every ‘0’ from 0), is getting appended to w,, ‘0’ from
0, is erased. @, contains 8 0's, which is sum of 5 and 3.

#4R
0/0,.R

The turing machine M is given by : ie

M = (Q,2,T.5, qo BF)

Where Q = (44-4 4h

XZ = {0,#}

T = {0,#,B}

8 = Transition function is given in

Fig. Ex. 7.3.10 (a), (b)

dy =. initial state ,

B = blank symbol

F = {q,), halting state.

Q. 20 Write short note on: Church-Turing Thesis.

May 2017

Ans. :

Church-Turing Thesis

Fig. 7-20(a) : tion diag The Turing machine is a general model of computation. Any —

| 0 # B algorithmic procedure can be solved by G computer can also be

solved by a TM. Problems computed by a computer or a TM are |

4p | (GBR) (q;B.R) - also known as partial recursive functions. Some enhancements to -

q: | G0,R) (q,#4R) — (q,,0,L) TM made the Church-Turing thesis acceptable. These

hi its are :
| @0L) GL) oBR) enencemen

‘ 1. Multi-tape 2. Multi-head

a; qs qs 4, -< Halting state ; :
3. Infinite tapes 4. Non-determinism.

Fig. 7.20(b) : Transition table Since the introduction of TM, no one has suggested an

algorithm than can be solved by a computer but cannot be solved

by a TM.

Chapter 8 : Undecidability

Q.1. Write short note on : Recursive and Recursively | Every Turing decidable language is Turing acceptable.
Enumerable Languages.

Dec. 2005. Dec. 2009, Dec. 2010, May 2014, Dec. 2014.

May 2015, Dec. 2015, May 2016, Dec. 2016,

Dec. 2017

Ans. :

Recursive and Recursively Enumerable Languages

There is a difference between recursively enumerable (Turing

Acceptable) and recursive (Turing Decidable) language.

Following statements are equivalent :

1. The language L is Turing acceptable,

2. The language L is recursively enumerable.

Following statements are equivalent

1. The language L is Turing decidable.

2. The language L is recursive.

3. There is an algorithm for recognizing L.

Every Turing acceptable language need not be Turing decidable.

Turing Acceptable Language

A language L ¢ =* is said to be a Turing Acceptable.
language if there is a Turing machine M which halts on every

® € L with an answer ‘YES’. However, if @ ¢ L, then M may not
halt, ,

Turing Decidable Language

A language L ¢ 2* is said to be turing being decidable if _
there is a turing machine M which always halts on every € £*. If
@ € L then M halts, with answer ‘YES’, and if w € L then M halts,
with answer ‘NO’.

A set of solutions for any problem defines a language.

A problem P is said to be decidable /solvable if the language
L ¢ &* representing the problem (set of solutions) is turing ~

decidable. i

Teasy-solutions]
\

Scanned by CamScanner

\

5; Ww Theory of Comp. Sci, (MU-Sem. 5-Comp.)

If P is solvable / decidable then there is an algorithm for

recognizing L, representing the problem. It may be noted that an

algorithm terminates on all inputs.

Following statements are equivalent :

1, The language Lis Turing decidable.

2. The language L is recursive.

3.° There is an algorithm for recognizing L.

Every turing decidable language is turing acceptable.

Every turing noceptable language need not be turing

decidable,

A language L ¢ =* many not be turing acceptable and hence

not turing decidable. Thus we cannot design a turing machine /

algorithm which halts for every w € L.

Q.2 Two recursive languages L, and L, is recursive :

Luk
Ans. :

L, UL, Is recursive

Let the turing machine M, decides L, and M, decides L,.

If a word @ € L, then M, retums “Y” else it retumms “N”.

Similarly, if a word w € L, then M, retums “Y” else it returns “N”.

Let us construct a turing machine M, as shown in Fig. 8.1.

Fig. 8.1 : A turing machine for L, UL,

Output of machine M, is written on the tape of M,.

Output of machine M, is written on the tape of M3.

The machine M, returns “Y” as output, if at least one of the

outputs of M,, or of M, is “Y”.

, It should be clear that M, decides L, U L. As both L, and L,

are turing decidable, after a finite time both M, and M, will halt

with answer “Y” or “N”. The machine M, is activated after M, and

M, are halted. The machine M, halts with answer “Y” if w € L, or

0 € L,, else M, halts with output “N”.

Thus L, U L, is turing decidable or L, U L, is recursive.

Q@3 ‘Prove that there exists no algorithm for deciding

whether a given CFG is ambiguous. |

May 2006, Dec. 2007, Dec. 2008

Ans. :

The post correspondence problem can be used to prove the

un-decidability of whether a given CFG is ambiguous.

Let us consider two sequences of strings over >

A = {0,,Uy Us + Unt

fa-“leasy-solutions

TCS-57

B = (Vj, Va V3 «0s Vn}

Let us take a new set of symbols a,, a, ... a,, such that

{a,,a,... a }ALD=od.

Symbols a;, a, ... a, are being taken as index symbols. The

index symbol a, represents a choice of u; from A and v, from the

list B.

A string of the form u, u, u, ... a a a. Over alphabet

LU {a,, a, ... a,,} can be defined using the set of productions :

G = Patil)
A vita ve te Be an

Similarly a string of the form v; v, v, ... aa; a, over alphabet

Lv {a,, a ...a,)} can be defined using es set of productions :

— peas ts Amal tate |
B, Vv, a, lv, a,1...1v,, a,

Finaily, we can combine the languages and grammars of two

lists to form a grammar Gy, :

A new start symbol S is added to Gy

Two new productions are added to G,,

Sv7~ A

s—-B

All productions of Ga and Gg are taken.

Now, we will show that G,, is ambiguous if and only if an

instance (A, B) of PCP has a solution.

Assumption :

Suppose the sequence i,,i,, ..., i, is a solution to this instance

of PCP. Two derivations for the above string in G4, is :

SS>A>ujAa > uu Aaam..>

Uy Yin ==> Uh iy Aig ++ Fin

S>B->v,Ba,>v,, Vj, Ba, a, >

Vit Vig +++ Vin iy ig +++ Fim ;

Consequently, if G,, is ambiguous, then the post

correspondence problem with the pair (A, B) has a’ solution.

Conversely, if G,, is unambiguous, then the post correspondence

cannot have a solution.

If there exists an algorithm for solving the ambiguous

problem, then there exists an algorithm for solving the post

correspondence problem. But, since there is no algorithm for the
Post correspondence problem, the ambiguity of CFG problem is
unsolvable.

Q.4 ‘Write short notes on post correspondence
problem and Greibach Theorem.

May 2006, Dec. 2006, May 2007, Dec. 2007, May 2008,

Dec. 2008. May 2009, May 2010. Dec. 2010.

May 2011, Dec. 2011. May 2012, May 2016

Scanned by CamScanner

q

S i
¥F_ Theory of Comp. Sci. (MU-Sem, 5-Comp.) Tos.58 |

Ans. : Q.5 Write short notes on : Halting problem. 4
Post correspondence problem CML ae a a aoe a — - . i

; 1 , Dec. 5 c u Definition : Let A and B be two non-empty lists of strings over >. eM MMO eM eh 2011, Dec |

A and B are given as below : Ans. :

A= (X, Xyy XQ.) Halting Problem of a Turing Machine

B= (na Ya Yi) The halting problem of a Turing machine states :
There is a post correspondence between A and B if there is a Given a Turing machine M and an input w to the machine M,

Sequence of one or more integers i, j, k ...m such that : determine if the machine M will eventually halt when it is given

The string x; Xj +++ Xp is equal to y,y, «+ Yuu input 0. ;

Example : Does the PCP with two lists : Halting problem of a Turing machine is unsolvable.
A = {a,aba’, ab} and Proof :

B = {a'ab,b} Moves of a turing machine can be represented using a binary
have a solution ? number. Thus, a Turing machine can be represented using a string

; lained i
So to find a sequence using which when the elements of A | OV =*(0,1). This concept has already been exp in

and B are listed, will produce identical strings. chapter.

The required sequence is (2, 1, 1 , 3) Insolvability of eee of a Turing machine can be

on. A, ALA Ay = aba’aaab=aba’b proved through the me! of contradic ' x

_ 3.3, 1 6 Step1: Let us assume that the halting problem of a Turing
B,B,B,B, = aba a b=aba b machine is solvable. There exists ‘

Thus, the PCP has solution. 1. Astring describing M.

So accept the un-decidability of post correspondence problem 2. An input w for machine M.

without proof. , H, generates an output “halt” if H, determines that M stops
Example : on input @; otherwise H outputs “loop”. Working of the machine

Determining the solution for following instance of PCP. Hi is shawn-below.

a halt
w fy
— -—> loop

0 Step2: Let us revise the machine H, as H, to take M as both
110010 0 , inputs and H, should be able to determine if M will

; _ halt on M as its input. Please note that a machine can
be described as a string over 0 and 1.

4 11 01
; ' M H.} halt

The PCP has a solution. The required sequence is (1, 3, 2, 4, 4, 3) as =

,0,0,0,0,0, = 01111001011111 : 4030.00.00, 7 Step3: — Let us construct a new Turing machine H, that takes Xj Xp X_Xq%Xz3 = 011110010111 output of H, as
2.48 input and does the following :

Greibach Theorem

The Theorem states that I+ Ifthe output of H2 is “loop” than H3 halts, e Theorem : ;
2. If the output of H, is “halt” than H, will loop-

“Let o be a class of Janguages that is effectively closed under forever.

concatenation with regular sets and union, and for which L = &* is M

un-decidable for any sufficiently large fixed 2. Let P bs any non- | cH ot -— halt —+ Machine Hg loops forever
trivial property that is true for all regular sets and that is preserved ——!—> loop —» Machine Hg halts
under a, where a is single symbol in Z. Then P is un-decidable for ee

o”.
7 ly Will do the Opposite of the output of H,.

Greibach theorem can be used to prove that many problems P4: Lotus give H; itself as inputs to H,.
related to CFG are un-decidable, Hg ;

7 Teasy-solutions - —

Scanned by CamScanner

If H, halts on H, as input then H, would loop (that is how we

constructed it). If H, loops forever on H, as input H, halts (that is

how we constructed it).

In either case, the result is wrong.

Hence,

H, does not exist.

If H, does not exist than H, does not exist.

If H, does not exist than H, does not exist.

Q.6 Does PCP with following two list: A = (10, 011,
101) and B = (101, 11, 011) have a some ?

___ Justify your answer.

Ans. :

. A, and A, differ from B, and B, at the first of place.

Therefore, we must pick A, and B,

Sequence String
(1) (A; = 10) @, = 101)

The next string to be picked up must be A, and B,. Ay of other

sequence will not lead to a solution.

Sequence String

(1, 3) (A,A, = 10101) (B,B, = 101011)

The next string to be picked up must be A, and B,. Any other

sequence will not lead to a solution.

Sequence String

d,3,3) (A,A,A, = 10101101) (B,B,B, = 101011011)

There is only choice of next string. This choice is A, and B,.

This does not lead to a solution. The PCP has no solution.

TCS-59 WwW Theory of Comp. Sci. (MU-Sem. 5-Comp.) : =

Q.7 Write short note on : Rice Theorem

B Dec. 2012, May 2013, May 2014, May 2015, Dec. 2015.

May 2016, Dec. 2016, May 2017, Dec. 2017

Ans. :

Rice Theorem

“very property that is satisfied by some but not all

recursively enumerable language is un-decidable”. Any property

that is satisfied by some recursively enumerable language but not

all is known as nontrivial property. We have seen many properties

of RE. languages that are un-decidable. These properties include :

1. Given aTM M, is L(M) nonempty ?

2. GivenaTM M, is L(M) finite ?

3. Given aTM M, is L(M) regular ?

4. GivenaTMM, is L(M) recursive ?

The Rice’s theorem can be proved: by reducing some other

unsolvable problem to nontrivial property ‘of recursively

enumerable language. ‘

Qo00

——
eo easy-solutions)

Scanned by CamScanner

 Chapter 1 27.5 Marks 10 Marks

Chapter 2 12.5 Marks 20 Marks

Chapter 3 27.5 Marks 15 Marks

Chapter 4 - -

Chapter 5 - 10 Marks

Chapter 6 25 Marks 10 Marks

Chapter 7 12.5 Marks 20 Marks

Chapter 8 7.5 Marks 25 Marks

Repeated questions| - 5 Marks

Dec. 2018

Chapter 1 : Introduction [Total Marks — 27.5]
aero aan

Q.1(a) Explain Chomsky Hierarchy. (5 Marks)

Ans.: Chomsky hierarchy .

A grammar can be classified on the basis of production rules. Chomsky classified grammars into the following types :

1. Type 3: Regular grammar

2. Type 2: Context free grammar

3. Type 1 : Context sensitive grammar

4. Type 0: Unrestricted grammar -

Type 3 or regular grammar

— A grammar is called Type 3 or regular grammar if all its productions are of the following forms:

A 7 E

A 7a

A — 2B

A — Ba

Where,a Dand A,Be V. \
“A language generated by Type 3 grammar is known as regular language.

\

Scanned by CamScanner

Type 2 or context free grammar

A grammar is called Type 2 or context free grammar if all ts productions are ofthe following form A -» a: where A € V and

ae (VUT)*.

— Vis aset of variables and T is a set of terminals.

y The language generated by a Type 2 grammar is called a context free Ianguage, a regular language but not the reverse.”

Type 1 or context sensitive grammar

»— A grammar is called a Type 1 or context sensitive grammar if all its productions are of the following form:

a >,

— Where, B is atleast as long as a.

Type 0 or unrestricted grammar ~

Productions can be written without any restriction in an unresticted grammar. If there is production of the a > 8, then length of a

could be more than length of B.

Every grammar also is a Type 0 grammar

A Type 2 grammar is also a Type I grammar

A Type 3 grammar is also a Type 2 grammar

Q.3(b) Consider the following grammar

soictslictsesla
Cob
For the string ‘ibtaeibta’ find the following :
() Leftmost derivation
(il) Rightmost derivation,

(ill) Parse tree .

(lv) Check If above grammar is ambiguous. . (10 Marks)

Ans. : ; : :

@)_ Left most derivation : .

S— ictSeS [using S —> iCtSeS]

> ibeseS [using C — b]

— ibtaeS [using S — a]

— ibtaciCtS [using S— iCtS]

— ibtaeibts [using C > b]

— ibtaeibta

 oa 7 ;
@EBBOMITIE

Scanned by CamScanner

D(18) +3
Theory of Computer Science (MU) .

Gi) Rightmost derivation :

S — iCtSeS [using S > iCtSeS]

— iCtSeiCtS [using S > iCtS]

— iCtSeiCta [using S > a]

— iCtSeibta [using C > b]

— iCtaeibta [using S ~ a]

— ibtaeibta [using C > b]

ii) Parse tree as shown in Fig. 1-Q. 3(b).

o
o

Aol. i Lv

: a b- “Tg

Fig. 1-Q. 3(b)

_ Gy) The grammar can be shown to be ambiguous by drawing two different derivation trees for the string ibtibtaea as shown in

Fig. 2-Q. 3(b).

i Cc. t S ae A a

: i ots @ §

Dinca ee b ('}

Fig. 2-Q. 3(b)

Q. 5(b) Construct Mealy and Moore Machine to convert each occurrence of 100 by 101. (10 Marks)

Ans. :

1. Mealy Machine

Fig. 1-Q. 5(b)

 Scanned by CamScanner

2. Moore Machine

Fig. 2-Q. 5(b)

Q. 6(d) Write short note on Mealy and Moore Machine. . (2.5 Marks)

Ans. : ,

Final state machines are characterised by two behaviours:

1. State transition function (8) :

2. Output function (A)

State transition function (8) is also known as STR."°«-""

/ Output function (A) is also known as machine function (MTF).

6:=2xQ> Q

4:2xQ-— O [for Mealy machine]

4: Q-—> 0 [for Moore machine]

There are two types of automata with outputs :

L Mealy machine : Output is associated with transition

A:2xQ>O0

Set of output alphabet O can be different from the set of input alphabet =.

2. Moore machine : Output is associated with state ,

4:Q730

Chapter 2 : Finite Automata [Total Marks — 12.5]

Q.2(a). Designa Finite State machine to determine whether ternary number (base 3) is divisible by 5.

Ans. :

= A temary system has three alphabets

(10 Marks)

x = {0,1,2)

- Base of a ternary number is 3.

~ The running remainder could be :

(0), = 0 -+ associated state, qy

®
faTyeasy-solutions

Scanned by CamScanner

r " 1 — associated state, q

(2), = 2 —>+associated state, a

(10), = 3—>+ associated state, q,

"(IDs = 4+ associated state, q, ,

Tt tT

Temary Decimal

Fig. 1-Q. 2(a)

Q. 6(a) Write short note on Closure properties of Context Free Language.

Ans. :

Closure properties of context free language

3.

A context free language is closed under following operations :

1. Union 2. Concatenation 3. _. Kleene star

Context free language is closed under intersection.

The intersection of a context-free language with a regular language is a context free language.

The CFL is closed under complementation.

The CFL is closed under reversal.

CFL is closed under union ©

If L, and L, are context-free languages, then L, U L, is a context free language.

CFL is closed under concatenation

If L, and L, are context-free languages, then L,L, is a context-free language.

CFL is closed under Kleene Star ,

If L is a context-free language, then L* is a context-free language.

CFL Is not closed under Intersection

Context-free languages are closed under intersection.

CFL [s not closed under complementation

The set of context-free languages is closed under complementation.

Intersection of CFL and AL ‘

If L is a CFL and R is a regular language, then R ML is a CFL.

CFL Is closed under reversal

‘If Lis a context-free language, then so is L*,

Z

Pieasy-solutions

(2.5 Marks)

Scanned by CamScanner

’ Theory of Computer Science (MU

Chapter 3 : Regular Expreasions and Languages [Total Marks — 27. 5] |

Q.1(c) Define Regular Expression and glve regular expression for:

(I) Set of all strings over {0, 1} that end with 1 has no substring 00 _ (6 Marks)

Ans. : .

Regular expression

An expression written using the set of operators (+, -, *) and describing a regular language is known as regular expression.

— The transition graph is shown in Fig. 1-Q. 1(c).

Fig. 1-Q. 1(c)

- +. RE. can be written from the transition graph. The required R. E. = 1 (1 + 01)*

Q.2(b) Give and explain formal definition of Pumping Lemma for Regular Language and prove that following

language is not regular. L = {a"b™~'| m> 0} . (10 Marks)

-Ans. =

Pumping Lemma for Regular Language

— Some languages are regular. There are other languages which are not regular. One can neither express a non-regular language using

regular expression nor design finite automata for it.

— Pumping lemma gives a necessary condition for an input string to belong toa regular set.

— Pumping lemma does not give sufficient condition for a ianguage to be regular.

— Pumping lemma should not be used to establish that a given language is regular.

— Pumping lemma should be used to establish that a given language is not regular.

— ‘The pumping lemma uses the pigeonhole principle which states that if n pigeons are placed into less than n holes, some holes have to

have more than one pigeon in it. Similarly, a string of length > n when recognized by a FA with n states will see some states

repeating.

Definition of Pumping Lemma

Let L be a regular language and M = (Q, Z, 5, qo, F) be a finite automata with n-states, Language L is accepted by m. Let w € Land |

col 2 n, then w can be written as xyz, where

@) lyI>0

(ii) = IxyIsSn

Gi) xy’ z EL for all i> 0 here y denotes that y is repeated or pumped i times.

@OSEM

Scanned by CamScanner

of Computer Science (MU)

Proving that the language L = {a b™~"|m > 0} Is not regular:

Step 1: Let us assume that the given language L(a" b"~' |n > 0) is regular and L is accepted by an FA with n states.
Step 2: 2 Let us choose a string

Qo =

lo| =

at pa-l

2-1 5n forn>0

Let us write w as xyz, with

ly] >

and|xy] <

since,|xy| <

since|xy| <

0

n

n, y must be of the form a‘ | r> 0.

n, X must be of the form a’.

Now, a” b"~! can be written as

|
z

Fig. 1-Q. 2(b)

Step 3: Let us check whether xyz for L = 2 belongs to L.

2
XyZ

Sincer >

S gta?
aS (ay a n—-s—rpn-1

a3 a2r an —s—rbn—1

an+rbn-1

Oat ple L,

, Hence, by contradiction, we can say that the given language is not regular.

@.5(a) Convert (0 + 1) (10)*(0 + 1) into NFA with €-moves and obtain DFA.

Ans. :

R. E. to NFA

Fig. 1-Q. 5(a)

(10 Marks)

(as easy-solulians

Scanned by CamScanner

WW Theory of Computer Science (MU)

NFA to DFA using direct method

Fig. 2-Q. 5(a)

Q.6(b) Write short note on : Applications of Regular expression and Finite automata. (2.5 Marks)

Ans. :

1. Applications of regular expression

(a) R.E. in Unix

The UNIX regular expression lets us specify a group of characters using a pair of square brackets []. The rules for character classes

are : : :

1. [ab] Stand fora+b

2 [0-9] Stand fora digit from 0 to 9

3. [A-Z] Stands for an upper-case letter

4. [a-—z] Stands for a lower-case letter

5. [0-—9A-Za — z]Stands for a letter or a digit.

The grep utility in UNIX scans a file for the occurrence of a pattern and displays thoue lines in which the given pattern is found.

For example :

$ grep president emp.txt

It will list those lines from the file emp.txt which has the pattern “president”. The pattern in grep command can be specified using

+ regular expression.
:

. ® matches zero or more occurrences of previous character.
‘

6

7. @ matches a single character.

8. [pqr] Matches a single character which is not a p.qorr.

9. pat Matches pattern pat at the beginning of a line

10. pat $ Matches pattern at end of line.

Example : .

(a) The regular expression [aA] g [ar] [ar] wal stands for either “Agarwal” or “agrawal”.

(b) g* stands for zero of more occurrences of g.

(c) $grep “A - * thakur” emp.txt will look fora pattern starting with A. and ending with thakur in the file emp.txt.

(b) Lexical analysis

Lexical analysis is an important phase of a compiler. The lexical analyser scans the source program and converts it into a steam of

tokens. A token is a string of consecutive symbols defining an entity.

Scanned by CamScanner

WF Theory of Computer Science (MU) DiI 8) -9

For example a C statement x = y +z has the following tokens :

x — Anidentifier

= - Assignment operator

y = Anidentifier

+ —- Arithmetic operator +

z — Anidentifier

Keywords, identifiers and operators are common examples of tokens.

‘The UNIX utility lex can be used for writing of a lexical analysis program. Input to lex is a set of regular expressions for each type of
token and output of lex is a C program for lexical analysis.

2 Applications of Finite Automata

Finite automata are used for solving several common types of computer algorithms. Some of them are :

@) Design of digital circuit

(i) String matching

(iii) Communication protocols for information exchange.

(iv) Lexical analysis phase of a compiler.

Finite automata can work as an algorithm for regular language. It can be used for checking whether a string weL, where L is a

regular language.

Chapter 6 : Regular Grammar [Total Marks - 25]

Q.1(b) Differentiate between PDA and NPDA. (5 Marks)

Ans. :

erence! between PDA and NPDA is as follows:

1. |Always a single move on a new input Multiple moves are possible on a new input

2. |Less powerful than NPDA More powerful than a PDA

3. [Algorithms related to PDA are simple Algorithms related to NPDA are complex ;
 4. |Algorithms related to PDA do not require backtracking|Algorithms related to NPDA require backtracking

2n an
Q.3(a) Construct PDA accepting the language L = {a°"b | n20}. (10 Marks) -

|

Ans. :

|

1, For every pair of a’s one x is pushed on to the stack

2, Forevery b, one x is popped out from the stack.
:

3. Finally the stack should contain the initial stack symbol Zo.

Gs Pri ee ed

Scanned by CamScanner

Transition table (5)

1. &Go. a, Zo) = (qi, Zo)

&q1.8,Zo) = (Go x Zo)

8@o.a,x) = (qx)

2

3

4 S(qi.ax) = (qo, xx)

5 Sob, x) = (G2, €)

6. S@.b.x) = (ne)

7. Xq2z.€,Zo) = (p,€)

- Accepting through empty stack

~ Thus, the PDA M =({qo, qi» @}, {a, b}, {x, Zo}, 5, do, Lo, {o})

Q. 4(>) Convert following CFG to CNF (10 Marks)

S -— ASAIAb

A => BIS

B > bk

Ans. : a

1. Nullable set of symbols = (B, A)

Re-writing grammar after removing €-production,

we get,

S — AS|SAJASA|aBla

A — BIS

Bob

2. Re-writing grammar after removing unit productions (A > B, A — S), we get

S —» ASISA JASA |aB la

A > b1AS|SAIASA |aB la

B— b

3. Every symbol in a, in production of the form A — 0. where |a|22 should be a variable. This can be done by adding the production

GQ a

The set of productions become,

s + AS ISA |ASA 1C;B la

A > b|AS|SA 1ASA 1GBla

B > b
“GQ >a

Mo Seasy-solutions

-

Scanned by CamScanner

4 Finding an equivalent grammar in CNF.

S — AS |SA JAC, |C,B |a [Replacing SA by C,]

CG. -> SA

A — blas Isa |Ac, |c,8 la

Bb

GQ-a

_Chapter 7 : Turing

Q.4(a) Construct TM to check well-formedness of parenthesis.

Ans. :

achine (TM) [Total Marks — 12.5]

In each cycle, the left-most *)’ is written as X, then the head moves left to locate the nearer ‘(’ and it is changed to X.

The cycles of computation are shown below.

Input string is assumed to be (()())0.

ene

Initial B(@QO)0B

1. B (KX())0 B

“ 2. B (XXXX)Q) B

3. B XXXXXX() B

4. | BXXXXXXXXB

net xh () x B
: Go| wR) | Gust) | Gar) | BL)

1 (quX,R) - (qyux.L) -

a - = | @xL) |-@,B.R)
3 a %G % %

\

wx (1%) -m Halting
Halt state state

Fig. 1-Q. 4(a)(a) : State transition diagram Fig. 1-Q. 4(a)(b) : State transition table

(10 Marks)

Gs CERES

Scanned by CamScanner

i |
i j
|
i j

 W Theory of Computer Scienca (MU)

The Turing machine M is given by :

M = (21,5, qo B,F)

where, Q = . {dy 4144}

z= (W
T= (6)x,B)

_ 5 is given in Fig. 1-Q. 4(a)(a) or Fig. 1-Q. A(a)(b)

Go = Initial state

B = Blanksymbol

F = {q,}, halting state

Making of the machine for input (00)0O is given in Fig. 1-Q. 4(a)(c):

B(OQ)OBEB(OO)OBEB(QO)O

qo = : = : cu i

FB(CKO)OBEB(xxQ)OBEFBCxxOQ)OB

qi do os Qo :

xx())()BEB(xx(x) OBE BC xxxx)OB
— Pe fase
coe Gp qh Qo - :

eee

ae Go qi q)

I-B(xxxxx()B|-B(xxxxx()BEB(xxxxx()B

ao An

HB

ah a a
|}-Bxxxxxx()B} Bxxxxxx()B/]-Bxxxxxx()B

: 7 F ;

|-Bxxxxxx()B} Bxxxxxx()BEBxxxxxx()B

qo EDs Go

EB reer ORE BEE

% 1

[BAxER CHEXBL BREXEEX HER

qo. qo

D(18) - 12

orfeasy-solutions

Scanned by CamScanner

~

Si
Se
ba

t
a
b

ai
eh

F_ Theory of Computer Science (MU)

|-Bxxxxxxx xB

Bx xxxxxx xB/-Bx xxxxxxxB[-Bx xxxxxX

L/-Bxxxxxxx xBLBx xxxxxxxB[- Bx xxxx

a Po de mo a

|-BxxxxxxxxB_
at
edges

Fig. 1-Q. 4a)(c)

Q.6(e) Write short note on : Universal Turing Machine. (2.5 Marks) |

Ans. :

Universal turing machine

A general-purpose computer can be programmed to solve different types of problems. A TM can also behave like a general-purpose

computer. A general purpose computer solves a problem as given below :

1. A program is written in a high level language and its machine-code i is obtained with the help ofa sompler:

2 Machine code is loaded in main memory.

3. Input to the program can also be loaded in memory.

4. Program stored in memory is executed line by line. Execution involves reading a line of code pointed by IP (instruction pointer),

decoding the code and executing it. .

We can follow a similar approach for a TM. Such a TM is known as Universal Turing Machine. Universal Turing Machine (UTM)

can solve all sorts of solvable problems,

A Turing machine M is designed to solve a particular problem p, can be specified as :

1. The initial state q, of the TM M.

, 2. The transition function 5 of M can be specified as given :

If the current state of M is q; and the symbol under the head is a; then the machine moves to state qj while changing a, to a,. The move

of tape head may be :
-

1. To-left,

2. To-Right or

3. Neutral

Such a move of TM can be represented by tuple.

{(G)s84oG5p2 ,) | Gpy€ Qi aa,€ I; m,é {To- left, To-Right, Neutral} }

‘TM should be able to simulate every turing machine. Simulation of a Turing will involve :

 easy-solutions

Scanned by CamScanner

¥ J Theory of Computer Science (MU) . ve D(18) - 14
ye

_ 1. Encoding behaviour of a particular TM as a program.

2. Execution of the above program by UTM.

A move of the form (q,,2)4)8,,m,) can be represented as 10! 10' 10'*' 10 10%,

‘Where K = 1,if move is to the left

K = 2, if move isto the right

K = 3, if move is ‘no-move’

State p is represented by 0,.

State q, is represented by 00,

State q, is represented by 0").

First symbol can be represented by 0,

Second symbol can be represented by 00 and so on.

Two elements of a tuple representing a move are separated by 1.

Two moves are separated by 11. .

Execution by UTM : We can assume the UTM as a 3-tape turing machine.

1. Input is written on the first tape.

2. Moves of the TM in encoded form is written on the second tape.

3. The current state of TM is written on the third tape. - ‘

The control unit.of UTM by counting number of 0’s between 1’s can find out the current symbol under the head. It can find the current
state from the tape 3. Now, it can locate the appropriate move based on current input and the current state from the tape 2. Now, the
control unit can extract the following information from the tape 2 :

1. Next state 2. Next symbol to be written

3. Move of the head.

Based on this information, the control unit can take the appropriate action.

. Chapter 8 : Undecidability and Recursively Enumerable Languages
[Total Marks — 7.5]

- Q.1(d) Explain Halting Problem.

Ans. : ‘

Halting problem

The halting problem of a Turing machine states -

Given a Turing machine M and an input @ to the machine M, determine if the machine M will eventually halt when it is given
input co,

Halting problem of a Turing machine is unsolvable.

 =-__

@GQH BIT

Scanned by CamScanner

¥ Theory of Computer Science (MU) — D(18) - 15

Proof :

— Moves of a turing machine can be represented using a binary number. Thus, a Turing machine can be represented using a string over

=*(0,1).

— _ Insolvability of halting problem of a Turing machine can be proved through the method of contradiction.

Step 1: Let us assume that the halting problem of a Turing machine is solvable. There exists a machine H,(say).

H, takes two inputs :

1. A string describing M.

2. An input @ for machine M.

H, generates an output “halt” if H, determines that M stops on input w; otherwise H outputs “loop”. Working of the machine H, is

shown below.

Step 2: Let us revise the machine H, as H, to take M as both inputs and H, should be able to determine if M will halt

on Mas its input. A machine can be described as a string over 0 and 1.

, —>halt
loop

Step 3: Let us construct a new Turing machine H, that takes output of H, as input and does the following :

1. If the output of H, is “loop” then H; halts.

"2. Ifthe output of H, is “halt” than H, will loop forever.

: M > halt —> Machine H, loops forever

loop —» Machine H, halts

H, will do the opposite of the output of H,.

Step 4: Let us give H, itself as inputs to H,.

a

If H, halts on H, as input then H, would loop (that is how we constructed it).

If H, loops forever on H, as input H, halts (that is how we constructed it).

In either case, the result is wrong.

Hence,

H, does not exist.

If H, does not exist then H, does not exist.

If H, does not exist then H, does not exist.

Gs Ts ee

Scanned by CamScanner

“Every property that is satisfied by some but not all recursively enumerable languages is un-decidable”, Any property that is satisfied

by some recursively enumerable language but not all is known as non-trivial Property. We have seen many properties of R-E. languages

that are un-decidable. These properties include :

1. Given a TM M, is L(M) nonempty ?

2. Given aTMM, is L(V) finite ?

3. Given a TM M, is L(M) regular ?

4. Given a TM M, is L(M) recursive ?

The Rice’s theorem can be proved by reducing some other unsolvable problem to non-trivial property of recursively enumerable

language.

‘g00

@OR EUS '

Scanned by CamScanner

May 2019

. Chapter 1 : Introduction [Total Marks - 10] ee 4

Q. 5(b) Convert the following grammars 6 the Chomsky normal form (CNF)

S—0A0 | 1B1] BB

AC B-=SIA
|

CaSle (10 Marks) —

Ans. : :

Step 1: Elimination of € —production.

The symbols (A, B, C, S) are nullable and hence the given granular leads to the following granular :

$—0OAO/00! 1B11111BIBB Granular G,

A~C,B—>SIA,C7S

Step 2: Resolving 2 unit productions from G, and also receiving non-reachable symbol C,

We get, ,

S— OAO 1001 1B11111BB

A-—>0OAO!0011B11111BB Granular G,

B— OAO!001B11111BB’

Step3: AH the three variables are identical and hence, the granular becomes :

S— OSO10011S11111SS Granular G;

Step 4: Substituting A; for 0 and A; for 1, we get,

S— A,SA,1 A,;A;1A2S Az1 Az A2/SS

A, 0

Ao? 1

Step 5 : Writing productions in CNF

S—>A:B, 8B,—-SA;

S—A;A;

 S—>AB, . » Bi->SAz

S—>A,A;

S— SS | |

Ai->90 |

A,—>1 : . : : |

Scanned by CamScanner

at Chapter 2 : Finite Automata a [Total Marks - ~20) 3

Q. 1(a) Differentiate DFA and NFA. ‘ : (5 Marks)

Ans.: The difference between DFA and NFA Is as follows:

UAC BARE Soe e

1, DFA stands for deterministic finite automata. | NFA stands for non-deterministic finite satis

2. The transition is deterministic. The transition is non-deterministic.

3. A deterministic finite automata is a quintuple, | A non-deterministic finite automata is a 5-tuple,

M=(Q.28.q.F) M=(Q, 2X, 5, q,, F)

4. The number of states is finite. NFA can be in several states at a time.

Q.1(6) Design a DFA to accept string of 0s and 1s ending with the string 100. (5 Ma 3)

Ans. :

The substring ‘abb’ should be at ‘the end of the string. Transitions from q, Should be modified to handle the condition that the string .

has to end in ‘abb’.

(a) State transition diagram (b) State transition table

Fig. 1-Q. 1(b) : Final DFA . ‘

q, to q, on input a: An input of a in q, will make the previous four characters as ‘abba’. Out of the four characters as ‘abba’ only the last

character ‘a’ is relevant to ‘abb’.

q, to q, on input b: An input of b in q, will make the previous four characters ‘abbb’. Out of the four characters ‘abbb’, nothing is

relevant to ‘abb’. ,

Q. 2(a) Design NFA for recognizing the strings that end in “aa” over > = {a,b} and convert NFA to DFA. -(10 Marks)

Ans. :

@ NFA for strings ending in “aa” is given below :

(ii) NFA to DFA using the direct method

a Jeasy solumons Mik ehhh

Scanned by CamScanner

Theory of Computer Science (MU M (19) -3

Chapter 3 : Regular Expressions and Languages [Total Marks - 15]

Q.1(c) Explain the applications of regular expressions. (5 Marks)
Ans.: Please refer Q. 6(b) of Dec. 2018. ‘

Q.3{a) Obtain a regular expression for the FA shown below : (10 Marks)

Ans. : Given FA:

Step 2: Receiving the loop among qo, q; and qp, we get
Required R. E. = (b + ab + aaa*b)* aaa*

@EREDLULLe

Scanned by CamScanner

Theory of uter Science (MU
“ _M9)-4

Chapter 5 : Pushdown Automata (PDA) [Total Marks - 10] ,

Q. 4(b) State and explain pumping lemma for context free languages. . (10 Marks).

Ans. : . ae

Let G be a context free grammar. Then there exists a constant n such that any string

weL(G) with | w/>ncan be rewritten as w = uvxyz, subject to the following conditions :

1. | yxy I <n, the middle portion is less than n.

2. vy #€, strings v and y will be pumped.

3. Foralli> 0, uv'xy'z is in L. The two strings v and y can be pumped zero or more times.

Proof:

Let us assume that the grammar

Gis given by wv, T, P, S).

@(G) denotes that largest number of symbols on the right-hand side of a production in P.

In pumping lemma, it is a requirement that the constant n should satisfy the following

condition

n2>(G)'v-™!

Let us take a-string w eL (G), such that | w | n. Let us construct a parse tree T with

root as S. The parse tree T generates w with smallest number of leaves.

The tree T will have a path length of at least | V-Tl+ 1. This path will have

IV -—T 142 nodes with the last node labelled as terminal and remaining non-terminals.

Fig. 1-Q. 4(b) shows paths in detail.

+—U—— V— 9 —— x ey — 2

Fig. 1-Q. 4(b) : Paths in the parse tree

x is generated by Tz

v is generated by T1

u is generated by T

T, excluding T, can be repeated any number of times.

This will yield a string of the form uv'xy'z where i > 0

SG ROLs

Scanned by CamScanner

Cha ter 6: Re ular Grammar [Total Marks - 10]

Q. 5(a)’ Design PDA for the following language :

L(M) = {wew | w {a,b}*} where w" Is reverse of w & c Is a constant. (10 Marks)

Ans. : |

W* stands for reverse of W. A string of the form WeW* is an odd length palindrome with the middle character as c.

Algorithm :

If the length of the string is 2n + 1, then the first n symbols should be matched with the last n symbols in the reverse order. A stack

can be used to reverse the first n input symbols.

Status of the stack and state of the machine is shown in Fig. 1-Q. 5(a). Input applied is abbcbba.

Qo qo qo qo 4 4 4 4

Fig. 1-Q. 5(a) : A PDA on input abbcbba

The PDA accepting through final state is given by

M=({q,.4,-4,}, {a b,c}, {a, b, Zp}, 5. dy. Zo {9,})

Where the transition function 8 is given below :

1. 5@yae) = Ga) | First n symbols are pushed onto the stack
2. Sdyb,e) = (qb)

3, &qyc,£) = (,&) . [State changes on c]

4. &q,4a) = (4,8)] _ Last n symbols are matched with first n symbols in
5. q,.b,b)= (q,,e) reverse order

6. 5G,&%)= (G,.2%) . [Accepted through final state]

At transition of the form 5(qg, a, &) = (dg. a) implies that always push a, irrespective of stack symbol.

Chapter 7 : Turing Machine (TM) [Total Marks - 20]

Q.3(b) Explain the types of Turing machine in detalll (10 aarics)
Ans. : .

The types of Turing machine are as follows :

L. Two-way infinite Turing machine

In a standard turing machine number of positions for leftmost blanks is fixed and they are included in instantaneous description,
where the right-hand blanks are not included. .

(In the two way infinite Turing machine, there is an infinite sequence of blanks on each side of the input string. In an. instantaneous

description, these blanks'‘are never shown.

@EBELLILIG : , viii euugaeeriasnion

Scanned by CamScanner

Theory of ‘er Science (MU -M(19)-6

2. Turing machine with multiple heads

A turing machine with single tape can have multiple heads. Let us conser ating machine with two heads Hand Hi, Each head is

capable of performing read/write /move operation independently.

BabaabbaBBB’

H, #H,

Fig. 1-Q. 3(b) : A Turing machine with two heads

The transition behavior of 2-head one tape Turing machine can be defined as given below :

5 (State, Symbol under H,, Symbol under H,) = (New state, (S,, M,), (S_.M,))

Where,

S, is the symbol to be written in the cell under H,.
M, is the movement (L, R, N) of H,.

_ &, is the symbol to be written in the cell under H,.

M, is the movement (L, R, N) of H,,

3. Multi-tape Turing machine

Multi-tape turing machine has multiple tuples with each tape having its own independent head. Let us consider the case of a two tape

turing machine. It is shown in Fig. 2-Q. 3(b).

Tape 1:

 FEEEER

“Fig. 2-Q. 3(b) : A two-tape turing machine

Tape 2:

The transition behavior of a two-tape Turing machine can be defined as :

541-41) = (d)(S,M)),(S,M,))

Where,

q, is the current state,

@ is the next state,

a, is the symbol under the head on tape 1,

a, is the symbol under the head on tape 2,

S, is the symbol written in the current cell on tape 1,

S, is the symbol written in the current cell on tape 2,

M, is the movement (L, R, N) of head on tape 1,

M, is the movement (L, R, N) of head on tape 2.

easy solutions

Scanned by CamScanner

4, Non-deterministic Toring machine

— -.. Non-detenministic is a powerful feature. A non-deterministic TM machine might have, on certain combinations of state and

symbol under the head, more than one possible choice of behaviour.

- Non-deterministic does not make a TM more powerful.

- For every non-deterministic TM, there is an equivalent deterministic TM.

- It is easy to design a non-deterministic TM for certain class of problems.

— Astring is said to be accepted by a NDTM, if there is at least one sequence of moves that takes the machine to final state.

- An example of non-deterministic move for a TM is shown in Fig. 3-Q. 3(b).

aaR

Fig. 3-Q. 3(b) : A sample move for NDTM

The transition behaviour for state qy for TM of Fig. 3-Q. 3(b) can be written as

- 8@,a) = {(@o,a, R) Gx, R)}

Universal Turing machine

A general-purpose computer can be programmed to solve different types of problems. A TM can also behave like a general-purpose

computer. A general purpose computer solves a problem as given below :

1. A program is written in a high level language and its machine-code i is obtained with the help of a complier.

2. Machine code is loaded in main memory.

3. Input to the program can also be loaded in memory.

4. Program stored in memory is executed line by line. Execution involves reading a line of code pointed by IP (instruction pointer),
decoding the code and executing it.

‘We can follow a similar approach for a TM. Such a TM is known as Universal Turing Machine. Universal Turing Machine (UTM)
can solve all sorts of solvable problems.

A Turing machine M is designed to solve a particular problem p, can be specified as :

1. The initial state qy of the TM M.

2. The transition function 5 of M can be specified as given :

If the current state of M is q, and the symbol under the head is a, then the machine moves to state q; while changing a a; to a. The move
of tape head may be :

‘1. To-left,

2. To-Right or

3. Neutral

Such a move of TM can be represented by tuple

{(g,,2,,9,,4,m,) : 4,9,€ Q;a,,a,€ I; m,€ {To- left, To-Right, Neutral} }

UTM should be able to simulate every turing machine. Simulation of a Turing will involve :

1. Encoding behaviour of a particular TM as a program.

ae asy-SOlUtions ‘

Scanned by CamScanner

2. Execution of the above program by UTM.

A move of the form (q;.8,,),8,m,) can be represented as 10°! 10! ot! 10 10,

Where K = 1. if move is to the left

K 2, if move is to the right

K = 3,if move is ‘no-move’

State q, is represented by 0,

State q, is represented by 00,

State q, is represented by 0°"!

First symbol can be represented by 0,

Second symbol can be represented by 00 and so on.

Two elements of a tuple representing a move are separated by 1.

Two moves are separated by 11.

Q. 4(a) Design a turing machine that computes a function f(m,n) = m+n i.e. addition of two integers. (10 Marks)

Ans. :

Addition of two unary numbers can be performed through append operation. To add two numbers 5 (say w,) and 3 (say @,) will

require following steps : :

1. Initial configuration of tape :

2. @, is appended to w,.

While every ‘0’ from «, is getting appended to ,, ‘0’ from @, is erased. @, contains 8 0°s, which is sum of 5 and 3.

Chapter 8 : Undecidability and Recursively Enumerable Languages
[Total Marks - 25]

Q.1(d) What are recursive and recursively enumerable languages?

Ans. :

Recusive language

(5 Marks)

A language over an alphabet & can be described recursively, A recursive definition has three Steps :

1. Specify some basic objects in the set.

2. Specify the rules for constructing more objects from the objects already known.
3. Declaration that no objects except those constructed as given above are allowed in the set.

ore asy-solulons

Scanned by CamScanner

4 y Theory of Computer Science (MU) . scare ein ie ee OS MoS ol

Recursively enumerable language ,

There is a difference between recursively enumerable (Turing Acceptable) and recursive (Turing Decidable) language.

Following statements are equivalent :

1. The language L is Turing acceptable.

2. The language L is recursively enumerable.

Following statements are equivalent

1. The language L is Turing decidable.

2. The language L is recursive.

3. There is an algorithm for recognizing L.

Every Turing decidable language is Turing acceptable.

. Every Turing acceptable language need not be Turing decidable.

Q.6 Write detailed note on (any two):-

(a) Post correspondence problem

(b) Haltingproblem .
(c) Rice's theorem - (20 Marks)

Ans. : .
.(a) Post correspondence problem

Let A and B be two non-empty lists of strings over }. A and B are given as below :

A = {Xp Xp Ky --- Kh .

B {Yo ¥3 --- Yih /

We say, there is a post correspondence between A and B if there is a sequence of one or more integers i, j, k ...m such that :

The string X, X; ... X, is equal to Y; Yj --- Yur

Example : To check whether

A = {a,aba’, ab} and

B..= {a’,ab,b}

has a solution.

We will have to find a sequence using which when the elements of A ond B are listed, will produce identical strings.

The required sequence is (2, 1, 1,3) |

A, A, A, Ay aba’ a aab = aba’ b

B,B,B,B, = aba’a’b=aba’b

"

Thus, the PCP has solution.

We are accepting the un-decidability of post correspondence problem without proof.

@sGNEMIIIS

Scanned by CamScanner

JW Theory of Computer Selene (MU) M19) 10

‘(®) Halting problem

The halting problem of a Turing machine states :

| Given a Turing machine M and an input «to the machine M, determine if the machine M will eventually halt when itis given

input ow.

: Halting problem of a Turing machine is unsolvable.

Proof :

Moves of a turing machine can be represented using a binary number. Thus, a Turing machine can be represented using a string over

=*@,1).
.

Insolvability of halting problem of a Turing machine can be proved through the method of contradiction,

Step 1: Let us assume that the halting problem of a Turing machine is solvable. There exists a machine H, (say). H, takes two inputs :

1. A string describing M.

2. An input w for machine M.

H, generates an output “halt” if H, determines that M stops on input «; otherwise H outputs “loop”. Working of the machine H, is

shown below.

Step 2: Let us revise the machine H, as H, to take M as both inputs and H, shonld be able to determine if M will halt on M as its imput.

A machine can be described as a string over 0 and 1.

Step 3: Let us construct a new Turing machine H, that takes output of H, as input and does the following :

1. If the output of H) is “loop” than H; halts.

2. If the output of H, is “halt” than H, will loop forever.
M halt —® Machine Hs, loops forever

loop —» Machine Hg halts

H, will do the opposite of the output of H).

Step 4: Letus give H, itself as inputs to H,.

If H, halts on H, as input then H, would loop (that is how we constructed it),

If H, loops forever on H, a8 input H, halts (that is how we constructed it).

In either case, the result is wrong.

Hence,

H, does not exist.

If H, does not exist than H, does not exist. —

“If H, does not exist than H, does not exist \

Scanned by CamScanner

(c) Rice’s theorem

Every property that is satisfied by some but not all recursively enumerable language is un-decidable. Any property that i, ae,

some recursively enumerable language but not all is known as nontrivial property. We have seen many properties of R.E. languages

are un-decidable. These properties include :

1. Given a TM M, is L(M) nonempty?

2. Given a TM M, is L(M) finite?

3. Given a TM M, is L(M) regular?

4. Given a TMM, is L(M) recursive?

The Rice’s theorem can be proved by reducing some other unsolvable problem to nontrivial property of recursively enumerable

language.

000

 ®VE

r

Scanned by CamScanner

Wr Theory of Computer Science (MU) a Q-+

Q.14 > (a) Explain Chomsky Hierarchy. bo (5 Marks)

(6) Differentiate between PDA and NPDA. : ' (5 Marks)

~ (c) Define Regular Expression and give regular expression for :

(i) Set ofall strings over {0, 1} that end with 1 has no substring 00 (5 Marks)

(d) Explain Halting Problem. _ (5 Marks)

Q.2 (a) Design a Finite State machine to determine whether ternary number (base 3) is divisible by 5.

(10 Marks)

(b) Give and explain formal definition of Pumping Lemma for Regular Language and prove that —
following language is not regular. L = {a"b™~ ‘| m > 0} (10 Marks)

Q.3 (a) Construct PDA accepting the language L = {a™"b"| n>0}. (10 Marks)

(b) Consider the following grammar

S> ictslictSeSla

C—> »b

For the string ‘ibtaeibta’ find the following :
(i) _ Leftmost derivation

(ii) Rightmost derivation

(iii) Parse tree

. _ (vy) Check if above grammar is ambiguous. (10 Maris)

Q.4 (a) Construct TM to check well-formedness of parenthesis. (10 Marks)

(b) Convert following CFG to CNF (10 Marks)

S —°— ASAIAb

A > BIS

B + ble

Q.5 (a) Convert (0 + 1) (10)*(0 + 1) into NFA with «-moves and obtain DFA. (10 Marks)

(b) Construct Mealy and Moore Machine to convert each occurrence of 100 by 101. (10 Marks)

"@.6 Write short note on (any four) | . (10 Marks)
(a) Closure properties of Context Free Language.

(b) Applications of Regular expression and Finite automata.

(c) Rice's Theorem.

(d) Mealy and Moore Machine

(e) Universal Turing Machine

@ OES

Scanned by CamScanner

Theory of Science (MU 2 ee nt

Q.1 (a) _ Differentiate DFA and NFA. (5 Marks)

~* (b) *Design a DFA to accept string of 0's and 1's ending with the string 100. (5 Marks)

(c) Explain the applications of Regular Expressions. ‘(5 Marks)

(d) What are Recursive and Recursively Enumerable Languages? (5 Marks)

Q.2 (a) Design NFA for recognizing the strings that end in “aa” over £ ={a,b} & convert above NFA to DFA.

(10 Marks)

~ (0) Design moore mic for. following :

- Hf input ends in ‘101’ then output should be A, if input ends in ‘110’ output should be B, otherwise

output should be C and convert it into mealy m/c. (10 Marks)

Q.3 (a) Obtain a regular expression for the FA shown below : (10 Marks)

Fig. 1Q. 3(a)

(b) Explain the types of Turing machine in detail. ; (10 Marks)

Q.4 (a). Design a turing machine that computes a function f(m,n) = m + n i.e. addition of two integers.

(10 Marks)

(b) State and explain pumping Lemma for Context Free Languages. Find out whether the language
L= {x"y"Z" | n 21} is context free or not. (10 Marks)

Q.5 (a) Design PDA for the following language :

L(M) = {wew* | w {a,b}*} where w’ is reverse of w & c is a constant. (10 Marks)

(6) Convert the following Grammars to the Chomsky normal form (CNF).

S —0A0 | 1B1| BB

A—C

B-S|A

CSc oe "(10 Marks)

@OHRUOOS

Scanned by CamScanner

Q.6 Write detailed note on (any two) :

(a) Post Correspondence Problem

(b) Halting Problem.

, (c) ‘ Rice’s Theorem.

ETS

000

Scanned by CamScanner .

Pope a

=. | Your Success is Our Goal
Hamm QDS sssvevespvansuivannnivansdivenscidanicusoniavanavancasvevenssusovdsevevcocacssesassuesonssevsevesssessesasssevesssessevesssesevsssssssosavsvevssescseerscsssuesessssesoesveveeesr

;
. ” ; ry \ rk

7 | Semester V - Computer Enginee ' -* | semester V - Computer Engineering
— Dssesenevechevarusnanucuauevanvaneguenecusvanuantunressensavensensuuseunonssevansososossessesevensoeesesuescerosvaressasesessedsovesvasesersereoresveseseeseveeresrereverreverrercer

i ss ai
| neue rt a) PS eee

— e e Th - Id 2 q' - -e | Computer Networks
i

— we So BOE TOCP CUTE TEOOOUOO OOOO OOOO COO ETO COOL OOOO OCC ee ee de

= * | Database Management System
:

—a Se DOLLS T ISTO TUEEUEOCECre UNOS COOOeOeeC OC COOoo CCC COOOL oo OOOO ee eee
:

wt SO SSCS Scot oto Coo Oe ee eee OOo eet ee eee eee eee tes

— iheory/of Cee
ee Sooner PPEPEETTT Terre TOE oT eee EEE LLEEEEe

=? Te System (. Elective 7
—s - TOC Ter

— eek ee cul
ee

[
|
|
|
|
!
|
{

q ~ Paper Solutions Trusted oY lakhs of students from more than 15 years

Distributors ; |

| MUMBAI

|

|
Student's Agencies (I) Pvt. Ltd. Bharat Sales Agency
102, Konark Shram, Ground Floor, Behind Everest Goregaonkar Lane, Behind Central Plaza Cinema, |

Building, 156 Tardeo Road, Mumbai. Charni Road, Mumbai. M :©86572 92797 |

M :©91672 90777. Ved Book Distributors - Mr. Sachin Waingade |
Vidyarthi Sales Agencies (For Library Orders) |
Shop. No. 5, Hendre Mansion, Khotachiwad!,157/159, M: 80975 71421 / 92208 77214. |
J.S.S Road, Girgaum, Mumbal. M :©98197 76110. E : mumbai@techknowledgebooks.com |

EMO46A = Price % 70/-

 lp” Ue cecil

Scanned by CamScanner

