’és easy-solutions|

Mumbai University Paper Solutions

Strictly as per the New Revised Syllabus (Rev - 2016) of @

Mumbai University w.e.f. academic year 2018-2019
(As per Choice Based Credit and Grading System)

THEORY OF
COMPUTER SCIENCE

Semester V - Computer Engineering

Chapterwise Paper Solution upto May 2019. |

w= TechKnowledge
" Publications

Scanned by CamScanner

heory of Computer Science

Semester V - Computer Engineering

EMO46A

T TechKnowledge JUIBRHIN

“* publications

Scanned by CamScanner

Thao!'y of Computer Sclence |
Semester V - Computer Engineering (MU)

Copyright © with TechKnowledge Publications. All rights reserved. No part of this publication may be reproduceq
copied, or stored in a retrieval system, distributed or transmitted in any form or by any means, including photocapy,
recording, or other electronic or mechanical methods, without the prior written permission of the publ?sher.

This book is sold subject to the condition that it shall not, by the way of trade or othermse be lent, resold, hired out, or
ot.hermse circulated without the publisher’ s prior written consent in any form of binding or cover other than which it is
published and without a similar condition including this condition being imposed on the subsequent purchaser and |

without limiting the rights under copyright reserved above.
Edition 2019

This edition is for sale in India, Bangladesh, Bhutan, Maldives, Nepal, Pakistan, Sri Lanka and designated countries in
South-East Asia. Sale and purchase of this book outside of these countries is unauthorized by the publisher. . :

-

Printed at : 37/2, Ashtvinayak Industrial Estate, Near Pari Company,
Narhe, Pune, Maharashtra State India, '
Pune — 411041 .

Published by
TechKnowledge Publications

Head Office : B/5, First floor, Maniratna Complex, Taware Colony, Aranyeshwar Corner,
Pune - 411 009. Maharashtra State, India

Ph : 91-20-24221234, 91-20-24225678.
Email : info@techknowledgebooks.com,

Website : www.techknowledgebooks.com

~ (Book Code : EMO46A)

Scanned by CamScanner |

Chapter1:

Chapter 2

| Chapter 3 :
| Chapter 4 :
Cha;pter 5:
Chapter 6 :
Chapter 7 :

Chapter 8 :

Introduction

: Finite Automata

Regular Expressions and Languages

Context Free Grammars (CFG)

Pushdbwn Automata (P.DA)
Regular Grammar (RG)

Turing Machine (TM) |

Undecidability and Recursively Enumerable Languages

Scanned by CamScanner

Index -

Syllabus
Chapter 1

Chapter 2

Chap_ter 3:

Chapter 4
Chapter 5
Chapter 6
Chapter 7

Chapter 8

Dec. 2018

© May 2019

Table of Contents ‘

: !ntroduction
: Finite Automata
: Regular Expressions and Languageé
: Context Free Grammars (C FG)J :
: Pushdown Automata (PDA)
: Regular Grammar (RG)

: Turing Machine (TM)

: Undecidability and Recursively Enumerable Languages

University Question Papers

Q-1to Q-3

7CS-01 to TCS-01
TCS-02 to T¢s-13
TCS-14 to TCS-22
TCS-23 to TCS-25
TCS-25 to TCS-36
TCS-36 to TCS-44

TCS-44 to TCS-56

TCS-56 to TCS-59
D(18)-01 to D(18)-16

M(19)-01 to M(19)-11

N

Scanned by CamScanner

. Alphabets, Strings, Languages, Closure properties.
¢ Finite Automata (FA) and Finite State machine (FSM).

Deterministic Finite Automata (DFA) and Nondeterministic Finite

Automata (NFA) : Definitions, transition diagrams and Language recognizers
¢ NFA to DFA Conversion

. | Equivalence between NFA with and without e- transitions

e Minimization of DFA

¢ - FSM with output: Moore and Mealy machines, Equivalence

. Applications and limitations of FA

Regular Expressions and Languages

Regular Expression (RE)
Equivalence of RE and FA, Arden‘s Theorem

. RE Applications
Regular Language (RL) .
Closure properties of RLs
Decision p{opcrﬁes of RLs

Pumping lemma for RLs ,

Grammars and Chomsky hierarchy.

Regular Grammar (RG)
. Eqdiva]ence of Left and Right linear grammar

e Equivalence of RG and FA

Context Free Grammars (CFG)
e - Definition, Sentential forms, Leftmost and Rightmost derivations, Parse tree, Ambiguity. |
e Simplification and Applications.

Normal Forms: Chomsky Normal Forms (CNF) arid
Greibach Normal Forms (GNF).

CFLs - Pumping lemma, Closure properties

Scanned by CamScanner

Definition, Transitions ,Language of PDA
Language acceptanéc by final state and empty stack
PDA as generator, decider and acceptor of CFG.
bcterministic PDA Non-Deterministic PDA
Application of PDA.

Turing Machine (TM)

Definition, Transitions

Design of TM as generator, decider and acceptor
Variants of TM : Multitrack, Multitape
Unchrsal ™.

Equivalence of Single and Multi Tape TMs
Applications, Power and Limitations of TMs
Context Sensitivity and Linear Bound Automata.

Undecidability

Decidability and Undecidability

Recursive and Recursively Enumerable Languages.

Halting Problem

Rice‘s Theorem -

Post Correspondence Problem

i

Scahned by CamScanner

cience ﬂ

Chapter 1 : Basic Concepts and Finite Automata

Q.1 Write note dn'Chomsky Hierarchy.

MU - Dec. 2009, Dec. 2012, May 2013, May 2014,
Dec. 2014, May 2015, Dec. 2016,
May 2017, Dec. 2017

Ans. : Chomsky Hlerarchy
A grammar can be classified on the basis of production rules.
Chomsky classified grammars into the following types :
1. Type3:Regular grammar
2. _ Type 2 : Context free grammar
3. Type 1 : Context sensitive grammar
4. Type 0: Unrestricted grammar.
1. Type3 or Regular Grammar
A grammar is called Type 3 or regular grammar if all its
productions are of the following forms :
A — ¢
A —a
A — aB
A — Ba
Where,a€ randA,Be V.
A language ‘generated by Type 3 grammar is known as
regular language.
2. Type 2 or Context Free Grammar
A grammar is called Type 2 or context free grammar 1f all its
productions are of the following form A = & where A € V and
ae (VuT)*
V i3 a set of variables and T is a set of terminals.
The language generated by a Type 2 grammar is called a
context free language, a regular language but not the TEVErSE.
a. Type 1 or Context Sensitive Grammar

A grammar is called a Type 1 or context sensitive grammar if
all its productions are of the following form.
o — P
Where, P is atleast as long as C.
4. Type 0 or Unrestricted Grammar

Productions can be written without any restriction in a
unrestricted grammar. If there is production of the & — f3, then
length of & could be more than length of B.

Every grammar also is a Type 0 grammar.

A Type 2 grammar is also a Type 1 grammar

A Type 3 grammar is also a Type 2 grammar,

Q.2 State applications of Finite Automata in brief.

Ans. :
Applications of Finite Automata

Finite automata are used for solving several common types of
computer algorithms. Some of them are :

(i) Design of digital circuit

(ii) String matching

(iii) Communication protocols for information exchange.
(iv) Lexical analysis phase of a compiler.

Finite automata can work as an algorithm for regular

Jlanguage. It can be used for checking whether a string we L, where

L is a regular language.

Q.3 What is Finite Automata?
Ans.:

Finite Automata
Finite automata are also called a finite state machine.

A finite state machine is a mathematical model for actual
physical process. By considering the possible inputs on which
these machines can work, one can analyse their strengths and
weaknesses. '

Finite automata are used for solving several common types of
computer algorithms. Some of them are : .

1. Design of digital circuits.

2. String matching.

3. Communication protocols for information exchange.
4

Lexical analyser of a typical compiler.

Q. 4 ° Define the term : Unrestricted grammar

'
Ans. :
Unrestricted grammar

Productions can be written without any restriction in a
unrestricted grammar, If there is production of the o — P, then
length of o could be more than length of B.

Every grammar also is a Type 0 grammar.
A Type 2 grammar is also a Type 1 grammar
A Type 3 grammar is also a Type 2 grammar.

Scanned by CamScanner

.
Theory of Comp. Sci. (MU-Sem. 5-Comp.)

Q.1 Write short note on Mealy machine.
Ans. : '
Mealy Machine
Input
a/0 Output

b/0

Chapter 2 : FlmteAutomata ST L

An arc from state g, in 2 mealy machine is associated with: -

1. Inputalphabete Z
2. Anoutput alphabet € O.
An arc marked as ‘a/0’ in Fig. 2.1 implies that :

1. aisininput

2. - 0isan output.

State transition behavior and output behavior of a miealy
machine can be shown separately as in'Fig. 22 a_nd 2.3; or they can
be combined together as in Fig. 2.4. :
Formal Definition of a Mealy Machine

A mealy machine M is defined as :
M= {QZ0,8Aqy
Fig. 2.1 : State diagram of i
& o Mealy nuching Where, Q = A finite set of states.
State transition function () (or STF) : T = A finite set of input alphabet
a " b O = A finite set of output alphabet
-0 | 9 q 8§ = A transition functionZxQ —Q
q [Y 7} A = Anoutput function ZxQ— 0O
q, 4 g, gy = 9q,€ Qis an initial state.
Bl b b Q.2 Distinguish between NFA and DFA.
Fig 2.2 : State transition function for Mealy machme of _ T ——
Fig. 2.1 MU - “May 2007,-Dec. 2009, May 2011, May 2014.
May:2015, May.2016. May 2017. Dec. 2017
~ Output function (&) (or MAF) : Ans.: '
a b. Difference between NFA and DFA
—q, 0 0
ql. 0 0 T £ ‘. ‘ .7 &g « s
) ransition Non-deterministic. Deterministic
1 -0
% No. of | NFA' has fewer | More, if NFA
qs 0 0 . . states. number of states. contains Q states then
Fig. 2.3 : Output function for mealy machine of Fig. 2.1 the corrcspondmg
. DFA h < g
State table for both & and A (both STF and MAF) : - Vall-feve
2 L Power NFA is as powerful as | DFA is as powerful
=G | 60 q/0 aDFA as an NFA
q | 40 gf0 Design Easytodesignducto | Relatively, ~ more
o | ol a0 non-determinism. difficult to design as
g) transiti ‘are |-
q3.| 90 q,/0 detci‘ltmontzuc
Output Acceptance | It is difficult to find | It is easy to find
Next state whether w € L as there | whether w € L as
Fig. 2.4 : State table depicting both transition and output ;:e i several paths. | transitions . are
behavior of mealy machine of Fig. 2.1 acktracking is | deterministic.
required to explore
several paralle] paths.

W easy-sotutions)

Scanned by CamScanner

TCS-3

‘? Theory of Comp Sci. (MU-Sem.'s-‘Comp.)
Q.3 Define DFA. | |
Ans.:
Definition of DFA
A deterministic finite autémata is a quintuple.
M= (QZL38, 4, F), where
Q s a set of states. ‘

2 is a set of alphabet.
q,€ Q is the initial state,

F ¢ Q s the set of final states, and §, the transition function,
is a function from Q x X to Q. :

Q.4 Obtaln a grammar to generate the language
L={0"1*"In20)}. m

Ans.:
Productions for the required language are as follows.
P = {S-0Slllg) |
CFG for the above]angﬁagc is ({S}, {0,1}, B, S) -

Q.5 Give deterministic finite automata accepting the
following languages over the alphabet {0, 1}

(a) Number of 1’s is even and number of 0’s is

even,
(b) Number of 1's is odd and number of 0’s is
odd. f May 2010,

Ans.:
(2) - Number of 1's is even and number of 0’s is even.

At any instance of time, we will have following cases for
number of 0’s and number of 1’s seen by the machine. -

Even Even 9
Even Odd q,
Odd Even q,
Odd 0Odd q,

An input 0 in state g, will make number of 0’s odd.

5(q, 0) =g,
An input 1 in state g, will make number of 1's odd,

d(q, 1)=q,
An input O in state q,, will make number of 0's odd,

8 (ql- 0) = q3
Aninput 1 in state q,, will make number of 1's even,

6@,D=q,
An input 0 in state g,, will make number of 0's even,

5(q,0=q,

An input 1 in state q,, will make number of 1’s odd.

8@, =>q,
An input 0 in state q,, will make number of 0's even.

8(q,,00=q
An input 1 in state g,, will make number of 1’s even.

8(g, 00=>q,
q,is the starting state. An empty string contains even number
of 0’s and even number of 1’s. qisa final state. g, stands for even

number of 0’s and even number of 1’s.

0 1
9, 9
9 9
9% 9.
q 9
(a) Transition diagram (b) Transition table

Fig. 2.5 : Final DFA for Q .5(a)

(b) Number of 1’s is odd and number of 0’s is odd.
In solution of Q. 5(a), the state q, stands for odd number of
0’s should be declared as final state.

0 1
| % %
q | 9 q,
L1 % %
Gl % %
(¢) Transition diagram (d) Transition table

Fig. 2.5 : Final DFA for for Q .5(b)

Q.6 Give the finite automation M
(a,b)*(baaa).

accepting

Ans. :
The R.E. = (a, b)* (baaa), represents strings ending in baaa.
The FA is given below
ab

ok &
O——@——@—®O—@®

Fig. 2.6

Q.7 Glve applications of Finite Automata.
Ans.: '
Applications of Finite Automata

Finite automata are used for solving several common types of
computer algorithms. Some of them are :

e asy-soluitons)

. p ”

Scanned by CamScanner

$ Theory of Comp. Sci. (MU-Sem. 5-Comp.)

; 2 " CTCE

(i)' Design of digital circuit

_ (i) String matching

(iii) Communication protocols for information exchange,
(iv) Lexical analysis phase of a compiler.
Finite automata can work as an algorithm for regular

Iaxfguage. It can be used for checking whether a string we L, where
L is a regular language. K

Q.8 Design a DFA to accept strings over the alp;mabat
set {a, b} that begin with ‘aa’ but not end with ‘aa’.

Ans. :

Fig.2.7.

A string not starting with aa will reachthe dead state Gy -
A string starting with aa wil reach the state q,
A string starting with aa and not cndir;g in aa will be either in q,
orgs. |
Tbc.DPA is given by,

M = ({85 s B Ga» G G5+ 99}« {B, b}, B, Qg a4, a5))

(g — Previous carry as 0, g, — Previous carry as 1)
i.c.. all trailing 0’s are written as 1 and the first 1 is’written as 0.

Moore machine : -

Fig. 2.9

Q.8 Design a MOORE and MEALY machine to
decrement a binary number.

Ans. :
One can decrement a binary by adding 11...1 (all 1's is 2’s
complement of 1) to the given number. The addition should start

from the least significant digit.

‘Mealy machine

Fig.2.8

Q.10 Design minimized DFA for accepting strings
ending with 100 over alphabet (0, 1).

Ans.:

All strings ending in 100 :

The substring ‘100° should be at the end of the string.
Transitions from q, should be modified to handle the condition that

the string has to end in ‘100°.

1 0
%9 9
Q9% %
Ll%. %
Q: -ql 9
(a) State transition diagram (b) State transition table
Fig. 2.10 g

q,toq, oninput1:

An input of 1 in q, will make the previous four characters as
‘1001". Out of the four characters as 1001 only the last character
‘I’ is relevant to ‘100°,
q;toq,oninputo:

An input of 0 in q, will make the previous four characters

‘1000°, Out of the four characters ‘1000, nothing is relevant to
‘100°,

B

Q.11 Design Moore Machine t generate zutp:ut Al
string Is ending with abb, B it string ending with

aba and C otherwise over alphabet (a, b). and
convert it to mealy machine. .

Q7 t{casy-solutions

Scanned by CamScanner

N

\

*Theory of Comp. Sci. {(MU-Sem, 5—Comp.') T

'Ans.‘:

" Design of Moore machine

Fig. 2.11

‘Conversion into Mealy machine :

- Stepl: Construction of a trivial Mealy machine by mm;'ing?
output associated with a state to transition entering

into that state.

‘a

b

Q| 9.C
q | q9.C
% | 9B
q | 49,C

9% |9, C

Step2: . Minimization

The two states g, and q, can be merged into a single state, say q;.

a

q, C
4 C
q3 A
9 C
Ge

b

% | 9. €
q | 9,C
4, | q,.B

9| D c
The two state g, g; can be merged into a single state, say g,

a

qq €
g,C
95 A
45, C

B

9
q;
q;

9,C ¢,C
9,C q.C
q.B gupA

The final Mealy machine is

b/C

a/C

b/A

Fig. 2.12

~.TCS-5
Q.12 Convert following &-NFA to NFA without €.

Fig. .13

‘Ans. :
To convert € -NFA to NFA without € -

Stepl: Toremove € transition from q state to r state, we do
' following

(a) Duplicate transitions of r state on g state

(b) Since ris the final state, we make q as well as the
final state. ‘ ‘

Step2: To remove € transition from p state to q state do
following :

(a) Duplicate the transitions of q state on p state
(b) Since q is a final sm:ewe[ﬁakapasweﬂasthe
final state. »
Thas, the NFA is :
a ; b (o]

L ePNe
O—0—0

Fig. 2.14

Since all 3 states in the NFA are final states, we can merge all
3 states

.. NFA — without € is
a,b,c

Fig. 2.15

Q.13 Design the DFA to accept the language containing

all the strings over Z = {a, b, ¢} that starts and
ends with different symbols.

Ans. :
M = (QX.8.q,F}
Q = (dp 90 G 93 Qs 955 s Uy}

2 = (abc)
q, = initial state
F = (Quq5q]

W - f{easy-solutions

| Scanned by CamScanner |

‘ -vTheory of Comp. Sci. (MU-Sem. 5-

-

Fig. 2.16

. 8 = Transitions are :

.
=i
=

Comp.)

= q
=4s
= q
= q

= Q¢

Q.14 Convert the followin_g grammar into finite

3 (g, a) = q 3 (gg. ©)
d(gub) = q, 8(g;2)
d@pe) =g 8(gb)
5(q2) = q 8(qm0)
§@b) = q 38@ya)
3(gu0) = q; 3(qs b)
8(a.2) = g5 "8(qs ©)
8(q,.c) = qs d(qy @)
8(g.b) = q 3(@@b
8(gea) = q S0
8(qeb) = q

automata.

S—aXlIbYlalb

X—aSlbYIlb

Y —aX|bS

Ans. :

" The above grammar can be converted to FA as follows :

" For every non terminating symbol we consider it as a

different state

M

Q
z
S
F

]

{Q,%,8,S,F)
{s,X.Y)

{a, b}

initial state
{X,Y)

8 : Transition functions are :
5,2 = X
3(.b) =Y

= 8

8 (X, a)
8 (X, b)
. 8(Y,a)
8 (Y,b)

=Y
= X
= S

Q.15 Design the DFA to
over T = {0, 1} tha
having Its decimal value mu

Ans. :

" Running remained is maintain :
3, q4. If the number start with 0, it is rejected

Fig. 2.18

accept all the binary Slrlng—s
t are beginning with 1 and

itiple of 5.

ed through the states q,, q;, q,,

Q@ 0 00 +5 =0(qp) 01+5=1(qp
a 1 10+5=2(g,) 11+5=3(q)
qQ 10 100+5=4(g) | 101+5=0(q)
% 11 110+5=1(qy) 11+5=-2(g)
a | 100 1000+5=3(q) | 1001 +5=4(q)

The operator + is for reminder.

Q.16 Design mealy machine to find out 2's complement
of a binary number.

Ans, :

2's complement of a binary number

2's complement of a binary number can be found by mnot
changing bits from right end ftill the first ‘1> and then
complementing remaining bits. For example, the 2’s complement
of a binary number 0101101000 s calculated as given below :

010110

every bit

1000

I_r_l = 1010011000

Complement No change

Fig. 2.19

7 Jeasy-solutions

Scanned by CamScanner

-

.
ll

ﬁTheory of Comp. Sci. (MU-Sem. 5-Comp.) . TCS-7.
e e e R R e e —_iﬁ__ﬁﬂs—’

The required mealy machine is given below. If ‘a’ is followed by ‘a’ then the machine enters the failure
The input is entered from right to left, | oAt Gy

0/0 on : A ‘b’ immediately after ‘a’ takes the machine to the accepting

. 1n .1!0 state q,

X Q.19 Design a mealy machine to determine the residue |
Fig. 2.20 ' mod 3 of a binary number.

Ans.:

Q.17 &;ver‘t‘ Fhe following
2% | {Qeua}|{a} |{}
Q | {%} {an%} | {}

*q; | {qo} { 9z} {a:}

NFA to an equivalent DFA

N

Fig. 2.24

Ans.:

.

The transition graph of the given NFA is : . State qyis for the running reminder as 0.

State q, is for the running reminder as 1.

State q, is for the running reminder as 2.

Qutput 1 indicates divisibility by 3

Output 0 indicate that the number is not divisible by 3.
- Required R.E. = (0 + 1 (1 + 01)* 00)*

Q.20 Convert the following NFA to an equivalent DFA

e-closure of states :
9 — (@
q - @)
& = Q9
NFA to DFA using direct method.

— ¢ | {do, G} q4 {}

d4 {aq |{49,qd | {}
'q; { 90} {q} | {ai}

Ans.:

€ - closure of states

State | €-closure
9 { q)
q, {q,}
Q { a1, %}

Constructing DFA using the direct method
Fig. 2.22 Stepl: Transitions for the state {q,)

Q.18 Deslgnia DFA over an alphabet = = {a, b} to
recognize a language In which every ‘a’ Is
followed by ‘b’

Ans.:

it {casy-solutions

Scanned by CamScanner

[] Z
VTheory of Comp. Sci. (MU-Sem. 5-ComE.)

TCSE .

Steg 2: Writing transitions for the state {q,}

Step4: Writing transitions for the states {q;, g;} and
9,9, 9}

Q.21 Draw DFA for the following language over {a, b} :

(a) All strings starting with abb.
(b) - All strings with abb as a substring i.e., abb

anywhere in the string.
(c) All strings ending in abb.

Ans.:
(a) All strings starting with abb

- First input as ‘b’ will take the machine to a failure state.
First two inputs as ‘aa’ will take the machine to a failure state.
First three inputs as ‘aba’ will take the machine to a failure state.
First three inputs as ‘abb’ will take the machine to a final state,

a b
q, q
4 o
94 9%
q; q
G %

(a) State transition diagram (b) State transition table
' Fig. 2.25 : Final DFA for Q. 21(a)

A DFA without explicit failure state is given in Fig. 2.25(2)

a b
2% (49 ¢
= -
b b q(¢ 9
H—O——@ -
L1 ¢ %
Gl% 9%

(a) State transition diagram (b) State transition table
Fig. 2.26 : Final DFA for Q. 21(a), without a
failure / dead state

(b) All stringa with abb as a substring

The machine will have fours states :

State g, -1t is the starting state and indicates that nothing of
relevance to complete ‘abb’ has been seen.

State q, — preceding character is ‘a’ and ‘bb’ is required to
complete ‘abb’.

State q,, — Preceding characters are ‘ab’ and ‘b’ is required to
complete ‘abb.’ i -

State q,, — Preceding characters are ‘abb’ and the substring
‘abb’ has been seen by the machine.

| a b
ab =9 [9 ¢4
b
‘ a a b b ()
G——G——@ LI %
.a Q%%
G |% %
(a) State transition diagram (b) State transition table

Fig. 2.27 : Final DFA for Q. 21(b)

q, to g, oninput ‘b’ :

First character in ‘abb’ is a.
q,toqg, oninput ‘a’:

q, is for preceding characters as ‘a’, first character of abb.
q,t0q, oninput ‘a’:

A H [7% I . ‘

n input of ‘a’ in state q, will make the preceding two

c::m‘:tﬂl‘s as ‘aa’, Last *a” will still constitute the first ‘a’ of
abb, X

q, toq, on input ‘b* ;
q, is for preceding two Characters as ‘ab’ of ‘abb’.
9,10 q, oninput *g’ : '
An input *a’ in g, Will make the preceding three characters as

'a?fl - Out of the three characters ‘aba’, only the last character
" 1s relevant to ‘abb’. , 7

e easysoiutions)

Scanned by CamScanner

‘ *Theow of Comp. Sci. (MU-Sem. 5-Comp.)
~ g;tog;on input b:)
q, is for preceding three characters as ‘abb’.

Number to be divided : 101101, .

TCS9

Binary number

1 0 1 1 0 1 4+
q,toq;oninputaorb: | l Wbodded iy
The substring ‘abb” has been seen by the machine and a new | Nextinputis1 1 . (1),MOD 3= (1),
input will not change this status, : ’
w3 Remainder 1 1 0 _
(c) Allstrings ending In abb next Input 0 ' (10), MOD 3 =(10),
l.\‘S the substring ‘abb’ should: be at the end of the string. Remalnder 10 1 o 1 (101), MOD 8 = (10),
Transitions from q, should be modified to handle the condition that | Nextinput 1 :
the string has to end in ‘abb’. Remainder 10 1 18 4 (101), MOD 3 = (10),
next input 1 . :
5 a L b Remainder 10 LI (100), MOD 3 = (1),
f) q | q 4 next input 1
Remainder 1 (11), MOD 3 =(0)
q, | 9 q, next input 1 = *
x x
1 9%, %
Fig. 2.29
Q: q, 9y g '
" (a) State transition diagram (B Stats teansifioatabie The calculation of next remainder is shown below,
Fig._ 2.28 : Final DFA for Q. 21(c) Previous Next Calculation of Next
g, to g, on inputa : 7 remainder input remainder remainder
An input of a in g, will make the previous four characters as 0(qy 0 W%3 = 0(gy
‘abba’. Out of the four characters as ‘abba’ only the last 0(q) 1 01%3 = 1(g)
character ‘a’ is relevant to ‘abb’.
, 14q,) 0 10%3 = -10(g,)
g,tog oninputb:
An input of b in q, will make the previous four characters) 1 %3 = 0(qy)
‘abbb’. Qut of the four characters ‘abbb’, nothing is relevant 10(q,) 0 100%3 = 1(q,)
to ‘abb’.
c _ : 10(q,) 1 101 %3 = 10 (q,)
Q.22 Design a 'DFA which can accept a binary number I ‘I ; \ I
divisible by 3, \ "
- Binary Binary decimal Binary
" Design of a divisibility — by — 3 — tester for a ‘
CINELYAT I A Dec. 2005, May 2014, May 2017 . 0 1
Ans.: Q% 9
) A binary number is divisible by 3, if the remainder when q, Q
divided by 3 will work out to be zero. We must device a
mechanism for finding the final remainder. , | | q, 9,
We can calculate the running remainder based on previous (b) State transition diagram (¢) State transition table

remainder and the next input.,

Fig. 2.30 : DFA for Q. 22

The running remainder could be :

Q.23 Design a DFA for a mod 5 tester for ternary input.
0 — associated state, q, ‘

‘ Dec. 2017
1 — associated state, qy Ans.: '

2 — associated state, 4, . A temary system has three alphabets .

Starting with the most significant bit, input is taken one bit at .= {0,1,2)
.a time. Running remainder is calculated after every input. The
process of finding the running remainder is being explained with
the help of an example.

@g easy-solutions

Base of a temary number is 3.

Scanned by .CamScannelr

: *Theo of Comp. Sci. (MU-Sem. 5-Comp.)

- TCS-10

The running remainder could be :

(0); = 0 associated state, q,
()3 = 1> associated state, q,
(2); = 2->associated state, g,
10); = 3 associated state, q,
(11); = 4 — associated slate; q,
T

Fig. 2.31

Q.24 Design DFA that accepts the following Ianguag_e:__,

() Set of all strings with odd number of 1’s
followed by even number of 0’s £ = {0, 1}.

(i) Set of all strings which begin and end with
different letters Z = {x, y, z}.

Strings ending with 110 or 111.

Dec. 2006, Dec. 2009, Dec. 2010

(ii)

Ans.:
(i)

0)

Fig. 2.32(b)

(Im

Fig. 2.33(c)

Q. 25 Construct the minimum state automata equivalent

to given DFA.

0 1

—q, q, %

| Q1 qO qg

qz q:! ; q1

: q; NE q3 Y

q, q, Qs

q-s q_s q,

9s B qs

q; 9)

Ans.:

Step1: - Finding O-equivalence partitioning of states by
putting final and non-final states into independent
block.

Py = (99,9, 9, 9599,
block 1

gy

block 2

Finding 1-equivalence partitioning of states by

considering transition on ‘0’ and transition on 1’.
I Y

Q0,01,02 44 .Es{q_vl' (9g) +— Transition on 0

Step 2:

block 1 block 2

On input 0, block 1 is successor of Q9

9 Q> Q-

+ q,, q, are distinguishable from 9% 9, 9 9 G,

(%, 94,0 q4. qs.?g,qv) (ag)

<—Transition on 1

block 2 -
On input 1, block 2 is successor of q.

On input 0, block 2 is successor of 9, q

block 1

On input 1, block 1 is successor of % 9, 9 9 95 » 9
q, i8 distinguishable from o Ap» 9 Qs G G
i\ 5 » »

Pi=(qy 9,95 q) CRENICRTCN

a5y -sotutions

Scanned by CamScanner

\

W Theory of Comp. Sdi. (MU-Sem. 5-Comp.) : | TCS-11_

Step3: Finding 2-equivalence partitioning of states by
' considering transition on 0’ and transition on ‘1.
1:1 ‘l_——% [4 +—Tmnslion on0

'(%H % 9 %& (92 9) (q;) ‘(ag)

T‘ : +—Transitlon on 1

block 10 block 11

block 12 block 2

- Oninput 1, block 11 is sucqeséor ofq,, q
On input 1, block 10 is successor of L
q,» 4, is distinguishable from U 9

(q, qﬁ) (9,.99 (@, 9)(q,) (@)

- Finding 3-equivalence partitioning of states by
considm'ng transition on 0-and 1.
b «— Transition on 0

r 11| ¥

(qu qa) (gq.95) (92, 94) (97) (qa)
¢

R S |

P2 =

Step4:

Blocks can not be divided further.
= Py=P,=(g, q)) (4, 45 @, 9 (@) (g,) whichis fisloei
of blocks of equlvalcnt classes.
Step5: Construction of minimum state DFA.
| 0 1
-—{(qo, q) | @.99 . Qa9
@d) | @ @
@yq) | @) (a,:95)
@] @ WY
(q) | @y (q)

(a) State transition diagram for minimum-

(b) State transition diagram for minimum-state DFA state DFA
) Fig. 2.34

<+ Transition on 1

Q.26 A language L Is accepted by some NFA if and

only if It is accepted by some DFA.

OR _

For every NFA, there exists an equivalent DFA.
Ans. :
Proof

Given theorem has two parts :
1. "If L is accepted by a DFA M,, then L is accepted by some

NFA M,.
2. IfL is accepted by an NFA M,, then L is accepted by some

- DFAM,. :

First part can be proved trivially. Determinism is a case of
non-determinism. Thus a DFA is also an NFA.

Second part of the theorem is proved below :

-Construct M, from M, using subset generation algorithm as
explained earlier. We can prove the theorem using induction on the -

length of .

Base case : Let @ =e with 1 w1 =0, where | @11is length of @.
Starting state for both NFA and DFA are taken as q. When
o = g, both DFA andNFAwi]lbeinqo-Hence.ﬁ]ebasecascis

proved.

Assumption : Let us assume that both NFA and DFA are
equivalent for every string of length. n. We must show that the
machines M; (NFA) and M, (DFA) are equivalent for 5tring§ of
length (n + 1). Let @, , , = w3, where , is a string of length n and
, , 1 1s a string of length (n + 1). ‘a’ is an arbitrary alphabet from
b1y

ﬁz(qz. w)= 52(‘]0- w,), where §, is transition function of DFA

(M,) and 3, is transition function of NFA (M,).

If the subset reached by NFA is given by

{Pp Py P}
K -
then, 8,qp®,,) = UB8p,a))
: i=1
or8,({py, Py -+ Py 2) = Ua.))
i=1
also, 5(Gp @) = (PP - B} <. (i)
from (i), (ii) and (iii) we get,
5,(0p 0y0) = 8,8,y @) 2) -
= 8,({py Py - P} D)
k
= Us@p.a= 5(‘]@ Sue1)
i=1

Thus, the result is true for | @ | = n + 1, hence it is always true.

: .
e asy sotutions

Scanned by CamScannef

, *Théory of Comp. Sci. (MU-Sem. 5-Comp.)

Q.27 Convert the followlng NFA to a DFA and
|ntormally describe the language It accepts.

0 1
ot ()
Q| {ns} B
P, 1} {t}

—p

* P 0
Ans.:
Stepl: {p}is taken as the first subset.

' O-Sucéessorof{p} = §({p}, 0) {p.q} -
= 3({p). = {p}

The new subsets {p, q} is generated. Successors of
{p, q} are calculated.

5({p,qh,0) = §(p,0)US(g0)

= (p.q}u5,s)

= {p.q. 1,58}

= 8@ DUd@D={(pIuil
= {p, t}

Two new subsets {p, q, 1, s} and {p, t} are generated.
Their successors are calculated.

8({p,q,1,5},0)=8(p,0) LS (q, 0) U (r,0) LB (5,0)
{p.q}u(rs} U {p.1}UG
{p.q.1.5},
S8Up.qrsh =8P HuUd@udrHud,1)
= {qluituftiue
= {pt}
- 8({p,1},0) = 8p,00UE(0)
= {p.qlu¢={p.q}
d({p.t}.1) = 8, HUSELD
| = (plue=1{p)
No, new subset is generated. Every subset containing either s
or t is marked as a final state.

Informal Description: Strings over {0, 1} with second digit
from the end is 0, N

1-Successor of {p}
Step2:

d((p.q}, 1)

Step3:

0 V1

-(p} | {p. 4} {p}
{p.q) | (p.asr8) (Pt}
{p.a. 58" | {p.q.rs} (Pt}

{p.t}* | ipa) . (P)

a) Btate table

_TCS.4a

(b) State diagram
Fig. 2.35 : Final DFA for Q. 27

Q.28 Construct a NFA that accepts a set of all strings
over {a, b} ending in aba. Use this NFA to
construct DFA accepting the same set of strings, -

.
Ans.: ‘
g
G ——H——@——()
Fig. 2.36 (a) : Non-deterministic finite automata
Non-determinism should be utilized to full extent while

designing an NFA. A string of length n, ending in aba can be

recognized by the NFA given in Fig. 2.36(a). First n-3 characters
can be absorbed by the state q, by making a guess. On guessing the

last three characters as aba, the machine can make a transition from
q, 10 q,.

NFA to DFA conversion :
Step1: {q,} is taken as first subset
a-successor of {q,} 8(qy a) = {q, ql
3(qy b) = {q,}
A new subset { 9 q,} is generated. Successors of
{q, q, } are calculated.
8({ay q,},2) = 3(q, NV, a)=(q,q}vo=1{q,q]}
3% a1 b) = 8ay b)US (4, b) = (g} L {q,} = {gy &)

Step3: A new subset (9 9,} is generated. Successors of.
(qy g,} are calculated.

0% %)) = 8oy) U8 @0 = (g9} U (gy)
_ = {9:9,, 9y}

(14 91 = &gy, b)UB (g, b) = (g} U =(q))
Step d ;

b-successor of {qO}

Step 2:

A new subset {q,, q,q,} is generated. Successors of
{9, Q,9,} are calculated.

8 (lqy q,q,).)

n

Squpa)ud(g, a) U S(q,, a)
{gpqluoud= {qo,qll

‘ .@si gasy-solutions]

Scanned by CamScanner'

wThaoz of ComE. Scl, SMU-Som. 5 ‘Come.z ' » TCS-13 -

8((0p 9951 D) = Blge b)UB (LU (g, b)
= {g) Vg, Vé=1(q,q,)
No, new subset is generated. Every subset containing q, is
‘marked as a final state.

(b) State diagram of the DFA. -

I T

%[qo} {q, q,} {q,}

A9y q} | {99} (459}

9,9} | {9599} {gg}

e 9,00 | {9p9) {95 ;)
(o) State table of the DFA

Fig. 2.36

f
q, — Running remainderis 4 = (“)f

In decimal
system

Fig. 2.37(b) : Moore machine

Q.29 Give Mealy and Moore machine for the following :
From input Z*, where X = (0, 1, 2) print the residue
modulo 5 of the Input treated as ternary (base 3).

May 2006. Dec. 2015

Ans.:

(a) Mealy machine

1/0
Fig. 2.37(a) : Mealy machine

Meaning of various states is :
q, ~ Running remainder is 0
q,- ilunning remainder is 1
g, - Running remainder is 2.

g, - Running remainder is 3 = (10),

Q.30 Design a mealy machine for a binary input
sequence such that if the sequence ends with 100
the output is 1 otherwise output is 0.

Dec. 2006, May 2008, Dec. 2008

Ans. :
0/0 » 1/0 1/0
W@
o/
(a) State diagram
-0 1
—q Q0 q. 0
ql q2‘ 0 qp 0
% Qp 1 _ q,0
(b) State table .
Fig. 2.38

~ Meaning of various states :

q,- start state
q, — previous symbol is 1
q,— preceding two symbols are 10

A transition from q, to q, will make the preceding three
symbol as 100 and hence the output 1.

30

Scanned by CamScanner

*Theory of Comp. Sci..(MU-Sem. 5-Comp.)

Q.1 Write short note on Myhill-Nerode theorem.
Dec. 2005, May 2006, Dec. 2006, May 2007,
May 2008, Dec. 2008, Dec. 2012, May 2013 |
Ans.:

Myhill-Nerode theorem

Given a language L, two strings x and y are said to be in the
same class if for all possible strings z either both xz and yz are in L
or both are not.

The Myhill-Nerode theorem says :

1. A language L divides the set of all possible strings into
mutually exclusive classes.

2. IfLis regular, the number of classes created by L is finite..
3. If the number o'f classes L creates is finite, then L is regular.

In finite automata, each state can be thought of as creating a
class of strings. Two strings are said to be in the same class if they
both trace a path from starting state q, to some state q; (say).

Number of strings is infinite.
. Number ofistates in an FA is finite.

Many strings when applied to the FA will end up in the same
state. Each state of FA can stand for a class of strings.

Chapter 3 : Regular Expressions and Languages

TCS-14

In the string xy'zwnhl-o at least one “a” or atleast

one ‘b’ will be erased from @) * " of (ab)"* 'a"

This will lead to one of the following situations :

1. Number of a’s in (ab)" is equal to number of as
inafof @)

2. xy’z will not be of the form (ab)"a".

Step 3:

Therefore, xyoz e L.

Hence, this is proved by contradiction.

3
5. Complementation 6.
7
1

Q.2 Show Eat .

1+ 00*1) +(1+00*1)(0+ 10*1) (0 +10*1) = 0*1

(0 + 10*1)" Ma 2006
Ans.: ‘

LHS. = (1+00*1)+(1+00*1) 0+ 10*1)°(0 + 10%1)
L = (1+00%1) [e+ 0+ 10¥1)*(0 + 10*1)]
= (1+00*1) (0 +10*1)"

= [(e+00%) 1] (0 + 10*1)* = 0*10+10*1)"
= RHS.

Q.3 ProveL={(ab)"a": n >k, k>0}Is not regular.

May 2006
Ans.: ,
Stepl: Let us assume that L is regular and L is accepted by
‘ an FA with n states.
-Step2: Let us choose a string
o = (ab)"” n

L}

-Iml 2n+1)+n=3n+22n
Let us'wntcu)asxyz. with
and Ixyl £ n

The string xy will contain a maximum of n symbols from (ab)",

Ayl > 0

Q.4 Write short notes on closure properties of regular
language. Dec. 2006, May 2013. Dec. 2014
Ans. :
Closure properties of regular language
- If an operation on regular languages generates a regular :
language then we say that the class of regular languages is closed

under the above operation. Some of the important closure
properties for regular languages are given below.

1. Union 2. Difference
Concatenation 4, Intersection
Kleene star

Transpose or reversal.
.~ Regular Language is Closed under Union
Let M, (5,Z, 3,50, F) and
M, (Q. Z, 8,, q5. G) be two given automata.

To prove the closure property; we must show that there is
another machine M, which accepts every string accepted by either

M, or M; and no other string, The construction M, is quite simple
as shown in Fig. 3.1.

G

@ 4‘
ip!

.@8 easy-solutions

Fig.3.1:MstsconstmctedsuchtheL(M3)=L(Ml-)um

Scanned by CamScanner

- Theory of Comp. Sci. (MU-Sem, 5-Comp,)

Machine M, is constructed to accept LM v L(M,).‘

M, = (R, Z, 8y, 1, H) where r, is a new start state. Two
g-maves, one from 1, to s, and another from 1, to q are added.

R = SuQuUr)
& = 8, U Ul e sy, (to, £, qp))

Machine M, can non-deterministically choose either M, or
M,. Therefore,

LoM) = LoM)uLovy |
2. Regular Language s CIosed under Concatenation
Lt M, = (S.55,5,F)
\ and M, = (QZ,3, q, G) be two given automata.

To prove that closure property under concatenation, we must
show that there is another machine M, such that L(M,) = L(M,) -
L(M,). The construction of M, is shown in Fig. 3.2.

© 0

Fig. 3.2 : M, is constructed such that L(M;) = L(M,) - L(M,)

M, is constructed by adding &-move from every final state of
M, 1o start state of M,

Machine M, is given by :

M, = R,Z8,50) where
8, = §,ud,u (e-move from every final state of M,
to start state of M,}

Machine M, recognizes LM, L(M,) by going non-
deterministically fromghe final state of M, to start state of M,.
3. Regular Language is Closed under Kleene Star

Let M, = (Q, Z. 5, qy F) be the given automata. We can
l e L] L] 1 .
construct a non-deterministic finite automata M, such that
L(M,) = L(M,)*. The' construction of M, from M, is shown in
Fig.33,

F
©

Fig.33: M, is constructed such that L(M,) = L(M,)*

leis constructed as given below :

(a) A new start state s, is added with an e-move from s to q,.

(b) A new final state f;, is added with e-moves from every state of
F to f;, An g&-move is added from s to f; as € is a member of
LM)*.

Machine M, = (Qu {sp T} Z. 8,5, {f})
Machinc can accept a string € L(M,) and resume back from
the start state q, through the e-move from f, to q,. Thus accepting

L(M,)*.

4, Regﬁlar Language is Closed under
Complementation

Let M = {Q, Z, 8, q,, F) be the given automata. To prove the
closure property under complementation, we must show that there

“is another machine M which accepts L(ﬁ) where

LM = LM) = 3I*-LM)
| |
Given Machine after
machine complementation

~If M is a deterministic finite automata then M can be
constructed by interchanging final and non final states of M.

M = (QZE38,q,Q-F)
5. Regular Language is Closed under Intersection
If L, and L, are two regular languages, then
Linl, = (@ NL)Y=CuLy
=1 I¥= [E* L) iEY = L)l
Closeness under intersection follows directly from closeness
under union and complementation.

6. Regular Languages are Closed under Difference

Let L, and L, are two regular languages. The difference
Ly = L, is the set of strings that are in language L, but not in L,.
Construction of a composite automata for L(M,) = L(M,) is

explained in Chapter 2. Thus regular languages are closesi under
difference, '

g _
sy -sotutions)

Scanned by CamScanner |

vTh'e'ory of Comp. Sci. (MU-Sem. 5-Comp.)

7. R_egular Languages are Closed under Reversal

Reversal of a language L is obtained by reversing every string
inL. Reversal of a language L is represcnted by I

For example,

if L = {aab,abb,ana); then LR = (baa, bba, ana)

LetM, = (Q, %, 3, q,, F) be the given automata. To prove the

closure property under reversal, we must show that there is another
machine M, which accepts L(M,)R.

or LM,) = L(Ml)
M, can be constructcd fmm M by
1. - By reversing every transition in M,.
2. Start state of M, is made the only final st:;te.

- 3. Anew start state s is added with e-move to every final state

of M,.
Q.5 Design a NFA to accept (a + b)'aga convert it to a
reduced DFA. \
Ans.: ‘
(a+b)* aba
RE to NFA

. (a+b)* aba .

' Fig. 3.5 : NFA to DFA

Q.6 Write RE for the following languages
() The set of all string over {0, 1} without
|ength two.
(I L= {a"b" | (n + m) Is even}

" TCS-1 6

() L ={o e (a b)" | (number of a’s In m) mod :

3=0}

(Iv) L= {ab In>=4,m<=3}

Ans.:

() The set of all strings over {0, 1} without length two.

e+(0+1)+(0+1)(0+l)(0+1)(0+1)*

@ii) L={a"d"l(n+m)iseven}
((aa)*ab + bb) (bb)* _
(ﬁi) L= {63 € (a, b)* | (number of a’s in @) mod 3 = 0}

(b + ab*ab*a)*

(iv) L={a%"n>=4, m<=3}
" aaaaa*[e + b + bb + bbb]

Q.7 Provel= {(ab)"ak I n> k, k>= 0} Is not regular.

My 2008 8

Ans.:

Step1: - Let us assume that L is regular and L is accepted by

an FA with n states.

®w =

lwl

Step2: Letuschoose astring

(ab)n + lan

2n+1)+n=3n+2=>n

Let us write © as xyz, with

lyl >
and Ixyl <

0

n

The string xy will contain a maximum of n symbols from (ab)".

Step3: In the string xyiz withi =0, at least one ‘a’ or atleast

one

‘b” will be erased from (ab)® * ' of (ab)® * 'a”.

This will lead to one of the following situations :

2,

Number of a's in (ab)” is equal to number of a & e

in a* of (ab)"a*

xy°z will not be of the form (ab)"a*

Therefore, xyoz € L.

Hence, this is proved by contradiction.

Q.8 Construct a NFA for the RE (o1*

to DFA
Ans,:

©1*+1)
RE to NFA

easv-sululions

Scanned by CamScanner

+ 1) and :convert it

i

| O T

E
%

May 2006. Dec. 2007. May 2008

i, ﬁrhaory of Comp. Sci. (MU-Sem. 5-Comp.)

. 0 1e847.

e o1

1

; Fig. 3.6(b) : NFA to DFA

Q.9 Construct an NFA with emoves for the

RE 10(0 + 01 + 0110)"
Ans.: ’

1{0+0140110)5 =
O ©
(0+0140110)*,
1 e Q € /=
O—+O——0O—-0O0+0O0—O

Q.10 State the pumping lemma for regular language. |
Ans.: | ‘ ' '
Pumping lemma for regular language

Pumping lemma gives a necessary condition. for an input

.string to belong to a regular set.

Pumping lemma does not give sufficient condition for a
language to be regular. '
Pumping lemma should not be used to establish that a given

_language is regular.

Pumping lemma should be used to establish that a given '
language is not regular. ‘

The pumping lemma uses the pigeonhole principle which
states that if n pigeons are placed into less than n holes, some holes
have to have more than one pigeon in it.” Similarly, a string of
length = n when recognized by a FA with n states will see some
states repeating,.

Definition of Pumping Lemma
Let L be a regular language and M = (Q, Z, 8, qy, F) be a

finite antomata with n-states. Language L is accepted by m. Let
o € L and | @l 2 n, then o can be written as xyz, where

@ lyl>0
() Ixyl<sn

(iii) xyi zeL foralli 2 0 here yi denotes that y is repeated or
pumped i times. '

Interpretation of Pumping Lemma

Fig. 3.8 : FA considered for interpretation of pumpi.ug lemma

Let us consider the FA of Fig. 3.8
No. of states = 5(gytoq,)

Let us take a string @ with | [2 5, recognjzed by the FA.
® = abcabch

To recognize the string w = abcabeb, the machine will transit

through various states as shown in Fig. 3.6.2.

q, is repeating

;-a b c a b c b
Go—>4y —q2 —»Qq3 —» qy—A2 —03—>04
States ‘

Fig. 3.9 : Transitions of FA on input abcabcb

As the input abcabcb takes the machine through the loop
q; = g3 — ¢y — q,, this loop can repeat any number of times. In

P _
0 vasy-sotutions)

terms of abcabcb, we can say that if abcabeb is accepted by FA

Scanned by CamScanner

\

*Theory of Comp. Scl. (MU-Sem, 5-Comp.)

s -TCS"-‘Taf

then every string in a(bca)*bcb will be accepted by the FA of
Fig. 3.8. The portion bea is input during the loop.

U2R—q =,

Thus, if abcabeb is accepted by the FA then abcabcb can be
written as xyz, with)

X = a
bea
- = _beb.
Length of abcabeb is > n

xyiz for every i 2 0 or a(bca)ibcb for every i = 0 will be
accepted by the FA of Fig, 3.8. '

y‘_'.'

Z =

Q.11 Construct NFA from (0 + 1)‘:(i)0 + 11) and convert

Into minimized DFA. | Dec. 2009 §
Ans.:. .
(0 + 1)*(00 + 11)
RE to NFA (0+1)" (00+11)
o+1)" 00+11 A
= 0—0—=0Q
Fig. 3.10 : RE to NFA
0+1 . 00 .
£ ‘ £ —~N
- -0——E—Q
1
Fig. 3.10(a) : RE to NFA
NFA to DFA

Fig. 3.10(b) : NFA to DFA _

Q.12 Explain declslon properties for regular languages,

Dec. 2005 |

Ans. :

‘Decision properties for regular languages

1. Isaregular set empty 7 - Emptiness property.

2. Whether a finite automata accepts a finite number of strings 7'

- Finiteness property.

3. Whether a finite automata accepts an infinite number of

strings ? — Infiniteness property. |
In addition to above decision problems, we can formulate a
number of other decision problems. Some of them are :

1. Given aregular expression R and a string «, does « belong to
LR)? i
Given two FAs M, and M,, is L(M,) = L(M,) ? .
Given two FAs M, and M,, is L(M,) subset of L(M,) ?
4. Given an FA M, is M a minimum state FA accepting L(M) ?
Declision Algorlthm for emptiness :
Finite automata will fail to accept any string if it does not
have a final state. .

Finite automata will fail to accept a string if none of its
accepting states is reachable from the initial state.

We can determine the emptiness of language accepted by an
FA by calculating Q,, the set of states that can be reached from g,
by using strings of length k or less.

[9o} ' ifk=0
k_{ {Q.,v{d(@a}lqe Q._,andae b ifk>0}

We can go on computing the Q, for each k > 0 until one of
the two cases arise :
1. Q contains a final state,

The language is not empty.
2. Q= Q. 1

The language is empty as the final states are not ‘rem‘:hable
from q,.

Decislon algorithm for finiteness / infiniteness :

The set of strings accepted by a finite automata M with 1
states is finite if and onl

of length less than n,
The set of strings acce

states is infinite if and on]
nslol<2n,

From the pumping lemma we know :

pted by a finite automata M with n
y if it accepts some string o such that

y if the finite automata accepts only strings .

1. It‘o)withlengthofmZnisacceptedbyMthenmcanb” :

written as xyz.

2. Forevery, i xylz will be accepted by M,

We can always design an’algorithm to generate all strings

over Z with length between n and 2n.

7 {cosisoiuiions

Scanned by CamScanner

R

"W Theory of Comp. Sci. (MU-Sem. 5-Cornp.)

If any of these strings is accepted by M then L(M) is infinite
else L(M) is finite.

Q.13 Using pumping Iemma for regular sets, prove that
the IEHQUBQO L = (00" | 0 € {0, 1)} Is not regular.

Ans.: .
Stepl: Letus assume that L is regular and L is accepted by a
* FA with n states,
Step2: Letus choose a string
. = ab. ba
o R <—from
oo
lml = 2n+22n
Let us write w as xyz with
~lyl > 0 and Ixyl £ n

Since | xy | < n, x must be of the form a’,

Since | xy | < n, y must be of the forma'lr>0.

- Now,
® =abba'= 7&1 7&1"_' a_ bba
x Y z
Step3: Letus check whether xyi z.fori=2 belongs to L.
xy'z = a'a'a *“'bba’=a"""bba"

Since r > 0, a" * 'bba” is not of the form oo® as the

strings starts with (n + r) a’s but ends in'(n) a's.
Therefore, xyzz g L. Hence by contradiction, we can
say that the given language is not regular.

Q.14 Using pumping lemma for regular sets. Prove that

the language L = { oo | ® € {0, 1} } Is not regular.

Dec. 2006, Dec. 2010

Ans.:
Step1: Let us assume that the given language is regular and

L is accepted by a FA with a n states.

Step2: Let us choose astring
=ab ab
©=82 =

oy o <+ fromow

lol = 2n+22n
Let us write as xyz with
lyl > 0
andixyl < n
Since I xy| < m, x must be of the form '

Since Ixyl < n,ymustbeoftheforma'lr>0. .

TCS-19

x ¥y z
Let us check whether xf z fori =2 belongs to L.

2 n-s-
a'a*a" " "ba'b
a"*"ba"d

n +r,

Since r > 0, a" * b is not of the form w®" as the
number of a’s in the first half is n + r and in the
second half is n.

Step3:

2
Xyz =

Therefore, xyzz ¢ L. Hence by conu-a;diction, the
given language is not regular.

Q.15 Show that the language L {a"ba" | n > 0} is not

regular.
Ans.:
Stepl: Let us assume that L is regular and L is accepted by
an FA with n states.
Step2: Letuschoosea s;.ring _
' 0 = a'ba'
ol = 2n+12n

Let us write © as xyz, with
lyl > 0
and Ixyl £ n
Since, | xy | < n, y must be of the forma" 17> 0
Since, | xy | < n, x must be of the form a".
Now, a'b" can be written as :
a%a"a""* " ba"
Step3: Letus check whether xy'z for i = 0 belongs to L.
0 n-s-r,
a' (@) a ba"

= a 'ba

0
Xy z

Since, r> 0 the string 8" ~'ba” L.

Hence by contradiction we can say that the given
language is not regular,)

Q.16 Write short note on application areas of R.E.
Ans. :

Application areas of Regular Expresslon
1. R.E.in Unix
The UNIX regular expression lets us specify a group of

characters using a pair of square brackets [1. The rules for
character classes are :

1. [ab] Stand fora+b
2. [0-9) Stand for a digit from 0 to 9
3. [A-2) Stands for an upper-case letter

e asysoruiions]

Scanned by CamScanner

, *Théory of Comp. Scl. (MU-Sem. 5-Comp.)

4 [a-1)

[0-9A-Za - z]

Stands for a lower-case letter
Stands for a letter or a digit.

The grep utility in UNIX, scans a file for the occurrence of a

pfa.ttem and displays those lines in which the given pattern is
found.

For example :
$ grep president emp.txt

It will list those lines from the file emp.txt which has the
pattern “president”. The pattern in grep command can be
specified using regular expression.

* matches zero or more occurrences of previous character.
® matches a single character.

[~ par] Matches a single character which is not a p, q orr.

© o N9

A pat
10. pat$

Example

Matches pattern pat at the beginning of a line

Maiches pattern at end of line.

(@) The regular expression [aA] g [ar] [ar] wal stands for either
“Agarwal” or ‘agrawal”,

)

©

g* stands for zero or more occurrences of g.

$grep “A - x thakur” emp.txt will look for a pattern starting
with A. and ending with thakur in the file emp.txt.

2. Lexical Analysis

Lexical analysis is an important phase of a compiler. The
lexical analyser scans the source program-and converts it into a
steam of tokens. A token is a string of consecutive symbol defining

~ an entity.

For example a C statement x = y + z has the following tokens :

X - Anidentifier
= - As-signment operator
y = Anidentifier
+ — Arithmetic operator +
z - Anidentifier

Keywords, identifiers and operators are common examples of
tokens. '

The UNIX utility lex can be used for writing of a lexical
analysis program. Input to lex is a set of regular expressions for
each type of token and output of lex is a C program for lexical

" analysis.

\

TCS-20

expression. (a + b)* aba (a + b)*

Ans.: :

The language associated with the R.E. (a + b)"'aba(_a +b)*=
‘strings with “aba” as substring.

DFA for strings with aba as substring.

Fig. 3.11

Q.18 Construct an NFA with epsilon transition for the
following RE. (00 + 11)* (10)*

Ans.:

(00+11)* (10) @
> @

)

b)

X

1
r A}
’ v

{ . (10)°
(oom) e)

’

Fig.3.12

Q.19 Convert (0 + €) (10)* (€ + 1) into NFA with

€-moves and hence obtaln a DFA_
Ans, :)

Stepl: REto NFA for (0 +¢€) (10)* (e + 1)

W {easy sonutions]

Scanned 'by CamScanner

Q.17 Design a DFA corresponding to the regular-

BRaiae
SN SRR AN -

. ¥ Theory of Comp. Sci. (MU-Sem. 5-Comp.)

Fig. 3.13
~ (Note : States have been removed.)
Step 2 €-NFA to DFA

€ -closure of states
%= {2 B @) - q = {a}
9= {@ &} g — {5}

The DFA using the direct method is given below.

: 0

Fig.3.14

Q.20 Using pumping lemma for regular sets, prove that
the language, L = {0" | n is a prime} Is not regular.

8 Dec. 2007, Dec. 2009, Dec. 2015, Ma 2016

Ans.:
Step1: Let us assume that the given language is regular and
L is accepted by a FA with n states.
Step2: Letus choose a string © = a’, where p is aprime and
p>n.
lol = la’'l=p2n

Let us write w as xyz with

TCS-21
lyl > 0,
and Ixyl € n
We can assume that y = a" for m > 0.
Step 3: LGgmofxy'zcanbewﬁuenaé given below :
Ixyzl = lxyzl+ly"'I=p+G-Dm
as lyl = la"l=m
Let us check whether P (i = 1) m is a prime for every i.
Fori=p+1,p+(i~1)m=P+P,=P(1+m). -
P (1 + m) is not a prime asithastwo factors p and
(1+m)and
Ipl
[1+ml

> 1,
> 1
So xy’ * llz ¢L Hence by contradiction the given

language is not regular.

Q.21 Draw a state diagram and construct a r;gular
expression corresponding to the following state

transition table.
_State 0|1
=" | G | %
9: (92 | 92
G| G| 92
Ans.:
State diagram

A.E. form state diagram

Step1: Removing loop between g, and q, we get

Step2: Removing the main loop, we get

()0 +1(1 +01)700
|

Q.22 Show that the language L = {a"b"} Is not mgal;r.

Dec. 2006, May 2010, Dec. 2010, Dec. 2012, May 2013,
May 2014, Dec. 2016, May 2017, Dec. 2017

e
sy sonuions i

Scanned by CamScanner |

W Theory of Cornp. Sci. (MU

-Sem. 5-Comp,
Ans.: :
§Mp 1: Letusassume that L is regular and L is accepted by a
; FA with n states.
Step2: Letus choose a string \
o= a'b"
lol = 2n2n
Let us write w as xyz, with
lyl > 0
andlxyl £ n

Since, | xy | S n, y must be of the form a* It > 0
Since, | xy | € n, x must be the form a’. -

Now, a"b" can be written as

IrT

Step3: Letuscheck whether xyzf0r1-2bclongs toL.
xy'z = a'@)a a5 "
= Tt
= gitZren-s-rp
= aﬂ+[bll '

Since r> 0, number of a’sin a"*'b" is greater than number
of b’s. Therefore, xyzz. & L. Hence by contradiction we can say that
the given language is not regular.

Q.23 Construct NFA for given regular expressions :
() (a+b)ab
(i) ' aa(a + b)*b
- (iif) (aba)(a+b)*
(lv) (ab/ba)*l(aa/bb)*

Ans.:
(@) (a+b)*ab:NFA

TCS-22

(iv) (ablba)'l(ial_bb)‘ : NFA

Q.24 Convert (0 + ¢) (10)°(e + 1) Into NFA with e-moves

and obtain DFA. :

Ans. :

Step1: NFA for the given expression :

Step2: e-closure of states :
G = {99 %'}
q = {9593}
{4}
= {q) -

Step3: DFA using direct method :

@,@ easy-solulions . .

Scanned by CamScannér

.

vfhoow of CémB. Scl. SMU—Sem; 5-Comp.)

: TCS-23

~ Chapter 4: Regular Grammar (RG) | -

A dead state is added to handle ¢-transition. The
resulting DFA is shown in Fig. 4.1(c).

Q.1 Construct right linear grammar and. left Ilneaﬁ) Step3:

grammar for the language (ba)*.
Ans.:
Transition system for (ba)* is given by :
‘ ba
We can write left linear grammar and the right linear
grammar form the transition systems.

Right linear grammar :
S—baSle

'

Left linear grammar :
S—Shale

Q.2 Final the equivalent DFA accepting the regular
language defined by the right linear grammar
given as :
S—»aAlbB,A—aAlbclaB—aBlbC—bB

Ans.:
A new final state’F is being introduced to handle productions like,

_ A—a B-b
Step1:

Adding transitions corresponding to every
production, we get the FA shown in Fig. 4.1(a).
a
Fig. 4.1(a)
Step2: Drawing an equivalent DFA, we get

Fig. 4.1(c)

Q.3 Construct left linear and right linear grammar for

~ the regular expression.
May 2009

((01 + 10)*11)"00)*
Ans.:

The given expression can be represented using a transition
system as shown below :

((01 +10)*11%00 ((01+10)*117) 6

Fig, 4.2(a)

—p— _
:easy sotutions)

Scanned by CamScanner

* Theory of Comp. Sci. (MU-Sem. 5-Comp.)

Removing € - transitions, we get :

01,10

Fig. 4.2(b)

Writing of right linear grammar we get,
S—00SI11AI101B110B &

A= 11A101B110B 1008
B—01BI10BI11A

For writing of left linear gramrr{ar, we interchange the start
state and the final state and change direction of all transitions. The

resulting transition system is given by :

Writing of left linear grammar we get,
S— S001A001E I
A — Al111B111S11,

B — B01110B1S0115101A011AIOQ

TCS-24
Step1: Adding tmnsitionﬁ corresponding to every
production, we get
Fig. 4.3(a)
Step2: Adding a state E to handle ¢-transitions, we get the

final DFA.

E ‘
Fig. 4.3(b) : Final DFA

Q.4 Convert the following right-linear grammar to an

equlvalent DFA.

S—bB

B—-bC

B—aB

C—a

B-b

Ans.:
Re-writing the production we get

S — bB
B — bClb
B —» aB

C = a

Q.5

Ans.:

Convert following RG to DFA
S—0AI1B, A—0CI1Al0Q,
‘B—>1BI1AI1, C—O0I0A.

A new final state F is being introduced to handle productions like,

A—-0,B—=>1[,C—0.

Stepl: Adding transitions corresponding to every
production, we get the FA shown in Fig. 4.4(a).
Fig. 4.4(a)
Step2:

Drawing an equivalent DFA, we get

Fig. 4.4(b)

@s easy-solutions

[RN

Scanned by CamScanner

W theory of Comp. Sci. (MU-Sem. 5-Comp.)

TCS-25

States {S}. (A}, (B}, {C,F}, and {A, F} are renamed
85 4o» q;» Ga» 93194 and a dead state q, is introduced to

handle ¢ - transitions. The resulting DFA is shown
in Fig. 4.4(c) : ’ '

Step3:

Fig. 4.4(c) : Final DFA

Q.6 " Write an equivalent left linear grammar from the
given right linear grammar.

"S- 0Al1B
A—0CI1AI0
B—1Bl1Al1
"C—010A

Ans.: g

Stepl: Transition system for the given right linear grémmar

is-as shown in Fig. 4.5(a).

Fig. 4.5(a) : Transition graph

Step2: Interchanging the start state with the final state and

reversing direction of transitions, we get

Fig. 4.5(b)

‘Step3: Writing of left linear grammar from the transition
system, we get : ‘
S — COIAO0IBI
A — AlICOIB110
B — Bll1
C = A0

Chapter 5 : Context Free Grammars (CFG)

Q.1 Write an unambiguous CFG for arlthmetic
' expressions with operators : +, *, /, A, unary
minus and operand a, b, ¢, d, e, f.Also, If should
be possible .to generate brackets with your
grammar. Derlve (a + b) A d / e + (=) from your
grammar. :
Ans.:

An unambiguous grammar is given below.

ESE+TIT f+ has lowest priority with L — R associativity)

T—=->T*FIT/FIF [* and / has higher priority over

+ with L — R associativity]
FaFAGIG A hasl higher priority over * and / with
L — R associativity]
G->-HIH [unary - has the highest priority]

HoalblcldlelfI(B) [tohandle brackets and identifiers]
Derivation tree for (a + b)Ad/e + (-)

iz easy-sotuons

Scanned by CamScanner

W Theory of Comp. Scl. (MU-Sem. 5-Comp.) | ‘ TCS-2¢

E Where, a € T is a terminal and @ is a string of zero or mom 4

' variables.
. The language L.(G) should be without €.. \

/ § i i : Right hand side of each production should start with 5
T : terminal followed by a string of non-terminals of length zero of. ,
/N 1 more.]
T.I.F aQ | Q.4 Prove that the language L = [a" Ipisa prlme}[s
/ ' | : not context free language.
F G H Ans. : .
/]\ /\ 1. Letus assume that L is a CFL.
Fra H (E) 2. Letn be the natural number for L, as per the pumping lemma,
I [‘ Let p be a prime number greater than n. Then z = a’e L. We
@ H 2 T can write Z = UvVxyz. :
| I _ 4. By pnmping lemma uvoxyoz =uxz € L. Therefore,
2 . F | uxz | is a prime number.
/I\ Let us assume that | uxz | =.q.

-
m
0]

; ' . Now, let us consider a string uv’xy'z,
/I\ . ow /\ The length of uv’xy%z is given by :
E +.T = H =gt von 3 g 2
luv’zy zl = q+q(lv!+1lyl), which is not a prime with
| q is a factor.
T F f

Thus, uv’xy’z g L. This is a contradiction.
Therefore, L is not a context free language.

| Q.5 Givena CFG G, find G’ in CNF generating L (G) - ¢
L | ~ S—ASBle A-AsSla B—>SbS|Albb

May 2006. May-2009, May 2010, Dec. 2011

H b Ans.: _
| Step1: Simplification of grammar
' B Symbol S is nullable.
Fig. 5.1 : Derivation tree for (a +b)Ad/ e+ (-f) : 5
. After removing e-productions, the set of productions is given by

Q.2 Convert the following CFG to GNF : S — ASBI|AB
S—»aSalbSblc A > AaSlAala
" Ans.: ' : , B — SbSISbIbSIbIA|bb
, ’I‘he grammar can be ‘brought to GNF through simple U‘}it pfﬂd?cﬁon B — Ais remov.ed, the résu]ﬁng set of
substitutions C, —» aand C, — b. productions is given by
S o a5C,IbSC,IC ‘ S — ASBIAB
C, =+ a | ' A = AaS|Aala
C, = b B ™ SbSISbIbSIb1AaS | Aa|albh
Q.3 Write short note on GNF. e ok i"‘"y symbol in &, in productions of the fom
Ans. : | ' — @ Where lal 2 2 should be a varigble.

This can be done by addi
' dl "
‘Grelbach Normal Form (GNF) C oo ¥ adding two productions :

A context free grammar G = (V, T, P, S) is sdid to be in GNF and C, = b
if every production is of the form :

A - ao,

W easy sorutions - T e e

Scanned by CamScanner

W Theory of Comp. Scl. (MU-Sem. 5-Comp.

The set of productions afler the above changes is

S — ASBIAB
A — ACSIAC,Ia .
B — SGSISGICSIbIACSIAC,|alCC,
C, —a
C, —=b
Step3: Finding an equivalent CNF
Origina production | Ketuvalent producions 1 CNF.
S — ASB S AC, I
C,—SB
‘S AB i S— AB
A>ACS A AC,
C,—»CS
A— AC, A—AC,
A—>a A—a
B—SC;S B — SC,
C,—=CS
B—5GICSIb | S—SCIGSIb
B— AC,S B — AC,
B—AC,1aICC, |B—-ACIaIGC,
T | C—>a C,—a
G—b C,—b

Q.6 Convert the following grammar into GNF
S XY1l0. X 00XIY Y- 1X1

May 2006, May 2012

Ans.:
Simplification of grammar
The unit production x — y is removed, the equivalent set of
productions is given by :
S — XYI1I0
X — 00XI1X1
Y - IX1
The symbol X is non-generating.
The set of productions after elimination of X is given by :

S — 0, itisin GNF

—

Q.7 Find CFG for generating

() String containing alternate sequence of 0’s

and 1’s, X = {0, 1}

() The string contalning no consecutive ‘b’s
but ‘a’s can be consecutive.
The set of all string over alphabet {a, b} with
exactly twice as many a'sasb's.
Language having number of a's greater than
number of b’s.

Dec. 2006, May 2009, Dec. 2009

(i)
(v)

Ans.:

(i) String containing alternate sequence of 0’s and
1's, %= {0, 1}

Since, any binary number will satisfy the condition of
alternate sequence of 0's and 1's, the Ianguage L=0+1D*

The set of productions are :
S — 0Sl1Sle
. CFGG = ((S),{0,1},{S—>bSI1Sl€e},S)
(ii) The stﬁng containing no consecutive b’s but a’s can be
consecutive,
The set of productions for the given language L are :
P =
S — aSIbXlIble
X — aSla

}

These production can easily be written from the FA for the
above language. The FA is shown in Fig. Ex. 5.2.33.

Fig.5.2
Set of variables V. = {S, X}
Setof terminals T = {a, b}

Start symbol = §°

(iii) The set of all strings over alphabet {a, b} with exactly twice
as many a’s as b's.

The CFGG = (V,T,P,S)
Where V = (S}
T = {ab}
P = (S — aSaSbS |aSbSaS | bSaSaS | €}
S = Start symbol

(iv) Language having number of a’s greater than number of b’s.
The set of productions for the grammar are given by :
P =

— SaS|aSS|SSalalaX|Xa

— aBlbA

— aX|bAAla
- = bXlaBBIb

}

The variable X generates a string having equal number of a’s
and b's. Group of excess a’s over b's are generated by
S-productions.

w > X ow

= -
o5y sonutions)

Scanned by CamScanner

W Theory of Comp. Sci. (MU-Sem. 5-Comp.)

TC'S-za"-*'

‘Where

Setof variables V = {S,X,A,B)
Setof terminals T = {a)b)
Start symbol = §

Q.8 Convert the given grammar to GNF,
S — SSlaSblab

Ans, :
Step1l: Other than the first symbol on the RHS of every
production, every symbol must be a variable.
We can make the substitution X for b.
The resulting set of productions after the above
substitution is :
§ — SSlasSXlaX
X b
Removing left recursion from s-production, we get:
S — aSXS,laXS$ laSXlaX
S, —S§,IS
X —b
S;-productions are not in GNF. They can be brought
to GNF by substituting S.
§ — aSXS§laXS,laSXlaX _
S; — aSXS§,§,1aXS,§,1aSXS$, 1aXS, laSXS, |aXS,laSXlaX
X = b

Step 2 :

Steﬁs:

' U .
Q.10 Prove thatL={abc 1121} Is nota CFL

s 2o

Ans.:

1. Letus assume that L is CFL.

2. Let us pick up a word W = a"p"c" where the constant p ;,
given as per the pumping lemma.

3. wis rewrittén‘as uvxyz.
WherelvxylSnandv-yatei.c..bothvandyarenotnm

4. From pumping lemma, if uvxyz € L then uv'xy' zis in L (G |
foreachi=0,1,2,... \
There are two cases :

Casel: vy contains all three symbols a, b and c.

If vy contains all three symbols a, b and ¢ then either
v or y contains two symbols. The c:;acg ordering of a,
b and ¢ will be broken in uvxyz and hence
uvzxyzz g L(G)
CaseIl: If vy does not contain three symbols a, b and ¢ then
uvzxyzz will have unequal number of a’s, b’s
and ¢’s and hence uv’xy’z € L (G).)

Hence, it is proved by contradiction.

Q.9 ProvethatL={0'1"2'31i>=1and]>=1}is not

context free. Dec. 2007

Ans.:
Let us assume that L is CFL

2. Letus pick up a word @ = 0" 1" 2" 3", where the constant n is
given as per the pumping lemma.

3. ois rewrtten as uvxyz where lvxyl<nand v.y# eie. both v
and y are not null.

4. From pumping lemma, if uvxyz € L then uv'xy'z. is in L(G)
for eachi=0,1,2,..

There are two case :,

Casel: vy contains three symbols. These three symbols
could be 0,1,2 or 1,2,3.
The exact ordering of 0,1,2,3 will be broken in
uvzxyzz a'nd hence uvzxyzz ¢L(G)

CaseIl: If vy does not contain three symbols then uv’xy’z

will have either unequal number of 0’s a;nd 2‘Z's or
unequal number of 1’s and 3’s. Hence, uv'xy’z ¢ L
(G).

Thus, proved by contradiction.

Q.11 Convert the following grammar to CNF S — AACD
A—aAble C—aCla A—aDalbDble

Ané. -
- First of all, the grammar must be simplified.
Stepl: Removing null productions.
Nullableset = (A}

Null productions are removed with the resulting set of
production as :

S — AACDIACDICD
A — aAblab
C > aCla

A — aDalbDb

Step 2: Removing non-generating symbol

Symbol S and D are nop-

Since, the startin
invalid grammar.

generating,

& symbol itself is non-generating, it is &

AsA-ab,coa

W7 Jeasy-solutions

Scanned by CamScanner

ﬁ Theory of Comp. Sci. (MU-Sem. 5-Comp.
Q.12 Given a CFG G, find G’ In CNF generating L (G) - &
S ASBle

A—AaSla
B—SbSIAlbb

May 2006, May 2009, May 2010, Dec. 2011

Ans.:
Step1: - Simplification of grammar
Symbol § is nullable. '
Aner‘mmovihg g-productions, the set of productions is given by
S — ASBIAB
A — AaS|Aala
B — SbSISbIbSIbIAIbD

Unit. production B — A is namoved the resulting set of
productions is given by

S — ASBIAB
A — AaS|Aala
B — SbSISbIbSIblAaSIAalalbb

Every symbol in @, in productions of the form A <=
where loll 2 2 should be a variable.

Step2

This can be done by adding two productions ‘:
C, = a
and G - b
| The set of productions after the above changes is
S — ASBIAB -
A — ACSIAC,la
B — SCSISCICSIbIACSIAC,|2I1CC, .

. TCS-29

Q.13 Let G = (V, T, P, S) be the CFG having following
set of productions. Derive the string “aabbaa”

using leftmost derivation and rightmost
- derlvation.
S —»aAS | a, A— SbA | SS | ba

Ans. :
() Leftmost derivation :
' Leftmost derivation of aabbaa is bemg shown with the help of

"a/j\s N
SN

AN
N /|\
AR &N

A — ba
Fig. 5.4(a)

/I\

/I\ l
WA

S—>a S—»a
S — aAS — aSbAS — aabAS — aabbas — aabbaa
(ii) Rightmost derivation :

Rightmost derivation of aabbaa is being shown with the help

G —a of the parse tree.
- b '
_ cb - 1. S 2. 8§
tep Finding an equivalent C \S \S
; A A
S— ASB S— AC, S —>aAsS e|1
Cl—’SB: S—>a
S— AB S — AB _
A—>ACS A— AC, 5. 8§ ;
A \ /\ /
& / | | "
A—- AC, A—> AC, a S a A
oo AT AT A
B SC,S B —SCs b/A\a b n 9
c,—CS | /\
—B— CS1b A — SbA b a a b a
55GC,ICSIb | S=+5GIGy K xBa e
B AC,S B—A
— = | Fig. 5.4(b)
B— AC,lalCC, - | B—ACI31GG,
P S — aAS — aAa — aSbAa — aSbbaa — aabbaa
C,—>a C,—a - !
G —=b C,—b

Lo
(s RTINS

Scanned by CamScanner

*Theozof Comp. Scl. SMU-Sem. 5-ComE.) \ e —— T — -TCSME

Q.14 Let G be the grammar S > aBIbAA — alaS |
bAA B — b | bS | aBBFind

() Left most derivation
(1) Right most derlvation
() Parse Tree

(iv) s the grammar unambiguous ?
For given strings (A) aaabbabbba (B) bbaaabbaba

(C)0o0110101 -

Ans.:
(A) For string “asabbabbba”

It will be worthwhile to draw the parse tree and from the
parse tree, one can easily write left most and right most derivation.
(i) Left most derivation :

S —aB -» aaBB — aaaBBB — aaabBB .

—> aaabbB — aaabbaBB — aaabbabB — aaabbabb$
— aaabbabbbA — aaabbabbba

Right most derivation :
S—aB—aaBB—aaBaBB-»aaBaBbS—aaBaBbbA

, —>aaBaBbba
-—aaBabbba—aaaBBabbba—aaaBbabbba—aaabbabbba

(iii) Parse tree :

()

Fig. 5.5

(iv) The grammar is ambiguous as we can draw two parse trees

for aababb : s

a/\B- .
‘ /I

N\

b

T—0

a B

O e—

(a)

(b)
Fig. 55

(B) 'For string "bbaaabbaba”
(i) Leftmost derivation
' S — bA — bbAA — bbaA — bbaaS .
— bbaaaB — bbaaabs — bbaaabbA
) — bbaaabbas — bbaaabbabA — bbaaabbaba
(ii) Rightmost derivation
S — bA — bbAA —> bbAaS — bbAaaB

— bbAaab$ — bbAasbbA —> bbAaabbas
— bbAaabbabA — bbAaabbaba — bbaaabbaba

(iii) Parse tree for bbaaabbaba |
S

7\,
SN,
SN,

Fig. 5.5(c)
(C) For the string 00110101
(i) Leftmost derivation
§$— 0BB- 00BB — 001B — 00118

= 00110 B — 0011018 — 0011010B
— 00110101

@3! easy solutionsp

v |

Scanned by CamScanner

1

ﬁ'-rhgmy of Comp. Scl. (MU-Sem. 5- Comp)

(i) Rightmost derivation

S - 0B — 00BB — 00B1S — 00B10B
— 00B101S — 00B1010B — 00B10101
— 001110101

(iii) Parse tree
)

/\.
/\\
//\
o/\
/\

/\
5

1
" Fig. 5.5(d)

Q.15 Obtaln a grammar to generate the language
. L={0"1"In>0)).
Ans.:
Pmductioqs for the required language are as follows.
P = {S—>0Sllig)
CFG for the above language is ({S}, {0, 1}, P, S)

Q.16 Reduce the following grammar to GNF.S — AB,
A—-BSBIBBIbB—aAbla

Ans. ;
Sfep 1: Making every symbol other T.ha‘m the first symbol (in
derived string ctin A - @) as a variable :
. Variables C, is substituted for b with resulting set of
productions give as :
S 5 AB
A — BSBIBBIb
B — aAGC,la,C,—b
The variables S, A, B and C, are renamed as A, A,,
A, and A, mqu:ﬁvcly. The resulting se; of

Step2:

productions is given below.
Al > A,
Ay o AAA I AA,LD
A, - aAA,la
A > b

TCS-31
Step3: Convert to CFG
Given production
. - In GNF

A‘ -b —_— A‘_ —+b
Ay—aAAla’ — Az aAAlla
Ar— Ag Ay Ag |

Substituting Ay » Ay —» aA; Ay AjAg| aAA,
A2 - AaAa

Substituting Ag > A, > aAAAz | aA,
Ay b Ayb
Ay = AAq

Substituting A, > Ay > aA AA ARG | aAAZA;

| 2A1A4A1AzA3 | 2AsA5 | DA
*. 'The final set of productions is :

A —aA A A AA A AA 1 aA A A A, 2AA; 1 DA,
A,—aA A A A laA A 1aA A A laA,lD
A;—aAA,la

A,—>b.

Q. 17 Reduce the following grammars to GNF

B-aAblaS—5>AAl 1A—5SSI1
Ans.: ' .
Stepl: Renaming of variables by substituting A, for S and A,
for A.
A= AA L
A=A AL
Step2: Every production of the form A; — Ay a with i > j
must be modified to make i< j.

A, — production, A; — A, A, should be modified. We
must substitute A, A, | 1 for the first A,.

A A A
A, A A = [Az:‘;‘;lz 1]

The resulting set of productions is :
Ap— A A I
A, DA A A 1A
Removing left recursion :

The A, - production contains left recursion. Left
recursion can be removed through

A, 91 A,B,|1B,

Step 3:

o

@ R

Scanned by CamScanner

.
W Theory of Comp. Sci. (MU-Sem. 5-Comp. ~
B, 2A; A B 1A A
The resulting set of productions is :
Ao AA, I '
A, 1A B,I1B,I1A,I1
B, =A; A B, 1A A,
Stepd: A, —productions are in GNF.
. A, and B, productions can be converted to GNF with
the help of A, - productions.
A, S1A B, 11B,114,l1
A; 1A B, A, 1 1B,A,1 1A A, 114,11
B, =1 A B,A B, 11B,AB,| 1A A,B,
ITAB,1 1A B,A I1B,A 1A A4,

Q.18 Let G be the grammar S — aB | bAA — a | aS |
bAAB — b | bS | aBB Find

() Left most derivation

(ii) Right most derivation

(lii) Parse Tree

(iv) Isthe grammar unambiguous ?

For given strings (A) aaabbabbba (B) bbaaabbaba
(C)oo110101

Ans. : .
" (A) For string “aaabbabbba™
It will be worthwhile to draw the parse tree and from the

parse tree, one can easily write left most and right most derivation.
(1) Left most derivation :
S —aB — aaBB — aaaBBB — aaabBB
— 2aabbB — aaabbaBB — aaabbabB — aaabbabb§
—s asabbabbbA —> assbbabbba
(iij' liight most derivation : :
S—aB—aaBB—aaBaBB—aaBaBbS—aaBaBbbA

—aaBaBbba
—>aaBabbba—aaaBBabbba—aaaBbabbba—aaabbabbba

(iii) Parse tree :

N
A

e

A
{

Fig. 5.6

TCS.3p
(iv) The grammér is arﬁbiguous as we can draw two Parse tregy

for aababb :
S

- ‘ a/\B
/N

a/al\ "/ ' 3
d B b/\ l
[T

b i

(b)

>

Fig. 5.6

" (B) For string "bbaaabbaba"
(i) Leftmost derivation
S — bA — bbAA — bbaA — bbaaS
_—> bbaaaB —> bbaaabs — bbaaabbA
— bbaaabbas — bbaaabbabA — bbaaabbaba
(ii) " Rightmost derivation
S — bA — bbAA =5 bbAaS — bbAaaB
— bbAaabS — bbAaabbA — bbAaabbaS

— bbAaabbabA — bbAaabbaba — bbaaabbaba
Parse tree for bbaaabbaba
S

N,
AW
SN,

(iii)

_ Fig. 5.6(c)
(C) Forthe string 00110101

(i) Leftmost derivation

- casy-solutions]

S — 0BB — 00BB — 001B — 0011S

——

|
]

| Scanned by CamScanner

* Theory of Comp. Sci. (MU-Sem. 5-Comp.)
ﬁ

— 00110 B — 0011015 — 0011010B

— 00110101
(i) . Rightmost derivation

S —> 0B —'00BB =5 00B1S —» 00B10B
—>00B101S — 00B1010B — 00B10101

) — 001110101
(iii) Parse tree
S

P
/\\

7N,
AN,

Fig. 5. 6(d)

PN
/\
A

1

- Q.19 Consider the followlng grammar

S 5 iCtS | iCtSeS | a C — b For the String
‘Ibtibtaea’ find the following (i) Leftmost
derivation (ii) Rightmost derivation (iii)Parse Tree

(iv) Check if the abaove grammar is Ambiguous

TCS-33

Q.20 Convert the following Grammar to CNF form :

SH>ABAA—aAlbAleB—>bBlaAle

Ans. !

1.

The non-terminals {S, A, B} are nullable. Null productions

are removed. The resulting grammar is !
S— ABAIBAIABIAAIAIB
A—aAlbAlalb

"B bBlaAlbla

Removing unit productions, we get

S — ABAIBAIABIAAlaAIbAlalbibBlaA
A—aAlbAlalb

B—bBlaAlbla

Every symbol in @, in production of the form A — o where |

o | 2 2 should be a variable.
This can be done by adding two productions.
C,—a

C,—b

The set of productions after the above changes is :
S— ABAIBAIABIAAIC,AICAlalbIGBICA
A—>CAICAlalb

Ans. : .
(M Leftmost derivation : 7(iil)7Flightmost derivation :
S—iCtS [usingS —iCtS] | S —iCtS [using S — iCtS]
—ibtS [using C — b] — iCtiCtSeS
— ibtiCtSeS [using S — iCtSeS]

_[using S — iCtSeS]
— ibtibtSeS [using C — b]
— ibtibtaeS [using S — 2]

- ibtibtaca [using S — 2]

-3 iCtiCtSea [using S — a]
— iCteCtaea [using S — a]
- iCtebtaéa [using C—b]
" ibtebtaca [using C — b]

(i) Parse Tree:

B—CBICAlbla

C,—aC—-b

4. Finding an equivalent CNF.

S—AC,C,—»BA

S— BAIABIAAICA
1CAlalbICBICA

S— BAIABIAAICAICALI
albICBIC,A

A—=CAICAlalb.

A—-CAICAlalb

B->CBICAlbla

B—>CBICAIbla

C,—a

C,—a

C,—b

Bt

Q.21 Obtaln leftmost derivation, rightmost derivation
and derlvation tree for the string “cccbaccba”.

The grammarisS— SSalSSblc

P
@s easy-solutions

Scanned by CamScanner

Derlvation tree : A—V,SAla S—oV,V,V,28A 3 J
et : S A—a |
S/\\s\a BoSVSIV,V; B-8VyVsoV,S
/ \ i/ '\ - BV, V,
§sa ssp V,—b V,—b
C/ / | I V2 —3a v2 —a
S
| TR Bre Converting to GNF :
c C Step1: Substituting symbols, we get,
Fig. 5.8 S— ASBlalbX,
A—>aSAla
Left most derivation Right most derivation BoSX,SIbX,
S —S8a S = SSa Xl'—>b '
" —>SSasa — SSSba X, >a
- =»cSaSa — SScha Step2: Re-writing production in GNF :
cti CNF f
— cSSbaSa S Socha Productions orms
(1) X,—b X;-3h
— ccSbaSa. — SSaccba @ X,—>a X,—a
=#lcchaba, - — SSSbaccba () A—aSAla A—aSAla
— cccbaSSba — SScbaccba 4) S—ASBlalbX| 'S — aSASB | aSB [substituting A]
—» ccebacSba —» Sccbaccba S—albX,
&) B—-SX,SIbX S — aSASBX,S | aSBX,S | l
— cccbaccba — cccbaccba 2 X X5 T Xz
b K, XS
Q.22 Convert following grammar to CNF and GNF. [substituting for S]
S —ASBlalbb : ; S —bX

A—aSAla
B — SbSIbb

Ans.:

S— ASBlalbb .

A—aSAla

B — SbSIbb
Converting to CNF :

Re-writing the grammar, we get,

S -5 ASBlalV,V,

A5 V,SAla

B—SV,SIV)V,

V,—b

V,—a

Now, re-writing each production in its equivalent CNF form,
we get,

Productions

S— ASB

S—a

CNF forms
S— AV3v v3 — 5B

S—a

Q.23 Consider the following grammar G = (V, T P, S),
V =(8, X), T={0, 1} and productions P are
S - 010X11 01S1
X—>0XX1118

S is start symbol. Show that above grammar is
ambiguous.

Ans.:

A grammar is said to be ambiguous grammar if the language
generated by the grammar contains some strings that has 2 parsé
trees.

Ex. : Let us consider the given grammar

S — 010X110181
X — 0XXI118

where, S is the start symbol.

A string 010011 is generated by the given grammar. '

. The g@mar generates the string 010011 jn 2 different Ways: |
© 2 deviations are shown in Fig. 1(a)-Q. 61 and Fig, 1(b)-Q- 61

As the same string has 2 dj grammal
5 ifferent parse trees. The gi
1s ambiguous grammar, e o

- Jeasy-solutions

et SR SPPRCESPIS

X

Scanned by CamScanner :

; W Theory of Comp. Sci. (MU-Sem. 5-Comp.) .
N S |
0/ &\\.

AN, 1

So

/)]

o

0 .X 1 ; 1
{ TN
0 0 X 1
v
® - ®) -

Fig. 5.9

Q.24 Consider the following grammar G = (V, T, P, S),
- V={S,X}, T={a, b}and productions P are
S—aSblaX
X—XalSala

Convert this grammar in Grelbach Normal Form

(GNF). § May 2016 |
Ans.:
Given set of productions
S\-—) aSb 1 aX
X — XalSala
' Substituting C, for a, C, forb, A, for S and A, for X.
A - aAClaA,
A, = A,C1A,C,la

C, — a
G —b

A Removing left recursion form A, production, we get
C, = a C,—b

A = aA ClaA,
A, 9 ACAjlaAjlA Cla
Ay = CAIA)
Re-writing productions in GNF from
' A - aACGlaA,
A, - aACC AlaAC AlaAlaA GG
laA,Cla
A, - aA1aA C,C A 1aAC A laA,
laA,C,C,laA,Cla
C, > a

G — b

Q.25 Construct a grammar In GNF which Is equlvalent
to the grammar S — AA |8, A — SS Ib.

May 2008, Dec. 2011, Dec. 2016

Ans, ;
Step1: Grammaris already in a simple form without :
L. e-productions. 2. Unit productions.

3. Useless symbol.

TCS-35

We can proceed for renaming of variables, Variables S and A
are renamed as A, and A, respectively, The set of productions after
renaming becomes ¢

A= AA,
A—>a Productions after renaming
A= AA
A,—>b
Step2: Every produbtion of the form A; — Aja withi >j
must be modified to make i < j.
A, - production A, - A; A, should be modified.
U

We must substitute A,A, | a for the first A,. We should not

- touch the second A, of A A,.

A
(A, > AA]S [:::2::1 1]

The resulting set of productions is :
A = AAla
A, = AAA 1aAlb
Step3: Removing left recursion :

The A, — productions A, — A,AA, | aA, | b contains left
recursion. Left recursion from A,-production can be removed
through introduction of B,-production.

A, — aAB,IbB,
B, = AAB,1AA,
The resulting set of productions is :
A, > AAla
A, — aAB,laB,laA|lb
B, = AAB,1AA,
Step4: A, - productions are in GNF.

A and B; productions can be converted to GNF with the help
of As—productions.

A, — aAB,|bB,laA, |b...in GNF
Ay = AA
U Substitute aA B, | bB, | aA, | b for first A,
A, — aAB;A; IbB,A, 1aA A, I bA,
A, = a..inGNF
Now, for B, - Production
B, = AAB,
U Substitute aA B, | bB, | aA, | b for the first A,
B, — aAB,AB,|bB,AB, |aAAB, |bAB,
B, = AA,
U Substitute a A, B, 16 B,1a A, Ib forthe first A,

g .
i vasy-sorutions

Scanned by CamScanner

$ Theory of Comp. Sci, (MU-Sem. 5-Comp.)

B, = aABA, IbB,A, | aAA IbA,
The final set of productions is :

Az‘ﬂaAlBlleztnAllb ’

A} — aAB,A, 1bBA, |aA A, | bA,la
A set of productions P E

B, — aAB,AB,|bB,AB,|aA A,B, bAB, |

aAByA; IbB,A; laA A, I bA,

where,Set of variables V = (A, A,, B,)

(a,b)
Start symbol = A,

Setof terminals T =

Set of productions P = Given above.

Q.26 Consider tﬁ;following grammar :
S - ICtSlICtSeSla
C-ob

For the string “ibtibtaea’ find the following :
(i) Leftmost derivation

(ii) Rightmost derivation

(iii) Parse tree

(iv) Check if above grammar is ambiguous.
Ans. :

() Leftmost derivation

C—b SH»>iCts
S= iCiSeS—— ibtSeS —/m/—

C-b - S§-oa
ibtiCtSeS——=ibtibtSeS——ibtibtaeS

—ibtibtaea

(i) Rightmost derivation

S—a S—iCtS
S—DiCtSeS——iCtSea =’
S—a

ictiCctSea——iCtiCtaea

b C-b
S Eibmna e | ETB &6

Q.1 Distinguish between NPDA and DPDA.

Ans.:
Distingulsh between NPDA and DPDA

A NPDA provides non-determinism to PDA.

In 2 DPDA there is only one move in every situation. Where
as, in case of NPDA there could be multiple moves under a

situation. DPDA is less powerful than NPDA.

TCS-33 !

2 |

(iif) Parse tree S ‘
e

t

L

S
c t § a

b a d
(iv) Itis an ambiguous grammar due to laughing if problem,

n

————

Q.27 Reduce following grammar to GNF.
S - AB
A - BSBIBBIb
B — alaAb
(i) S — oisliol
S — 10SIl10
S = 00le
Ans.:
Removing € -production, we get,
S — 01SI01110S110100
It can be converted into GNF in an easy way by introducing
two production
X—>1ad Y—>0
. Productions in GNF are
S — 0XSIOXI1YSIYI0Y

X-1
Y—>0

Chapter 6 : Pushdown Automata (PDA)

Every context free language can not be recognized by *
DPDA but it can be recognized by NPDA. The class of language®
DPDA can accept lies in between a regular language and CFL. A

palindrome can be accepted by NPDA but it can not be accepted b
“aDPDA '

W easy-solutions

Scanned by CamScanner

L el
®F Theory of Comp. Sci. (MU-Sem. 5-Comp.)
0.2 Design a PDA to accept (bdb)"C",
Ans.:

To solve this pmblem we can take a stack symbol x. For
every ‘bdb’, one x will be pushed on top of the stack. After reading
* (bdb)", the stack should contain n number of x's, These x's will be

matched with ¢’s. The transitions for the PDA accepting through an
empty stack are given in Fig. 6.1.

byxix
b.2/zg

d,x/x
d,zy/z,

Fig. 6.1

A cycle through q, — q; — g, — q, traces a group of bdb.

The PDA M = {QZT,3,qyz, 0}
Where,
Q = (90 9-9. 93}, Z={b,d,c}, = {x, z,}

q, is the initial state, z, is initial stack symbol.
The transition function & is given by,

8ayb.2) = (9%
8y b,x) = (q;,%)
89, d.z) = (G2
8q, d,x) = (q,X)
8(q, b,zo) = (g izo)
8(du b, x) = (qp xx)
8(gpc,X) = (qz€)
8(gy¢,x) = (gy6)
846,29 = (s €) Accept Ihngﬁ empty stack.
Q.3 Design a PDA f:t;r detection of -even palindrome
over {a, b}.
.
Ans. : :
An even palindrome will be of the form ww"
I O e s
wlw w T woow Iw
Centre Centre Centre

If the length of w is n then a palindromc of even length s ;
First n characters are équal to the last n characters in the
Ieverse order, .

The character immediately before the middle position wxll be
identical to the character immediately after the middle position.

Algorithm :

There is no way of finding the middle position by a PDA;
therefore the middle position is fixed non-deterministically.

1. First n characters are pushed onto the stack. n is non-
deterministic.

2. The n characters on the stack are matched with the last n
characters of the input string.

3. nis decided non-deterministically. Bvery character out of first
n characters, whose previous character is same as itself
should be considered for two cases :

(a) Itis first charactcr of the second half.

- Pop the current stack symbol using the transitions :
5(qya,2) =(q;,€)

8(gy b.b) =(q,.€) '
Must be identical

(b) It belongs to first half, -
- Push the current input -
3q,a,8) =(q,a)
3(q,b,8) =(q,b) .
4. nis decided non-deterministically. Every character out of first

n characiers, whose previous character is not same as itself
should be pushed onto the stack.

- Push the current symbol using the transitions :
8(q0, ab) = (g, ab)

S(qo, b,a) = (qy ba)

The transition table for the PDA is given below :
8y azy) = {(g,az)}

B(qo. bzy) = {(q, bzy)}
8(qpa,2) = {(qy a3) (g, €)}
3(qya.b) = ((q, ab)}
8(qy by a) = {(q, ba)}

8@y b B) = ((qy bb), (q,. 8}
8aqpa.8) = {(q,©)}
8(q,b.0) = ((q, &)}

8(q,. e, z.o)‘ = {(q)» ©)} [Accept through an empty stack]
Where,

the setof states Q = {q,,q,)
thc setof input symbols % = (a,b} -
the set of stack symbols T = (a, b, o}

Starting state = 9

Initial stack symbol = gz,

——
@s easy-solutions

Scanned by CamScanner

* Theory of Comp. Scl. SMU-Sem. 5-Comp.z —————— S — |

Q.4 Construct a PDA equivalent to the following CFG.
S - 0BB

—-0S11S10
Test it 010" Is in the language

May 2006. May 2011, May 2012

Ans.:
The equivalent PDA, M is given by
M = (QMO.1L{0, 1,5, B),5,0.5.9)
where 8 is given by
8q.€,5) = {(q,08B)}
&q.&.B) = {(q,08).(q, 1S), (g, 0)}
82.0.0) = (@ ©)} '
8. 1,1) = {(q. &)}

For each production

in the given grammar

For each terminal
Acceptance of 01 o' byM:

8(q, 010000, S) 8(g, &, S) = (g, 0BB)

—» (g, 010000, 0BB)
| 8(3.0.0)=(q.¢)

7 — (g, 10000, BB)
(g, €, B)=(q, 15)

— (g, 10000, 1SB)
80, 1,1)=(q.¢) .

— (g, 0000, SB)
a(qr g, S) = (ql OBB)

> (q, 0000, 0BBE)

8(q,0,0)=(q,€)

— (g, 000, BBB)
5(q, &, B)=(4,0)

> (g, 000, 0BB)
8(g, 0,0)=(q, &)

> (q,00,BB) .
5(a.€,B) = 3,0 |

+ (g, 00, 0B)
8(q,0,0)=(.€)

> (q,0,8)

8(g.€,B)=(q,0)

~ TCS-38

» (90,0

s(ql Ov 0’ = tql e)
> (8¢

Thus the string 010" is accepted by M using an empty stack.
s 010° e L '

Q.5 Construct a PDA accepting { anbman|m,n2 1} by
null store.

Dec. 2006. Dec. 2010. May 2012. May 2013
Ans. :
Algorithm :

1. The sequence of a’s should be pushed onto the stack in state -

9

8(qy @ zo) (q;, azo)
8(q,a,a) = (q,a3) .
2. On first b, the machine moves to q, and remains there for b’s.
b’s will have no effect on the stack.
3. Forevery ‘a’, an ‘a’ is erased from the smc_k.
The PDA accepting through empty stack is given by
({ap 9, 9. {2, b}, {2, 2, 8. 9, 76, 0)

th{:rc the transition function & is :
L. 8(qy 2 z9) = (qy azy)
2. 8(qpa a)=(qy aa)

[First *a’ is pushed]

[Subsequent a’s are pushed]

3. d(q, b, a) = q,a (Input symbols b’s are skipped]

4. 8qyb,8)=(q,a)

5. 8@qpa.a)=(q,¢) [An ais erased on first a of last a’s)

6. 3(q,a2)=(@,8) [An a is erased on subsequent a’sr

of last a’s]

7. 8qyez9= (CS) [Accepting through empty stack]

Q.6 Deslgn a PDA to accept (ab)"(cd)".
Ans, :
To solve this problem, we can take a stack symbol x. For

every ‘ab’, one x will be pushed on top of the stack. After reading

(ab)", the stack should contain n number of x’s. These x's will be

matched with (cd)", For every ‘cd" one x will be popped.

The transitions for the PDA accepting through an empty stack |

are given in Fig. 6.2.

- zasy-sotutions)

X

Scanned by CamScanner

a
P |

-‘ . i

*:Theo' of Comp. Scl. (MU-Sem. 5-Comp.,

Fig. 6.2

PDA accepts through the final state q,.

The PDAM = {Q,Z,T 8., 7, F}
Where, :
Q = {4, 9.9 3 4l
Y = {ab,c,d}
' = {x,z}
The transition function & is given by,
Sarazg) = (q1 %)
g ax) = (%)
¥q5.b.2) = (X7
8(q.b.x) = (qp xx)
&gy c,x) = (X
g, d,x) = (q;€)
&g c.x) = (q %)
Mg ezg) = (Qu 70
G, is initial state,
z, is initial stack symbol.

Set of final states F = {q,)

Q.7 Design a PDA for detection of o"dhpallndrome

over {a, b}.
An odd palindrome will be of the form :
L waw*
R e e R e Y o B 7
wowoow weoowoow
'27 wbw® ;

o

ab b ba,aba baba,aab aa
s e f sl L_H_lla_l &
w W w w w W

/' TCS-39

If the length of w is n then a palindrome of odd length is :

First n characters are equal to the last n characters in reverse
order with middle character as ‘a’ or ‘b’,

Algorithm :
Thete is no way of finding the middle position of a string bya
PDA, therefore the middle position is fixed non-deterministically.

1. First n characters are pushed onto the stack, where n is non-
deterministic.

2. ‘The n characters on the stack are matched with the last n
characters of the input string.

3. nis decided non-deterministically. Every character out of first
n characters should be considered for two cases :

(2) It is not the middle character — push the current
character using the transition :

8(gy 2.8) =(q,a)
d(gy, b,e) =(q,b)

(b) It is a middle character — go for matching of second half
with the first half. -

5(q,2,8) =(q,.%)
- 8(gyb,e) =(;.®)

The status of the stack and the state of the machine is shown
in the Fig. 6.3. Input applied is ababa.

Left child — current input is taken as the middle character
Right child — current input is not a middle character.

l
!

%
o

—
After third
Input a

—_
=

—_—
After fourth
Inputb

—_—
Alter fifth
Input a

Fig. 6.3 : Processing of string by the PDA. String is taken as
“‘ababa”

o —
ey sorutions)

Scanned by CamScanner

WThaozolcomB. Sol, sMU-Bom. B-Come.z __———-———’-‘_‘ ; s '

Tho transition table for the PDA Is glven bolow,
8gp ave) = () (@,)
¢ - Indicatos that Irrespective of the current
stnck symbol, porform the transition,
= ((q, &) (0, D))
= {(q,)
= {(@ e))
= {(q,, &) [Accept through an emply stack]

8(q, by ©)
5(q, 0 0)
58(q,, b, b)
8(qy. & 2
Where, The set of states Q = (9 q,)
The set input alphabet X = (a, b)
The set of stack symbols I’ * = (o, b, 7,)
Starting state = q ‘

* Tnitial stack symbol = z,

TCS40 |

Step5: Add productions for 5(qp & 20 = {91 ©}

%
, [dy qll —E
Step6: Add production for 8(q; 1. X) = (@ &}
X
lq,” g1 =1
Step7: Add productions for 8(dy, 0, Z) = {(qp 2}

7 Z
[q, OqO] =0 [qo oqo]

Z Z
[q, °q) =010 4]

Q.8 Give the CFG generating the language accepted
by the following PDA : M = ({ qq, 94}, {0, 1}, {Zo, X},
8§ qy 2z ¢) when § Is given below :
5(‘10' 1, 10) = {(q xzo)} 8(qe, 1, X) = {(do: XX)}
8ae 0, x) = {(ay, X)} &ao e Z) = {(do €}
5(ay, 1, x) = {(ay, &)} 8(ay, 0, Zo) = {(do, Zo)}

Dec. 2007

Ans.:

Step1: Add productions for the start symbol

%
S = [qy "qq

. 7:(J
S = [qy "q

Step2: Add productions for 8(q,, 1, 7o) = ((q. Xz))

Z, X 2
(90 oq”] = 1[gy qllg 0 Q)
z X z
[ol = 10qy" g, [a; o)

z % zZ
(9 " gl = 10dy o) [dp " ay)

Z ¥ A
(9 "gl—1 [QOK NICTRCD
Step3: Add productions for 8(qy, 1, X) = {(d,, XX))
6" G = 11" Gl [y 0]
[g0 ™ g5l 11qe ™ q,) [, 4]
[y “a1-1 [%x ol 190 1]
X X X
(99" a1 = 1o g la, q,]
Stepd: Add productions for 8(qq, 0, X) = ((q;, X))
[90 ™ 6] = 0 [, "]

[qﬂx q,1 = 0[q, A q

Q.9 Design a PDA for accepting a language
L={weW IWe {a, b} }

May 2008, May 2010, May 2011
Ans.:

W stands for reverse of W. A string of the form WeW' is an
odd length palindrome with the middle character as c.

Algorithm :

If the length of the string is 2n + 1, then the first n symbols
should be matched with the last n symbols in the reverse order. A
stack can be used to reverse the first n input symbols. _

Status of the stack and state of the machine is shown in
Fig. 6.4. Input applied is abbcbba. ‘

a b b c b b a +— Input
wt |l (2B BT]] B
SR e e B |-
. a||a a. a a a:
Zo | 20| | Ze] [i%0] [P0 [iZa [20| |20 <+ Siack
d G 9 % a4 9 9 Q4 «+— State
Fig. 6.4 : A PDA on input abbcbba
The PDA accepting through final state is given by
M = ((q9p9,9,}{ab.ch (b, 2}, 8, q, 2 {,})
Where the transition function § is given below :
1. 8(a,,€)=(qya) | First n symbols are pushed onto .
2. 8(qyb,€)=(q, b) the stack
3. 8guc.e)=(q,¢) (State changes on c]
4. 89,82 =(q,€) "] Lastn symbols are matched with
5. S(ql. b,b) =(q,. €) first n symbols in reverse order
6. 8(q;s €. 29) = (q, 20 [Accepted through final state] °

A transition of the form &(q, a, €) = (qq. a) implies that
always push a, irrespective of stack symbol.

Q.10 Convert the following expression grammar to
PDAI‘-)aIbllallblloln E-IIE+«EIE«EI

(E)

Ans, :
The equivalent PDA, M is given by,

(98 gasy-solutions

Scanned by CamScanner

'*Theory of Comp. Sci. (MU-Semn, 5 Comp.)

TCS-41

w

M-—;(IQ]. {0,1,8,b,*+,(,)}{0,1,a,b, *, +,(,} |, E}, , q, E, ¢)
where, & is given by, '

8q.&E) = {@ D, (q.E*E), (qE+E),(q, (B)}

8@ &D = {(g) (g b) (q.Ib), (g, Ia), (g, 10), (g, 1)}
5q,0.0) = {@. &)} =

8q. 1.1 = {@.¢e)}

8q.a2) = {@¢€)

8q,b.b) = {(@q.¢)

8q+4) = (@e)

§a, %% = {(a.9)}

8ae. (O = (@8]}

8q.).)) = {8}

Rule 7
—_—

Rule 5
_—

Rule 8
-—)‘

Rule 7
—

Rule 9
ey

(qo._ M, (z)
Gy D [(29)
Gy) (zo)
(Qy & Zp)

(ap € 2p)

Q.11 Design a PDA for CFL that checks the well
. formedness of parenthesis i.e. the language L of
all “balanced” string of two types of parenthesis

say “()” and “[]”. Trace the sequence of moves

made corresponding to input string (([])[1)-

May 2009, May 2014, Dec. 2017

Ans.:

The transition function of the PDA is given below :
1. 8qy Gz =(qy () Push the opening Gacket ©¢

2 8gy (O =(gy (O

3. ¥, (D) = (D)
4. 8(qy [20) =(ay [z Push the opening bracket ‘[’

5. 80, O = (G [0)

6. 8y L[)=(gy [1)

7. ¥ay):))=(q,€) :| POP an opening bracket for a

closing bracket.
8. ¥q,1,1)=(qy€)

9, ¥qpez)=(qp2) :I Accept through a final state.

Simulation of PDA for the input string (((D[])

Rule 1
(G (DD, 29— (G DD (20

Rule?, (g DD, (2

RuleS, (g DD (20

Rule 8
—_—

Gy) D (29

Q.12 Consider the PDA with the following moves :
8(dor @,) = {(dos 8Z)} B(Gos @, 8) = {(q0r B2)} 5o

b! B) - {(qls E)} S(q‘l! b’ a) = {(ql! 8)} 8(q1, 51-20)
={(q,, €)} Obtain CFG equivalent to PDA.

Ans.:
Step1: Add productions for the start symbol.
)
S—1Iq " qol
T
S—lq "q
Step2: Add productions for (qq, a, a) = {(qy, 2a)}
a a a
[%l—2[G bl 9o
a a a
4, 9l—2alg, qllg qol
a a a
9 al—alg, qlld a4
a a a
, 4 ql—alg qllq 4qil
Step3: Add productions for (qy, b, a) = {(q,, €)}
a
. [y q1—b
Step4: Add productions for 8(q,, b, a) = {(q,, €)}
a
9, q1—b
StepS: Add productions for &(q,, €, z,) — {(q;. €)}
. 2,
[, "q)—¢
Q. 13 Write short note on DPDA.
Ans, :
DPDA

In a DPDA there is only one move in every simation. A

DPDA is less powerful than NPDA.

Every context free language cannot be accepted by a DPDA.

For example, a string of the form ww" can not be processed by a
DPDA.

The class of a language a DPDA can accept lies in between a
regular language and CFL.

A DPDA is defined as :
M = (QZ.T,8,q,2,P), where

8(q, a, x) has one move forany g€ Q,X € 'andac Z.

Zeasy-sorutions

\

Scanned by CamScanner

*Theory of Comp. Sci. (MU-Sem. 5-Comp.)
Q. 14 Design a PDA for detection of palindromes over

{a, b}. Dec. 2012
Ans.:
A palindrome will be of the form :
1. owwt - even palindrome
waw®
whw" - 0dd palindrome

If the length of w is n then a palindrome is :

First n characters are equal to the last n characters in the
reverse order with the middle character as :

1) a [For odd palindrome]
2 b [For odd palindrome]
3) ¢ [For even palindrome]

The transition table for the PDA is given below :
' 32,29 = {(q;, 7). (g azg)}
8(qy b7 = {(q,, %), (g, bzy)}
gy a.3) = ((q,2a)(q,, 2), (q,, &)}
8@, ab) = ((g,ab), (q,b)}
(g, b.2) = {(q,, ba), (q,, a)}
8(gy b.b) = {(q, bb). (. b). (g, ©)}
5qp 22 = {(q;8)
8(q;. b.b) = {(q;; &)}
8@, 6.29 = {(qy. 8)}
» [Accept through an empty stack].
Details of important transitions :

The transaction, &q,.2,a) = { (4p.22), (q4,2), (1.2} }

U || =5

Input
‘a'is part
ofw

- Input 'a'Is middle
point of odd palindrome

\v'

Input 'a’ Is first

character of wH
of even palindrome

The transition rule for 5(qy, a, a), must consider the three cases :
1. Input ‘a’ is part of w of the palindrome.

2. Input ‘a’ is middle character of waw"

3. Input ‘a’ is the first character of w".

TCS42
The transaction, 5(q,,8,b) = { (dg. ab), (94, b)}
Input ‘a‘is Input 'a‘is
part of w middle point

R
of waw

Dec. 2012

Q.15 Write application of PDA.
Ans.:
Applications of PDA
PDA is a machine for CFL.
A string belonging to a CFL can be recognized by a PDA.
PDA is extensively used for parsing.

PDA is an abstract machine; it can also used for giving proofs.
of lemma on CFL.

Q.16 Deslgn a PDA to accept Ianguage
{a nz1}

Ans.:

Forevery ‘a’ in the input, 2 b’s are pushed onto the stack_
For the first ‘b’ in the input, 2 b’s are pushed onto the stack.
Forevery ‘b’ in the input, 1 ‘b’ is popped out from the stack.
Finally the stack should become empty.

Transitions

8(qp. 2,2 = (qu bbzy)
8(qya.b) = (g, bbb)
§(pnb.z) = (g, bbz)
8(qy b,b) = (q;.bbb)
8@q,.b.b) = (q€)
895, €,29) = (qp€)

[Accept using empty stack]

Q.17 Design PDA to check even palindrome over
Z={0,1}

Ans, :

An even palindrome will be of the form ww®

& I_J 219 910,00 oo
w w w T WR w WFt
Centre Centre Centre

If the length of w is n then a palindrome of even lengthiis :
First n characters are equal to the [ast n charactcrs in the -

reverse order, ~|

The character immediately before the middle position will b"'
ldentmal to the character i Immediately after the midd]e position.

7 {easv sonumions]

Scanned by CamScanner

W Theory of Comp. Sci. (MU-Sem. 5-Comp.)
Algorithm :

There is no way of finding the middle position by a PDA;
therefore the middle position is fixed non-deterministically.

1. First n characters are pushed onto the stack. n is non-
‘' deterministic.

2. The n characters on the stack are matched with the last n
characters of the input string,

3. nisdecided non-deterministically. Every character out of first

n characters, whose previous character is same as jtself
should be considered for two cases :

(@) Itis first character of the second half.
- Pop the current stack symbol using the transitions :
%39, 0,0). =(q,.€)
g, 1,1) = Qq,.€)
Must be identical

(b) It belongs to first half.
- Push the current input

8y 0,8) = (g, 0)
gy 1.8) =(q, 1)
. 4. nisdecided non-deterministically. Every character out of first

n characters, whose previous character is not same as itself
* shounld be pushed onto the stack.-

- Push the current symbol using the transitions :

&g, 0,1) = (q,01)

8ay 1,0) = (g 10)
The transition table for the PDA is given below :
8(q, 0.zy) = {(q, 0z}
8y 129 = {(qy 1z}
8, 0,0) = {(q, 00)(q,.€)}
8q,0.1) = {(g, 0D}
8a, 1.0) = {(q, 10}
8(q, 1.1) = {(q, 11).(q,. 8)}
8(q,, 0,00 = {(q,, &)}
89, 1,1) = {8l
8q.ez) = {@.€)

[Accept through an empty stack]

Where, ‘

the setof states Q = {q, q;}
the set of input symbols £ = [0, 1}

the set of stack symbols I = {0, 1, %)
Starting state = (,
Initial stack symbol = Z

TCS-43

Q.18 Design DPDA to accept language L = {x € {a, b}*
N,(x) > Ny(x)}, Ny(x) > N,(x) means number of a’s
are greater than number of b’s In string x.

.
Ans. : ’

The PDA is being designed to accept the string using final
state. The stack is being used to store excess of a’s over b’s or
excess of b’s aver a’s out of input seen so far.

Transitions

. 8(qpa,2z)=(qpaz) [Extra ‘a’ is pushed]

2. 6(qpb,z)=(qybzy) [Extra ‘b’ is pushed]

3. 8(qya,a)=(qy aa) [Excess a's are pushed]

4. 8(qpa,b)=(qp€) [Excess b’s decreased by ‘1]

5. 8(qy b, b)=(q,, bb) [Excess b;s are pushed]

6. 8(qpb,a)=(qy€) [Excess a’s decreased by 1]

1. 8(qpc.a)=(q;, €) '[Inpljt ends with excess a’s on

~ the stack]
The PDA is given by :
M = ({qe.q,} {a,b). {2, b, 7}, 8, q5. % {q; D

Q.19 COnstruct PDA accepting the language
L={a"b"In> 0}

Ans.:
Algorithm :

1. Forevery pair of leading :;’s, one X is inserted in the stack.
2. X's on the stack are matched with trailing b’s.
The PDA is given by
M = ({9,9,.9,.9;}. {2, b} (X, Z).8,q, 2, ¢)
where the transition function § is

1. 8(q.a.Z) = (q,2)
2. 38q.a.Z) = q,XZ)
3. 8@q,a.X) = (q.X)
4. 5@, a.X) = (q,,XX)
5, 8(q,, 0. X) = (q,€)

6. 8qy. b.X) = (g, €)

7. 8qu€.Z) = (q,€)

Accept through empty stack.

Q.20 Design a PDA corresponding to the grammar :

S—oaSAle
A -5 bB
B —b

Ans.:
The equivalent PDA, M is given by :

A T
sy cotutions)

Séanned by CamScannver

' vTheory' of Comp. Sci. (MU-Sem. 5-Comp.)

|

TCS44

M = ({q) {a,b), {2, b, S, A, B}, 3,q,S,¢)
~where d is given by :
3(q. €, 8)= {(q. a5A), (g, 6)}
8(q. €, A)= ((q, bB)}
8(q,€,B)={(q. b)}
8(q.a,2)={(g,€))
3(@.bb)={(q.€))

Q.21 Desl?n a PDA to accept language
" b In>=1}

-Ans. :

1. 8(qya.Zy = (@ 22Zg) .

2. &g aa) = (q;,33)

3. &g b,a) = (g9

4. §(g,b,a) = (q,€)

5. 8(qp€,Zy) = (G €)
Accept through empty stack.

Chapter 7 : Turing Machine (TM)

Q.1 Write short note on : Universal TM.

May 2009, May 2010, Dec. 2011, May 2012,
Dec. 2012, Dec. 2015

Ans.:
Universal TM
A general-purpose computer can be programmed to solve

different types of problems. A TM can also behave like a general-

purpose computer. A general purpose computer solves a problem
as given below :

1. A program is written in a high level language and its
machine-code is obtained with the help of a complier.

2 Machine code is loaded in main memory.
Iﬁput to the program can also be loaded in memory.

4. Program stored in memory is executed line by line, Execution
involves reading a line of code pointed by IP (instruction
pointer), decoding the code and executing it.

- We can follow a similar approach for a TM. Such, a TM is.

known as Universal Turing Machine. Universal Turing Machine
(UTM) can solve all sorts of solvable problems.

A Turing machine M is designed to solve a particular
problem p, can be specified as :
1. The initial state q, of the TM M.
2. The transition function 8 of M can be specified as given :

If the current state of M is q; and the symbol under the head is
a; then the machine moves (o state q, while changing a, to a;, The
move of tape head may be : '

1. To-left,
2. To-Rightor
Neutral

Such a move of TM can be represented by tuple

{(‘lanai-QJv%-mr) s Q; a6 I'; m € (To- left, To-
Right, Neutral) }

UTM should be able to simulate every turing machine,
Simulation of a Turing will involve :
1. Encoding behaviour of a particular TM as a program.
2. Execution of the above program by UTM.

+1
A move of the form (q;a,,9;,2,m,) can be represented as 10"

10'10"" 10 10%,
Where K =
: =
K
State g, is represented by 0,
State q, is represented by 00,
State q, is represented by 0™,

1, if move is to the left

2, if move is to the right

3, if move is “no-move’

First symbol can be represented by 0,

Second symbol can be represented by 00 and so on.
Two elements of a tuple representing a move are separated by 1.
Two moves are separated by 11. |

Execution by UTM :

We can 2ssume the UTM as a 3-tape turing machine.
1. Input is written on the first tape.
2. Moves of the TM in encoded form is written on the second
tape.
3. The current state of TM is written on the third tape.
The control unit of UTM by counting number of 0’s between
I’s can find out the current symbol under the head. It can find the
current state from the tape 3. Now, it can locate the appropriate
move based on current input and the current state from the tape 2.

Now, the control unit can extract the following information from'
the tape 2 :

1. Next state
3. Move of the head.

2. Next symbol to be written

Based on this information, the control unit can take the
appropriate action. N

@3@ easy-solutions

Scanned by CamScanner

*Thry Comp. Sci. (MU-Sem. 5-Comp.)

0.2 Design a TM which recognizes palindromes over
alphabet {a,b}

May 2006, May 2009, May 2014, Dec. 2017

Ans.:
A palindrome can have one of the following forms :

2. oaw
3. aba

‘Where @ is a string over {(a,b} withlw 120
Algorithm :

1. Algorithm requires n cycles, where | ® | =n.

2. In each cycle, first character is matched with the last
character and both are erased.

Fig. 7.1(a) : Transition diagram
If the leftmost character is ‘a’ the machine takes a path
through q, — q, = q; — g5 — Gy, looking for last character as “a’.
If the leftmost character is ‘b’, the machine takes a path
through
qo_"':b —q,—q =5 g, looking for last character as ‘b’.

The Turing machine M is given by :
M= QXTI.6qB.F
where, Q = {%Qp‘ho‘h"h-%-%a‘h-q?}
Z = {ab}
I' = {ab,B]

The transition function 8 is given in Fig. 7.1(a)

q, = initial state
B = blank symbol
F = {qg), halting state

Working of TM for input abbabba is shown in Fig. 7.1(a) :

qo 9 G q .
[-BbbabbaB|-BbbabbhaB|-BbbabbaB }-Bbbabba?‘

i] k] ‘I; 4
-Bbb abb;BI-Bbbab?BB [-Bbb a1ll:bB I—Bbb‘?bbB

& % %
I-BbbabbB|-BbbabbB|-BbbabbB|-BbbabbB
4 + T 1

q‘f7 % 7]
I-BBbnbblBI—Bb;bbBl—Bba?thBbabTbB

2 G4 ¢ q4
|-BbabbB|—Bhab1I?B|—BbabBB BbabB
T

B Q4 % &
-BbabB|-BbabB|-BbabB|-BBabB
M 1 1

& 9 Q 92
|-BabB|-BabB-BabB|-BaBB |-BaB
7 ¢ T T |1

% U G % b
|-BaB|-BBB|-BBB

0

Fig. 7.1(a)

Q.3 Design a TM to compute multiplication of two
unary numbers. May 2007
Ans.:
Multiplication algorithm is being explained with the help of
an example. .

3 x 5 will require three cycles.
Initial [B00O# 00000 # B
et Syt S
3 5 Product will be
stored here
Cycle 1 |BX00 # 00000 # 00000B * 1x5=5
\w—l
I1x5=5
Cycle2 |BXXO # 00000 # 0000000008 2x5=10
_V_J
2x5=10
Cyele3 [BXXX # 00000 # 00000 00000 00000 B | 3x5 = 15
H__J
3x5=15

To calculate 3 X 5, three times, 5 zero's are appended.
. Unary representation of 3 is 000.

Unary representation of 5 is 00000.

3, 5 and the result, are separated by #.

Inside each major cycles (three cycles for 3), there will be a
number of minor cycles (5 minor cycles for 5) to append 0's one at
atime. -

® -
@s easy-solutions

Scanned by CamScanner

\d Theory of Comp. Sci. (MU-Sem. 5-Comp.) e ——————

WHR

O0OR OOR

o ,% LA fai\ O/xR

Fig. 7.2 : Transition diagram for TM

Let us assume that the two numbers to be multiplied are x, and x,.
X, is represented by w,, where ®, is a string of 0’s.
X, is represented by w,, where @, isa é.tn‘ug of 0’s.
X; * X, is Tepresented by w,, where @, is a string 0’s.

separates o, and @, @, and @,.

In the TM shown in Fig. Ex. 7.3.6, there are two cycles.

The cycle q, = q, = ¢, = q; = q, appends , to o, for
every zero in ®,, with the help of cycle g, > q; > q,—q,

Working of TM for 2 x 2 is shown in Fig. 7.2(a) :

BOO0#00#B |-Bx0#00#B -Bx0#00#B |-Bx0#00#B

1 T i 4
% q, q - &

LFBx0#x0#B |-Bx0#x0#B

1 1
94 £ 4]

FBx0#x0#B |-Bx0#x0#0B

T 1
% %

FBx0#x0#0B -Bx0#x0#0B
1 1
q, q
LBxO#00#0B |-Bx0#0x#0B

t 1
% %

| -BxO#0x#0B -Bx0#0x#0B

5 1
Qs qs
-Bx0#0x#00B FBx0#0x#00B

1 t
q Q4

-BxO#0x#00B -FBx0#00#00B

1 +
q, q;

Bx0#00#00B -Bx0#00#00B |-Bx0#00#00B

1 T T
qs qs qs

-Bx0#00#00B |-Bx0#00#00B |-B00 #00#00B

1 1 t
qs G Qo

-BOx#00#00B FBOx#00#00B “

:lrl g’

Fig. 7.2Contd...

TCS4s

-BOX#x0#00B|-BOx#x0#00B
T
d 3
BOx#x0#00B-BOx#x0#00B
T
‘I] q,
FBOx#x0#00B-BOx#x0#000B
T
4)
DO x#x0#000B -BOx#x0#000B
T
&)
-BOx#x0#000B-BOx#x0#000B
! !
q q
-BOx#00#000B|-BOx#0x#000B

+ 1
G b

-BOx#0x#000B-BOx#0x#000B ‘
T 1 "
% G

-BOx#0x#000B-BOx#0x#000B

1 T
RE B

-BOx#0x#0000B}-B0x#0x#0000B

1 1
q 9

FBOx#0x#0000B|-BO0x#0x#0000B

T +
94 Ga

|BOx#0x#0000B|-BOx#00#0000B

t 1)
q 9

[-BOx#00#0000B--BOx#00#0000B}-BOx#00#0000B

1) t
qs gs qs

FBOx#00#0000B|-BOO#00#0000B-BOO#00#0000B
T 1 T
qs . 278 Qs result

Fig. 7.2(a)

Q.4 Designa TM to find the value of log,(n), where nis
any binary number.

Ans.:

by n.

ie.if2"<n<2"*", then log,(m)=n

Let us consider the case of a number

n = 36
2 < 36<2°

log,(36) = 5
36 can be written as 100100.
Any number n satisfying the condition 2° < n < 2 can be

Therefore,

written as 1XXXXX (where X stands for either 1 or 0). log;

(IXXXXX) can be calculated by erasing the most significant bit 1
and renaming other bits as ‘0°. Unary representation of 5 is 00000-

—— _
W ea5y solutions)

B

|

log,(n) of any number n lying between 2" and 2" *' is given

Scanned by Cam.Scanner'

v Theory of Comp. Sci. (MU-Sem. 5-Comp.)

TCS-47

- OnR
0/B.R 10.R

d R ey

Halting

state

Fig. 7.3(n) : Transition diagram

0) 1 B
—qp | (g.B.R) (q,.B,R) -
QI (q].vovR) (quO»R) (qszaL)

q; %@ q, q

Fig. 7.3(b) : Transition table
‘Working of TM for (36),, is shown in Fig. 7.3(c) :

¢« Halting state

(36),, = (0100100),
BDIOOIOOBI—BIOOLOOB FB00100OB
t 1 oo §
. % _ qQy q,
FB00100B|-B00100B}+BO0O0O0O0OOB
i i T
q, q, q,
}—BOOOOOBFBOOOOOBI—BOOOOOB
i il T
q; q q:
Fig. 7.3(c)

Q.5 Designa Turiné machine to compute n!.
Ans. : ‘
It is assumed that n is represented in unary system.
Factorial of n can be calculated through repeated application of :
1. . Multiplication
2. Copy
Operations.
Algorithm is being explained with the help of example.

Algorithm for |i .

Initial configuration [0#000#BB...| .
—
Cycle1: n

[o#000#000B..|
——
Product

1. Multiplication

2. Copyn-1,ie.2 [0#0004#000400]

n-1

—
n nx1

Cycle2:

1. Multiplication

[o#ooo0#0004004#000000
— v S s~

n nx1 n-1 nx(n-1)

2. Copyn-2.ie.1[04000#000#00#00000D0#0

—— —— St
n nxi n-1

e —_ W
nx(n-1) n-2
Cycle3:

1. [0#0004#000#00#000000#0#0000004#|

v o ———— W ————
n 1xn

n-1 nx(n-1) n-2 nx(n-1)(n-2)-

(@)

| Subroutine for
_multiplication

Subroutine fo
5°0PV"-1 S
Fig. 7.4(a)
Subroutine for multiplication :
0/0,R

Fig. 7.4(b)

Subroutineto copyn—1:

Fig. 7.4(0)

——
W {easy-solutions

Scanned by CamScanner

V Theory of Comp. Sci. (MU-Sem. 5-Comp.) ﬁ-r

Q.6 Write note on ‘Multiple Turing machine’. a, is the symbol under the head on tape 2,
S, is the symbol written in the current cell on tape 1,

: S, is the symbol written in the current cell on tape 2,

Multiple Turing machine

L M, isthcmovcment(L,R,l\l)ofheadontapel,
1. A Turing Machine with Multiple Heads

M, is the movement (L, R, N) of head on tape 2.
A turing machine with single tape can have muitiple heads.

Let us consider a turing machine with two heads H, and H,. Each

Q.7 Design a TM which recognizes words of the form
a"c"Inx1.
head is capable of performing read/write /move operation
independently. -

Mav 2006.-May 2008, Dec. 2011, Dec. 2016
BabaabbaBBB Ans. :

H K
Fig. 7.5 : A Turing machine with two heads
The transition behavior of 2-head one tape Turitig machine
can be defined as given below : ‘

J (State, Symbol under H,, Symbol under H,) = (New state,
5. M. (5, My))

‘ FR(T

S, is the symbol to be written in the cell under H,. Fig. 7.7(a) : Transition diagram
M, is the movement (L, R, N) of H,. a b B % y z B
S, is the symbol to be writien in thc cell under H,. 0| (xR - _ - (WyR - _
M, is the movement (L, R, N) of H;. G ((@naR) (@yR) - - (@R - -
2. Multi-Tape Turing Machine ' @| - (@bR) (wzR) - - (®@zR) -
Multi-Tape turing machine has multiple tuples with each tape Gf(@al) (@bl) - (@XR) (@Yl (@zl) -
having its own independent head. Let us consider the case of a two @l - - - - (wYR) (@zR) (@BN)
tape turing machine. It is shown in Fig. 7.6. *

Q| g s Qs Qs G . Gs Qs

Tapel: [Bla[blala|b]b|a|B|B]B —| *Hating

state
Tape2: [Bla|a|b|[b]ap]a]|B][B] — 1 Fig. 7.7(b) : Transition table
The Turing machine M is gi .
Fig. 7.6 : A two-tape turing machine R o
; ; M = (QZITI.34,q.B,F
The transition behavior of a two-tape Turing machine can be Where, Q = ({q, Qs Q2 Q30 Q4. Qs } -
defined as : Z = {ab,c}
8gaz) =05, M5, My) I = (abcxyzB)
Where, 8 = The transition is given Fig. 7.7(a, b)
_ q, is the current stale, % ¥ LutgEes
B = B
q, is the next state, S e
R = {q,). Halting state

a, is the symbol under the head on tape 1, |

esu—solutions — —

Scanned by CamScanner |

'* “Theory of Comp. Sci. (MU-Sem. 5-Comp.)
 Algorithm : ,

For & string a’b"c", the TM will need n cycles. In each cycle :
1. Leftmost ais written as x

2. Leftmost bis written as y

3. Leftmost ¢ is written as z

At the end of n cycles, the tape should contain only x's, y’s
andz’s .

Working of the TM for input a’b’c’ is shown in Fig. 7.7(c) ;
- BaaabbbcccB|-BxaabbbceccBl-BxaabbbeceB
2.) 1
G q § Qo
FBxaabbbeccBf-BxaaybbcccB-BxaaybbcccB
1 ' ?

q T2 gz
l—Bxaaybb;cchBxaaybPrz ccBI—Bxaayl‘T{bzccB

92 Q3 : Lt J
- FBxaaybbzccB}-BxaaybbzccB|-BxaaybbzccB
P 3 ?
4 G qs
- BxaaybbzccB|-BxaaybbzccB|-BxxaybbzccB
' s a3 1 . & 7

Qs]) a
FBxxaybbzccB|-BxxaybbzccB|BxxayybzccB
2 , 1 e

G q -]
" FBxxayybzccBFBxxayybzecBlBxxayybzzcB
7 T e

Q2 92 95
}—Bxxay’ybzch[—Bxx'aygbzzcBI—Bx‘xa ybzzcB
i i 1

FBxxayybzzcB|-BxxayybzzcB| BxxayybzzcB
: 1

9
FBxxxyybzzcB|-BxxxyybzzcB|-BxxxyybzzcB
1+ 7

T
q q - 4
FBxxxyyyzzcB|-BxxxyyyzzcB|-BxxxyyyzzcB
1 1

T
qz . L/ G
FBxxxyyyzz zB|-§Bxxxyyy?zzB|—B XxxXyyyzzzB
1 -

13 % 9
FBxxxyyyzzzB|-B xxx%ryyzzzB I—Bxx‘xryyyzzzB
1 ,

G O
Fig. 7.7(c)

Fig. 7.8(a) : State transition diagram

Q.8 Design a turing machine to check whether a
string over {a,b} contains equal number of a’s and

b’s. Dec, 2009, May 2008, Dec. 2015
Ans.:

Algorithm :

1. Locate first a or first b.

2. Ifitis ‘a’ then locate ‘b’ rewrite them as x.

3. Ifitis ‘b’ then locate ‘a’ rewrite them as x.

4. Repeat steps from 1 to 3 till every a or b is re-written as x.

a b X - B
—q | (@ X.R) (@XR) (g.X.R) (q,B.N)
q | @.aR) - (@uX.L) (q,X.R) =
(g5 XL) (g,bR) (q.XR) -
g | (ggal) (gbl) (gXL) (qBR)
4| g @ g Q ¢« Halting
state
Fig. 7.8(b) : Transition table
The turing machine M is givcnbyﬁ
M = (QZXTI,8,q,B,F
Where, Q = ({q,q;, s 95 G} .
L = {ab}
I' = [ab,X,B}
qy = Initial state
B = Blank symbol
F = {q}

Working of machine for an input abba is shown in Fig. 7.8(c)
F-BabbaB|-BxbbaB|-BxxbaB}BxxbaB

? 7 R
Qo 81 Q@ Q3
|-BxxbaB|-BxxbaB}|-BxxbaB|-BxxxaB ‘
? t) 1
Qo Qo Go G2

Fig. 7.8(c) Contd....

®
ZHeasv-sorutions)

Scanned by CamScanner

[
V Theory of Comp. Sci. (MU-Sem. 5-Comp.)
%

TCS-50 |

FBxxxxB}lBxxxxB|-BxxxxB FBxxxxB
1 P B
&) 93 I 2]
I-B$xxxB|—Bx?xxB|—BxxxxB FBxxxxB
T

90 Yo 9o %
[FBxxxxB|-BxxxxB

I

Fig. 7.8(c)

Q.9 What is Turing machine ?
Ans. :

Turing machine : Formal Definition of Turing Machine
A Turing machine M is a 7-tuple given by :

M = (QXTI,84q,B,F
where
Q is finite set of states

X is finite set of input alphabet not containing B.

I is a finite set of tape symbols. Tape symbols include B.
g € Qs the initial symbol.

B € I is a special symbol representing an empty cell.

S U o

F C Q is the set of final states, final states are also known as
halting states.
7. The transition function § is a function from

QxTtoQxTx (L,R,N)

A transition in turing machine is written as,

&ag a) = (q,, b, R), which implies, when in state g, and
scanning symbol a, the machine will enter state q;, it will rewrite a
as b and move to the right cell.

A transition 8(qy, a) = (g;, a, R), implies that the machine will
enter state q,, it will not change the symbol being scanned and
move to the right cell.

Movement of Read / Write head is given L, R or N
L — Move to left cell
R — Move to right cell

N — Remain in the current cell (No movement)

Q.10 Deslgn a TM to compute proper subtraction of
two unary numbers. The proper subtraction
function f Is defined as follows :

m~-=n im>n
f(m, n)= { 0 otherwise

May 2009, Dec. 2009

Ans.:
The working of the TM is being explained with subtraction of

3 from 5.
In unary system, 5 is represented as 00000,

M
In unary system, 3 is represented as 000. ‘
In unary system, O is represented by a blank tape.
Subtraction will require several cycle. In each cycle :
1. Leftmost 0 is erased
2. Rightmost 0 is erased.
Situation of tape after each cycle is shown below :

IfB]'O,'-O‘ 000 # 0 005‘]""

"Initial

After 1% eyele |B[BI-)0" ‘00 0 # 'OY.A‘IOJIBIB;H

Aftcr2ndcyclc lBJB‘IBl,O, g0 O"-lBlBIBI;]

After3cycle [B[B]B]BJ0 0 # |B|B[=--]

Transition diagram and transition table are given 'in
Fig. 7.9(2) and (b).

#HR
0D.R

OBR 8 BBL

Y =)

mghn OIB’L —m>n
: -
#H L
oBR { (% - @
Fig. 7.9(a) : Transition disgram
0 # B
-q | @BR) (@BR) _
q | @.0R) (@Q#R) (q.BL)
q | @uBL) (q50,N) =
G [(@OL) (q#L) (qBR)
% |@BR) _— (BN
qs s s Qs ¢ Halting state

Fig. 7.9(b) : Transition table

The Turing machine Mis given by : |

M = (QLT.$,q,B,F
where,
Q = {4y 91 % 3. 940 G5)
Z = {0,1,#)
'= (0 1#B)
The transition function § is given in Fig, 7.9(a) and (bj
initial state,

qu:

easv-solutinns

Scanned by CamScanner

W Theory of Gomp. Sci. (MU-Sem. 5-Cormp)
%

TCS-51

B =
F =

blank symbol
{qs}, Halting state

The working of TM is being simulated for 5-3 is shown in
Fig. Ex. 7.3(c) : ‘
Boooo0#000Bl—BBgooo#ooo_Bthogo0#0>OOB

q, q
‘BB OOOTO#OOOBI—B BOOOg#DOOB]-—BBOOOO#OOOB
T

Q N q,
‘FBB oooo#goom-snooo 0#000B|-BB0000#000B
. T
_ 9 Q1
BB 0000#000B|-B0000#000B-B0000#00BB

$
|-B0000#00B|-B0000#00B|-B0000#00B|-BOO00EOOB

T
Qi

i) 1 |
: fh_ G G G
]—BOBOO#OOBF-BOOOO#OOB}—BOOOO#DOB}—BGOOO#OOB
}] 3 }

& & G G
-BBO00#00B-BB000#00B}-BB000#00B}-B000%00B
1 T 1)

] B | G
FB000#00B]-B000#00B|-B000#00B}-BOGO#00B
1) | 1
G q] G

FB000#0BB}BO00#0B|-BO00#0BB000#0B

A

FB000#0B|-B000#0BF-B000#0B-BBO0#0B

G f1l; ;EJ gl
FB00#0B|-BOO#0B|-BO0#0B|-B00#0B|-B00#0B
| t P))

G @ G Qy G

]-BOO#BB[—BO?#B]-B(;O#B |—?00#B

G & G G
' FB“O#B]—BBU#B FBBO#B
T.
' G
}-BO#B}-BO#BI—BUUB
4
I)
Fig. 7.9(c)

]

Q. 11 Write short note on Variants of TM.

Dec. 2006, Dec. 2008, Dec. 2009, Dec. 2010,
May 2014, May 2015, May 2017

Ans. :
1. Two-way Infinite Turing Machine

In a standard turing machine number of positions for ieftmost)
blanks is fixed and they are included in instantaneous description,
where the right-hand blanks are not included.

In the two way infinite Turing machine, there is an infinite
sequence of blanks on each side of the input string. In an
instantaneous description, these blanks are never shown.

2. ATuring Machine with Multiple Heads
A turing machine with single tape can have multiple heads.
Let us consider a turing machine with two heads H, and H). Each

head is capable of performing read/write /move operation
independently.

BabaabbaBBB

H K
Fig. 7.10 : A Turing machine with two heads
The transition behavior of 2-head one tape Turing machine
can be defined as given below :

& (State, Symbal under H,, Symbol under H)) = (New state,
(S, M), (S,, M) :

Where,
S, is the symbol to be written in the cell under H,.
M, is the movement (L, R, N) of H,.
S, is the symbol to be written in the cell under H,.
M, is the movement (L, R, N) of H,.

3. Multi-Tape Turing Machine

Multi-Tape turing machine has mulﬁp]e tuples with each tape
having its own independent head. Let us consider the case of a two
tape turing machine. It is shown in Fig. 7.11.

Tape 1: [BI a lb l a['a’_l'.b' l bTﬂ'I B‘BlB =

Tope2: [Bla[afv]v]alv]a[B]B] = |

Fig. 7.11 : A two-tape turing machine

The transition behavior of a two-tape Turing machine can be
defined as :

8(‘]|.apaz) = (qzv(slvMi)v(SthQ_))
Where,

It3casy-solutions

Scanned by CamScanner

- y v
¥ Theory of Gomp. Sci. (MU-Sem. 5-Comp,)
%

q, is the current state,
q, is the next state,
a, is the symbbl under the head on tape 1,
a, is the symbol under the head on tape 2,
§, is the symbol written in the current cell on tape 1,
S, is the symbol written in the current cell on tape 2,
M, is the movement (L, R, N) of head on tape 1,
M, is the movement (L, R, N) of head on tape 2.
4. Non-deterministic Turing Machine

Non-deterministic is a powerful féature. A non-deterministic
TM machine might have, on certain combinations of state and

symbol under the head, more than one possible choice of
behaviour.

Non-deterministic does not make a TM more powerful.

For every non-deterministic TM, there is an equivalent .-

deterministic TM.
It is easy to design a non-deterministic TM for certain class of

problems.

A string is said to be accepted by a NDTM, if there is at least
one sequence of moves that takes the machine to final state.

An example of non-deterministic move for a TM is shown in
Fig.7.12.

aaR

Fig. 7.12 : A sample move for NDTM

a/xR

The transition behaviour for state q, for TM of Fig. 7.12 can
be written as
8(@ypa) = 1{(gp2R)(g,, x.R)]

Q. 12 Design a turing machine to replace string 110 by
101 in binary Input string.

Ans.:

The turing machine will look for every occurrence of the
string 110.

State q, is for previous Iwo symbols as 11.

Next symbol as 0 in state gy, will initiate the replacement

process to replace 110 by 101.

- p—

c\e

Repiacement Y

Fig. 7.13

The turing machine M is given by :

M = QZ2T1,8,q,B,F)
Where, Q = {qp 9;» 9y 93 s Gs}
zZ = {0,1}
r = {0,1,B)
6 = Transition function is shown using the transition
diagram
B = Blank symbol for the tape
F = {qs}, halting state

Working of the machine for input 0101101 is shown in
Fig. 7.13(a) :

0101101B I 0101101 0101101B 0101101

o o % %

010141018 | 0101101 B
q, Corqt} 57

F0101111B I 01010118

A3 Q
F~010111B - 0101118 ~o10111B
9% 94 95 (halt)
Fig. 7.13(a)

Q.13 Design Turing machine as genert;tor to additwﬂ

blnary numbers and
e or
“110 + 10", nce simulate f a

Ans,:

This problem can be solved using a 3-tape Turing machine.

First machine T1 stores the first binary number. Seco od

num . ¥
a.l'y tﬁr Th.llﬂ m.achl e

easv-solulions

F R e ey
el S S i T

Scanned by CamScanner

?eo.Sci. (MU-Sem. 5-Comp.)
The Turing machine will have 3 states :
Qo — previous carry as 0
q; —previous carry as 1
q, — Halting state
(0,0,L) (0,0,L) (B, 0, L)
(1, 1,1)(0,0,L) (B, 1,L)
0.0,L)(1,1,L) (B, 1,L)
(B.B,L)(0,0,L) (B, 0,L)
(0,0,L)(B,B,L)(B,0,L)
(B,B,L)(1,1,L) (B, 1,L)
(1L,1,L)B,B,L)(B,1,L)

(1,1,L)(0,0,L) (B, 0, L)
(1,1,L) (B, B, L) (B, 0, L)
(0,0,L)(1,1,L) (B,0,L)
(B,B,L)(1,1,L)(B,0,L)
(I, LL)(1,1,L)(B,1,L)

(1,1,L) (1,1,L) (B,o,L)

(0,0.L) (0,0,L) (B,1,L)
(0.0,L) (BBL) (B,1,L)
(B.BL) (0,0,1) (B,1,L)

BER) (B.B.R) (B.OR) (B.B.R) (BB.R) (B.1,R)

Fig. 7.14

Simuiation for 116 + 10

T
q, (Halt)

Q.14 Design a Tuﬂng machine as acceptor for the
language {a"b" In,m2>0and m2n}. [PNAGL
Ans. : ‘

a/aR

Halt state

Fig.7.15

Q. 15 Construct turning machine that accepts the string
over Z = {0, 1} and converts every occurrence of

111 to 101. May 2015

Ans. :
Halting state

1/0,R
Fig. 7.16

The turing machine M is given by :

M = (QZXT.3,q,B.F
Where, Q = (4o q;, % 95 U)
L= {0,1)
' = {0,1,B} .
'8 = Transition function is shown using the transition
diagram '
B = ﬁlank symbol for the tape
F = ({q,], halting state

—

® -
[HHeasy-solutions

Scanned by CamScanner

¥ ooy of Com. 56t (U-Sem. 5-Comp)

Q.16 Construct a TM for checking well for medness of
parentheses. May 2012, May 2015, May 2017

Ans.:

In each cycle, the left-most *)’ is written as X, then the head
moves left to locate the nearer ‘(" and it is changed to X.

The cycles of computation are shown below.

Input string is assumed to be (00)(). .

Cycle No.

Tane.
Initial B (00)OB
1. B (XX(0)0B
2, B (XXXX)0 B
3, B XOOXKXX(B
4 BXOXXXXXB
¥R ’

x/x,L

B/B,R
. Halt state
Fig. 7.17(a) : State transition diagram

() X B
qo (q[)-(vR) (q 1 'va)- (qo.X,R) (qz !B -L)

q, (q,%.R) - (q,xL) -
q, - .- (@zx,L) (q;BR)

a; % 9 G h

Halting
state

Fig. 7.17(b) = State transition table

The Turing machine M is given by : '

M= (QXT,5,q,B,PF
where, Q = {9992 %) |
B = 6N |
r = {¢).xB}

TCS-54

§ is given in Fig. 7.17(a) or 7.17(b)

q, = [Initial state
B = Blank symbol
F = (g}, halting state

Making of the machine for input (0)0)0 is given in Fig. 7.17(c) :

B(O)0)OBB(OO)OBFB(QMO
1 T 1

o G L
I—B((X())()BI*NX;())()BI-B(xx())()B
T .

9 9o 0
|—B(XX(%)()B|—B(XK%XJ ()BI-B(Kxxa‘r)()B
B qi Yo
|—-B(xxxxA)r()B|—B(xxx;x()B’[-—B(xxxxx()B

Jo QG ! ;
FB(xxxxx()B|-B(xxxxx()BFB(xxxxx()B
1 1 1

Q1 qx q ;
FBxxxxxx()BFBxxxxxx()Bl-Bxxxxxx()B

0

FBxxxxxx()BFBxxxxxx()Bl-Bxxxxxx()B
T 02 1)

Qo Qo qo
FBxxxxxx()BFBxxxxxx(xB

D q
-FBxxxxxxxxB[-BxxxxxxxxB

T
Qo Qo

FBxxxxxxxxB|-BxxxxxxxxB|-BxxxxxxxxB

T
L F] G G

FBxxxxxxxxB|-BxxxxxxxxB|-BxxxxxxxxB
T.

_ & A

FBxxxxxxxxBl-BxxxxxxxxBl-BxxxxxxxxB

a2 [+)] ;{;

FBxxxxxxxxB

0
Fig. 7.17(c)

Q.17 Design a turing machine to check whether a
string over {a,b} contains equal number of
a’'s and b's. Dec. 2009, May 2008. Dec. 2015
Ans.:

Alg_orlthm s

1. Locate first a or first b.

2. Ifitis ‘a’ then locate ‘b* rewrite them as x.
3. Ifitis *b’ then locate ‘a’ rewrite them as x.
4

Repeat steps from 1 to 3 till every a or b is re-written as x.

——

e deasy sotutiony

Scanned by CamScanner

¥ Theory of Comp. Sci. (MU-Sem. 5-Comp)

Fig. 7.18(a) : State transition diagram

a b X B
—q, | (@XR) (@XR) (RXR) (BN
q | (@aR) (g.XL) (q,.X.R) -
(@:.XL) (@bR) (q.XR) -
@ | (@zal) (gbl) (@ XL) (qpB.R)
Q| 9 % 4 ¢ Halting
state

Fig. 7.18(b) : Transition table -

The turing machine M is given by :

M = (QZIT.8.q,B.H
Where, Q = {Go Q) G B3> G}

Z = {ab}

' =. {ab,X,B}

q, = Initial state

B = Blank symbol

F = {q,}

Working of machine for an input abba is shown in
Fig.7.18(c) :
I—BabbaB|—BxhbaB|—BxxbaBI—BxxbaB

T

i t
o qQ qs s
BxxbaBl-BxxbaB|-BxxbaB|-BxxxaB
(’I , it t s
0

Jo Go (2

Fig. 7.18(c) Contd....

—

|—ﬁxxxxBFBxxxxBl—BxxxxB BxxxxB
1 £ 1 3

S] a3 q3 G
F-BxxxxB}|- BxxxxBI—Bxx?xB FBxxxxB
1.
Go 0 9o %D
-FBxxxxBlBxxxxB
Fig. 7.18(c)
Q.18 Design a Turing machine as an acceptor for the
language
{a"b"in, m20and mxn)
Ans.: '
a/a,R
b/b,R
b/Y.L
b/db,L
a/al
B/B,L
Halting state
(Final state)
Fig.7.19
M = (Q2.TI.8.q,B.F)
Where, Q = {qyqp Q-G Q!
Z = (ab}
I = {abXY,B}
q, = initial state
B = Blank symbol
F = {q

Q.19 Deslign a TM to add two unary numbers.
Ans.:

Addition of two unary numbers can be performed through
append operation. To add two numbers S (say ®,) and 3 (say w,)
“will require following steps :

1. Initial configuration of tape :

[EloTo o e e # oo o]B],

5(e)) 3(w,)

® 2 .
@8 easy-solutions

Scanned by CamScanner

TCS56 |

$ Theory of Comp. Sci. (MU-Sem. 5-Comp.) e ——————

2. w,is appended to o,
48 I

L]

While every ‘0’ from o, is getting appended to w,, ‘0" from
®, is erased. m, contains 8 0s, which is sum of 5 and 3.

MR
0OR

Fig. 7.20(a) : Transition diagram

The turing machine M is given by : [
M = (QET.5,q,B.F

= {Gp 91 G B}

{0, #}

= {0, # B}

= Transition function is given in

Fig. Ex. 7.3.10 (a), (b)

initial state ‘

Wﬁcm

o -1 MO
I

q-0 =
B = blank symbol

F = {q,), halting state.

Q. 20 Write short note on : Church-Turing Thesis.

Ans.:
Church-Turing Thesis
The Turing machine is a general model of computation. Any :

0 § B algorithmic procedure can be solved by G computer can also be
solved by a TM. Problems computed by a computer or a TM are
-9 | @BR) (@BR) - also known as partial recursive functions. Some enhancements 1o -
q | @OR) (q,#R) (3,.0L) TM made the Church-Turing thesis acceptable. These
enhancements are :
g | (4 0L) (@#L) (@BR)
. ' ” 1. Multi-tape 2. Multi-head
-¢— Halting state
9 e ke & & 3. Infinite tapes 4. Non-determinism.

Fig. 7.20(b) : Transition table Since the introduction of TM, no one has suggested an
algorithm than can be solved by a computer but cannot be solved
by a TM.

Chapter 8 : Undecidability
Q.1 Write short note on : Recursive and Recursively | Every Turing decidable language is Turing acceptable.

Enumerable Languages.
Dec. 2005. Dec. 2009, Dec. 2010, May 2014, Dec. 2014,

May 2015, Dec. 2015, May 2016, Dec. 2016,
Dec. 2017

Ans. :

Recursive and Recursively Enumerable Languages
There is a difference between recursively enumerable (Turing

Acceptable) and recursive (Turing Decidable) language.
Pollowing statements are equivalent :

1. The language L is Turing acceptable.

2. The language L is recursively enumerable,

Following statements are equivalent

1. 'The language L is Turing decidable.

2. The language L is recursive. '

3. There is an algorithm for recognizing L.

Every Turing acceptable language need not be Turing decidable.
Turing Acceptable Language '
A language L < I* is said to be a Turing Acceptable.

language if there is a Turing machine M which halts on every

o € L with an answer 'YES’. However, if ¢ L, then M may not
halt.)

Turing Decidable Language

A language L C Z* is said to be turing being decidable if
there is a turing machine M which always halts on everyw € Z*. If
© € L then M halts, with answer *YES’, and if & & L then M halts,
with answer ‘NQ”,

A set of solutions for any problem defines a language.

A problem P is said to be decidable /solvable if the language
L Z* representing the problem (set of solutions) is turing
decidable. ' o

P2 casy sorutions]

\

Scanned by CamScanner

\

. * " Theory of Comp. Sci. (MU-Sem. 5-Comp.)
I

TCS-57

If P is solvable / decidable then there is an algorithm for

' recognizing L, representing the problem. It may be noted that an
algorithm terminates on all inputs.

Following statements are equivalenf t
1. The language L is Turing decidable.
2. The language L is recursive.
x Them is an afgon‘thm for recognizing L.
Every turing decidable language is turing acceptable.

Every turing acecptab]c language need not be turing
decidable.

A language L € Z* many not be turing acceptable and hence
not turing decidable. Thus we cannot design a turing machine /
algorithm which halts forevery m e L.

Q.2 Two recursive languages L, and L, is recursive :
Lul,

Ans. :
L, u L, is recursive

Let the turing machine M, decides L, and M, decides L.

If a word @ € L, then M, Muﬁs “Y™ else it returns “N™.
Similarly, if a word w € L, then M, returns “Y” else it returns “N”.
Let us construct a turing machine M, as shown in Fig. 8.1.

Fig. 8.1 : A turing machine for L, UL,

Output of machine M, is written on the tape of M.

Output of machine M, is written on the tape of M.

The machine M, returns “Y” as ouléput, if at least one of the
outputs of M,, or of M, is *“Y”.

It should be clear that M, decides L, U L2 AsbothL, and L,
are turing decidable, after a finite time both M, and M, will halt
with answer “Y™ or “N”. The machine M, is activated after M, and
M, are halted. The machine M, halts with answer “Y” ifw € L, or
w € L,, else M, halts with output “N”.

Thus L, U L, is turing decidable or L, U L, is recursive,

Q.3 ‘Prove that theﬁ exists no algorithm for declding
whether a given CFG Is amblguous. |

[May 2006, Dec. 2007, Dec. 2008 §

Ans, :

The post correspondence problem can be used to prove the
un-decidability of whether a given CFG is ambiguous.

Let us consider two sequences of strings over >

A= (o Ua)

B = (VV;V5.e ¥y}
Let us take a new set of symbols a;, a,
{a,8,...a,} NE=¢.
Symbols a,, a, ... a,, are being taken as index symbols. The

index symbol a; represents a choice of u; from A and v; from the
list B.

A string of the form u U u ... 3 3 a. Over alphabet

«.. 2, such that

T uU/{ ay,a,, ... a,} can be defined using the set of productions :
G. = {A—)u,Aa,luzAa,I...lumAam}
A= u,a,luzazl...lumam
Similarly a string of the form v; v; v, ... a, 2, a; over alphabet

Tuia,a,..a,) can be defined usmgthesetofproducuons
{B—)v,Aa,lv,Aazl...lvaam }
viallvyal..lvpa, -

Finaily, we can combine the languages and grammars of two
lists to form a grammar G 5 :

GB=

A new start symbol S is added to G,
Two new productions are added to G,
S - A
S —- B
All pmducﬁon; of G, and Gg are taken.

Now, we will show that G,; is ambiguous if and only if an
instance (A, B) of PCP has a solution.

Assumption :

Suppose the sequence i,, i,, ..., i, is a solution to this instance
of PCP. Two derivations for the above string in G, is :

S=A=yA3 =uyy A s =2
Wy Uy e 23 .3
S=>B=>vBy =y vp,By g, =..=

Vi Vig ves Vi & By o By)
Consequently, if G,; is ambiguous, then the post
correspondence problem with the pair (A, B) has a’solution.
Conversely, if G,y is unambiguous, then the post correspondence
cannot have a solution.

If there exists an algorithm for solving the ambiguous
problem, then there exists an algorithm for solving the post
correspondence problem. But, since there is no algorithm for the

post correspondence problem, the ambiguity of CFG problem is
unsolvable.

Q.4 ‘Write short notes on post correspondence
problem and Grelbach Theorem.

May 2006. Dec. 2006, May 2007, Dec. 2007. May 2008.
‘ Dec. 2008, May 2009, May 2010. Dec. 2010.
May 2011, Dec. 2011, May 2012, May 2016

- easy sorutions]

Scanned by CamScanner

¥ Theory of Comp. Soi. (MU-Sem, 5-Comp.

TCS-58

w]

Ans, :
Post correspondence problem

Definition : Let A and B be two non-cmpty lists of strings over X.
A and B are given as below ;

A
B

{X) X9 X3 000 X,)
iya ya -yl

There is a post correspondence between A and B if there is a
sequence of one or more integers i, J. kK ...msuch that ;

The string x; ; ... X, is equal to y, Yoo Yor
Example : Does the PCP with two lists :
A = {a aba’ ab)and
B = [ab,b)

have a solution ?

So to find a sequence using which when the elements of A
and B are listed, will produce identical strings.

The required sequence is (2,1, 1, 3)
A A A A, = aba’aaab=aba’b
B,B,B,;B, = aba’a’b=aba’b
Thus, the PCP has solution.

So accept the un-decidability of post correspondence problem
without proof.

Example :

Determining the solution for following instance of PCP,

1
2 | 110010 0
73 1 1111
4 11 01
The PCP has a solution. The required sequence is (1, 3, 2, 4, 4, 3)
u)',(113(1)2014(1)4(1)3 = 01111001011111
'x,xzx.zx‘m, = 01111001011111
Greibach Theorem
The Theorem states that :

“Let o be a class of Janguages that is effectively closed under
concatenation with regular sets and union, and for which L = Z* is
un-decidable for any sufficiently large fixed Z. Let P be any non-
trivial property that is true for all regular sets and that is preserved
under a, where a is single symbol in Z. Then P is un-decidable for
a’.

Greibach theorem can be used to prove that many problems
related to CFG are un-decidable,

Q.5 Write short notes on : Halting problem.

Dec. 2006, Dec. 2007, May 2008, Dec. 2008, May 2011 |
Dec. 2011, Dec. 2015, Dec. 2016. May 2017

Ans. :
Halting Problem of a Turing Machine

The halting problem of a Turing machine states :

Given a Turing machine M and an input @ to the machine M,
determine if the machine M will eventually halt when it is' given
input ®.

Halting problem of a Turing machine is unsolvable.

Proof :

Moves of a turing machine can be represented using a binary
number. Thus, a Turing machine can be represented using a string
6ver %*(0,1). This concept has already been explained in the
chapter.

Insolvability of halting problem of a Turing machine can be
proved through the method of contradiction.

Step1: Let us assume that the halting problem of a Turing
machine is solvable. There exists '

1. A string describing M.

2. Aninput for machine M.

H, generates an output “halt” if H, determines that M stops

on input ; otherwise H outputs “loop”. Working of the machine
H, is shawn below.

+—>halt

H,
—loop

iy

Step2: Let us revise the machine H, as H, to take M as both

inputs and H, should be able to determine if M will

halt on M as its input. Please note that a machine can
be described as a string over 0 and 1.

M_E‘

us construct a new Turing machine H, that takes
output of H, as input and does the following :

o —halt
2 —-loop

Step3: Let

1. If the output of H2 is “loop™ than H3 halts.

2. If the output of H, is “halt” than H, will loop-
forever,

M

—E H2 |

[—>halt — Machine Hg loops forever
loop — Machine Hg halts

" Hy will do the opposite of the oy

tput of H,.
Stepd: Letus give Hj itself as inputs to H,,

T

@g easy-solutions

Scanned by CamScanner

Theory of Comp. Scl. (MU-Sem. 5-Comp.)

" If H, halts on H, as input then H, would loop (that is how we
constructed it). If Hy loops forever on H, as input H, halts (that is
how we constructed it).
In either case, the result is wrong.
Hence,
H, does not exist.
If Hy does not exist than H, does not exist. -

If H, does not exist than H, does not exist.,

Q.6 Does PCP with following two list : A = (10, 011,
101) and B = (101, 11, 011) have a solution ?

~ Justify your answer.
Ans.: .
. A, and A, differ from B, and B, at the first of place.
Therefore, we must pick A, and B,
Sequence String
1) (A, =10) (B, =101)

» "IhenextsmngtobeplckedupmustbeA and B, Anyother

sequence will not lead to a solution.
Sequence String
(1,3) (A,A, =10101) (B,B, = 101011)
‘The next string to be picked up must be A, and B;. Any other
sequence will not lead to a solution.
. Seguence String
(1,3,3) (A,A,A, =10101101) (B,B,B, = 101011011)

There is only choice of next string. This choice is A, and B,.
This does not lead to a solution. The PCP has no solution.

TCS-59

Q.7 Write short note on : Rice Theorem

d Dec. 2012, May 2013, May 2014, May 2015, Dec. 2015.
: May 2016, Dec. 2016, May 2017, Dec. 2017

Ans.:
Rice Theorem

“Every property that is satisfied by some but not all
recursively enumerable language is un-decidable”. Any property
that is satisfied by some recursively enumerable language but not
all is known as nontrivial property. We have seen many properties
of R.E. languages that are un-decidable. These properties include :

1. GivenaTM M, is L(M) nonempty ?

2. GivenaTM M, is L(M) finite ?
3. GivenaTM M, is L{M) regular ?
4. GivenaTM M, is L(M) recursive ?

The Rice’s theorem can be proved by reducing some other
unsolvable problem to nontrivial property of recursively

enumerable language.

aaaQ

e
sy sotutions)

Scanned by CamScanner

GhapteriNo

Chapter 1 27.5 Marks 10 Marks
Chapter 2 12.5Marks | 20 Marks
Chapter 3 27.5 Marks 15 Marks
Chapter 4 - B
Chapter 5 - 10 Marks
Chapter 6 25 Marks 10 Marks
Chapter 7 12.5 Marks 20 Marks
Chapter 8 7.5 Marks 25 Ma_rks_ 5

Repeated questions - 5 Ma;ks N

Dec. 2018

Q. 1(a) Explain Chomsky Hierﬁrchy.

Ans. : Chomsky hierarchy

Chapter 1 : Introduction [Total Marks — 27.5]

(5 Marks)

A grammar can be classified on the basis of production rules. Chomsky classified grammars into the following types :

1. Type 3 : Regular grammar

2. Type 2: Context free grammar

3. Type 1 : Context sensitive grammar
4, TypcO:Umcstﬁcwdg;mnmar-
Type 3 or regular grammar

- A nmar is called Type 3 or regular grammar if all its productions are of the following forms:

A

A
A
A

Where,a€ Land A,Be V.

I

-

E
a

aB
Ba

\

"— Alanguage generated by Type 3 grammar is known as regular language.

Scanned by CamScanner.

Type 2 or context free grammar

A grammar is called Type 2 m‘uontcxtfm:gmmmnrifallitspmductionsmoflhcfol]owingformA—waherFAe V and

ac (VuT)*
— Visasetof variables and T is a set of terminals.
2 The language generated by a Type 2 grammar is called a context free language, a regular language but not the reverse.”

Type 1 or context sensitive grammar

» = A grammar is called a Type 1 or context sensitive grammar if all its productions are of the following form:
a —f,
— Where, f is atleast as long as a.

Type 0 or unrestricted grammar

Productions can be written without any restriction in an unrestricted grammar. If there is production of the o — B then length of
could be more than length of B. -

Every grammar also is a Type 0 grammar

A'Iypelgrammarisa!soa'l‘ypelgmmmar

A'I‘ypeSgrammansalsoaTypengmmar

Q. 3(b) Consider the following grammar

soictslictsesla
C-b
For the string ‘Ibtaeibta’ find the following :
() Leftmost derivation
(i) Rightmost derivation
(iii) Parse tree _ _
(iv) Check if above grammar is ambliguous. | (10 Marks)

Ans.: ‘ ‘ ' ' : .
(i) Left most derivation : l
S— iCtSeS [using S — iCtSeS]
- 1thcS [using C—b]
— ibtaeS [using S — a]
— ibtaciCtS [using S— iCtS]
— ibtaeibts [using C — b]

— ibtaeibta

= P
¢ easy-solutions

Scanned by CamScanner

. : D(18) -3
Theory of Computer Science (MU) —

(i) Rightmost derivation :
S5 = iCtSeS [using S — iCtSeS]
— iCtSeiCtS [using S — iCtS]
iCtSeiCta [using S — a]
iCtSeibta [using C— b]
iCtaeibta [using S —) a]

I 11

— ibtaeibta [using C — b]

(iii)Parse tree as shown in Fig. 1-Q. 3(b).

S
—a
Fig. 1-Q. 3(b)
(iv) The grammar can be shown to be ambiguous by drawing two different derivation trees for the string ibtibtaca as shown in
Fig. 2-Q. 3(b).
/ S\\\\ .
iy R cl: t S e T
/‘\\\\ b l\\a
: S.a T i (I: LS
:8. | a b l
Fig. 2-Q. 3(b)
Q. 5(b) Construct Mealy and Moore Machine to convert each occurrence of 100 by 101. 10 Markj
Ans.:

1. Mealy Machine

Fig. 1-Q. 5(b)

Scanned by CamScanner

2. Moore Machine

Fig. 2-Q. 5(b)

D(18) - 4

Q. 6(d) Write short note on Mealy and Moore Machine.
Ans.: \
Final state machines are chamctcused by two behaviours :
1. State transition function ()
2. Output function (A)
- State transition function (8 is also known as STE. .~
_ Output function (&) is also known as machine function (MTF).
8:ZIxQ— Q
A:ZxQ—0 [forMeaI);machine]
A : Q = O [for Moore machine]
There are two types of automata with outputs :
i. Mealy machine : Output is associated with transition
A:ExQ->0
Set of output alphabet O can be different from the set of ihput alphabet .
2 Moore'mac;hine : Output is associated with state - '

A:Q-0

Q.2(a) Designa Finite State machine to determine whether ternary number (base 3) is divisible by 5.

Ans.:
- A tcrnary system has three alphzihcts
X = {0,1,2)
- Base of a ternary number is 3.
=~ The running remainder could be :
(0); = 0—» associated state, q,

Chapter 2 : Finite Automata [Total Marks — 12.5]

(2.5 Marks)

(10 Marks)

) .
EQSV-SOIUIIUIIS

Scanned by CamScanner

~~
—
St
w
]

1= associated state, q,

8
wr
]

2 = associated state, q,

~
—
=4

P ad
]

3 = associated state, q,

~~
—
—
b
]

4 —» associated state, g,
e '

Temary Decimal

Fig. 1-Q. 2(a)

Q.6(a) Write short note on Closure properties of Context Free Language.

Ans.: }
Closure properties of context free language

A context free language is closed under following operations :
1. Union 2. Concatenation 3. . Kleene star

Context free language is closed under intersection.

(2.5 Marks)

The intersection of a context-free language with a regular language is a context free language. v

The CFL is closed under complementation.

The CFL is closed under reversal.

CFL is closed under union

If L, and L, are context-free languages, then L., U L, is a context free language.
CFL is closed under concatenation

If L, and L, are context-free languages, then L,L, is a context-free Ianguage
CFL is closed under Kleene Star

If L is a context-free language, then L" is a context-free language.

CFL Is not closed under intersection ‘

Context-free languages are closed under intersection.

CFL Is not closed under complementation

The set of éontexbfree languages is closed under complementation.
Intersection of CFL and RL ‘

If L is a CFL and R is a regular language, then R N L is a CFL.

CFL Is closed under reversal ‘

'[f L is a context-free language, then so is 1

L

W7 easy solutions)

Sc;,anned by CamScanner

D(18) -6

~__Chapter3: Regular Expressions and Languages [Total Marks — 27.5] |

 Theory of Computer Science (MU

Q.1(c) Define Regular Expression and glve regular expression for :

() Setof all strings over {0, 1} that end with 1 has no substring 00 o . (5 Marks)
Ans.: 3

r

Regular expresslon

= Anexpression written using the set of operators (+, - , *) and describing a regular language is known as regular expression.
— The transition graph is shown in Fig. 1-Q. 1(c).

Fig. 1-Q. 1(c)
= -~ RE. can be written from the transition graph. The required R. E. =1 (1 + 01)*

Q.2(b) Give and explain formal definition of Pumping Lemma for Regular Language and prove that following
language is not regular. L = {a™"b™ "' m> 0}) ' (10 Marks)

-Ans. :
Pumping Lemma for Regular Language

— Some languages are regular. There are other languages which are not regular. One can neither express a non-regular language using
regular expression nor design finite automata for it. .

— Pumping lemma gives a necessary condition for an input string to b;:long to a regular set.
~ Pumping lemma does not give sufﬁcient condition for a language to be reéulaf.

— Pumping lemma should not be used to establish tt!at a given language is r{:gular.

- Puméing lemma should be used to establish that a given language is not regular.

~ "'The pumping lemma uses the pigeonhole principle which states that if n pigeons are placed into less than n holes, some holes have to
have more than one pigeon in it. Similarly, a stn'ng of length > n when recognized by a FA with n states will sec some states
repeating. | ’ |

Definition of Pumping Lemma

Let L be a regular language and M = (Q, Z, 8, q,, F) be a finite automata with n-states. Language L is accepted by m. Let @ € L and |
©l 2 n, then ® can be written as xyz, where : '

(i) lyl>0
(i) Ixyl<n
(i) xy'zeL foralli>O0here y' denotes that y is repeated or pumped i times.

e asy-solutions]

Scanned by CamScanner

of Computer Science (MU)

Proving that the language L = {a b™~'| m > 0} Is not regular:
Step 1: Let us assume that the given language L(a" b"~ ! [n> 0) is regular and L is wpmd by FA WHRL Stcs.
Step2: : Let us choose a stnng

0 = anbn—l

lo] 22~ >nforn>0
Let us write w as xyz, with
Iyl > 0
and[xy|] < n
since, | xy | | < n,y must be of the form a° | r> 0.

since |xy| < n, x must be of the form a°.

Now, a® b~ ! can be written as

Step3: Let us check whether xyLz for L = 2 belongs to L.

"
Xyz = a(a) ah-s-rpu-1

a3a2ran—s-rbn-1

an+rbn—-1

Sincer > 0,a"*Tp"~lgL.

‘ Hence, by contradiction, we can say that the given language is not regular.

Q.5(a) Convert (0 + 1) (10)*(0 + 1) into NFA with e-moves and obtain DFA.: ' (10 Marks)
Ans.: |

R.E. to NFA

Fig. 1-Q. 5(a)

easu-oluliuns : :

Scanned by 'Ce‘lmScanner

W Theory of Computer Science (MU)

NFA to DFA using direct method

Fig. 2-Q. 5(a)

Q.6(b) Write short note ;n : Applications of Regular ;xpresslon and Finite automata. (2.5 Marks)
Ans.: ‘

1. Applications of regular expression
(@) R.E.in Unix

The UNIX regular expression lets us specify a group of characters using a pair of square brackets []. The rules for character classes
are :) .

1. [ab] Stand fora+b
[0-9] Stand foradigitfrom0to 9

[A-Z] Stands for an upper-case letter

owop

[a—-1z] Stands fora lower—casé Jetter

5. [0—9A-Za— z]Stands for a letter or a digit. 7

The grep utility in UNIX scans a file for the occurrence of a pattern and displays t;mse lines in which the given pattern is found.
For example :

s grep president emp.txt

It will list those lines from the file emp.txt which has the pattern “president”. The pattern in grep command can be specified using
. regular expression. :
* matches zero or more occurrences of previous character.

’

6.

7. ® matches a single character.
8. [*pqr] Matches asingle character which is nota p.qorr.

9. A pat Matches pattern pat at the bcginnil;g of a line

10. pat $ Matches pam;,m at end of line.

Example : »

(a) ‘The regular expression [aA] g [ar] [ar] wal stands for either “Agarwal” or ‘agrawal”.

(b) g* stands .for‘z.em or more occurrences of g. | '

(c) $grep “A - + thakur” emp.txt will look for a pattern starting with A.and ending with thakur in the file emp.txt.
(b) Lexical analysls ‘

Lexical analysis is an important phase of a compiler. The lexical analyser scans the source program and converts it into a steam of
tokens. A token is a string of consecutive symbols defining an entity. '

Scanned by CamScanner

g Theory of Comguter Science (MUZ Ds18! -9 |

For example a C statement X = y + z has the following tokens :

X - Anidentifier

e Assignmént operator
Y = Anidentifier
+ - Anthmetic operator +
z - Anidentifier

Keywords, identifiers and operators are common examples of tokens.

The UNIX utility lex can be used for writing of a lexical analysis program. Input to lex is a set of regular expressions for each type of
token and output of lex is a C program for lexical analysis.

2. Applications of Finite Automata
Finite automata are used for solving several ;:ommon types of computer algorithms. Some of them are :
(1) Design of digital circuit
(ii) String matching
(1ii) Communication protocols for information exchange.

(iv) Lexical analysis phase of a compiler.

Finite automata can work as an algorithm for regular language. It can be used for checking whether a string weL, where L is a
regular language. '

Chapter 6 : Regular Grammar [Total Marks - 25]

Q. 1(b) Differentiate between PDA and NPDA.

(5 Marks)
Ans.:
Difference between PDA and NPDA is as follows:)
s A oA

1. |Alwaysa iingle move on a new input Multiple moves are possiblé on a new input

2. |Less powc_xful than NPDA More powerful than a PDA

3. |Algorithms related to PDA are simple Algorithms related to NPDA are complex

4. |Algorithms related to PDA do not require backtracking|Algorithms related to NPDA require backtracking
Q.3(a) Construct PDA accepting the language L = {a®"b" | n>0). s

Ans.:

1. Forevery pair of a’s one x is pushed on to the stack

2. Forevery b, one x is popped out from the stack.

3. Finally the stack should contain the initial stack symbol Z,.

@3 easy-solutions

Scanned by CamScanner

Transition table (5)
1. (g0 8.Z0) = (quZo)

2 8(qu. 2, Zo) (o X Zo)
3 8ge.8,x) = (%
4 3qiax) = (g xx)
5 3G b.x) = (q.€)
6. Saubx) = (@ €)

7 5((11-6.20) = (%E)

- Accepting through empty stack
- Thus, the PDA M =({go, §1, @2}, {3, b}, {x, Zo}. 8. g0, Zo» (9])

Q.4(b) Convert following CFG to CNF (10 Marks)

S — ASA|Ab

A - Bls

B - bk
Ans.: o
1. Nullable set of symbols = (B, A) .
| Re-writing grammar after removing € -production,

we get, '
s — As|salAsAalaBla

-

A — Bls

B = b
2. Re-writing gmmmara.ftcr removing unit productions (A = B, A — S), we get
s — As|sA |asa|aB |a "
A — blAs|sA|AsaA |aB |a
B —> b
3. Every symbol in @, in production of the form A — o where | |22 should be a vs_u'iable. This can be done by adding the production

C,— a

The set of productions become,
s — AS|salasalcB la
A — blas|salasalcBla
B > b

F P

—

P - ;‘-D o 0pesatenrianeran o
)" {easy-solutions

-

Scanned by CamScanner

4, Finding an equivalent grammar in CNF.
S = As |SA |AC; | ¢,B |a [Replacing SA by C;]
C; = SA
A = blas |sa |Ac Ic8 |a
B> b

C]_ e X

Chapter 7 : Turing _

Q. 4(a) Construct TM to check well-formedness of parenthesis.
Ans.:
In each cycle, the left-most *)* is wrilten as X, then the head moves left to locate the nearer ‘(" and it is changed to X.
The cycles of computation are shown below. |
Input string is assumed to be (0())().
Initial B (OO)) B
1. B (XX0))0B
2; B (XXXX)O)B
3. B XXXXXX() B
4. | BXXXXXXXXB
() X B
do (@p(R) @uxl) | (gexR) (q,B.L)
ql (q(j‘va) - (qllva) —_
UxR ‘h e = (@xL) [.(qyB,R)
*
r B’B,L 1, Uy 0y G '
U
" o
wxL{ {92 BII;.R Halting
Hall state state
Fig. 1-Q. 4(a)(a) : State transition diagram Fig. 1-Q. 4(a)(b) : State transition table

' @3 easy-solutions

‘ Scanned by CamScanner

(10 Marks)

,: Theory of COmpﬁter Science (MU) D(18) - 12

The Turing machine M is given by :
M = (QZXI,5,q,B,F
where, -Q

‘ {qo- q 93, Q3
{(.)}
{C). x,B}

z

n

r

~ O is given in Fig. 1-Q. 4(a)(a) or Fig. 1-Q. 4(1‘1)(b)
qy = Initial state

B

Blank symbol

F {q}, halting state

Making of the ﬁa&he for input (00)Q) is given in Fig. 1-Q. 4(a)(c) -: ' '
B(OO)OBFB(OO)OBFB(OMO
FB((x())OBFB(xx())(})BFB(xx())OB
= G do e e
|-B(xx())()BI-B(xx(x) OBFB(xxxx)()B
= e qi Qo - :
|—_B(')__(xx'x)()B|—B(xxx:;x()BI—B_(xx‘T\xx()B'
l_—B-(-‘;t-xrxx_x().BI-‘B:(xxxxx(_)B|—-B_(xx:_(xx()B
g faimen By

s e =ty v O
I—Bxxtxxx'x()BI—Bxxx‘xxx()B]—Bxxxxxx()B

0 e 0

: ‘ Q
' |7Bxxxx'xx'()BI—,B‘xxxxxx()Bl—”Bxxxxxx()B‘
Qo . P . : Qo
|-Bxxxxxx ()BFBxxxxxx(xB
i
G , 0
|-BxxxxxxxxB|-Bx xxxxxxx]%

- :{easy-solutions

Scanned by CamScanner

N

. Theory of Computer Scienbe (MU)

FkaxkxixiﬁFBixgxﬁikaFh?ggixﬁx B
; - B T e
|-BxxxxxxxxB:

q3

Fig. 1-Q. 4a)(c)

Q.6(e) Write short note on : Universal Turing Machine.
Ans.: .
Universal turing machine

A general-purpose computer can be programmed to solve differe:nt types of problems. A TM can also behave like a general-purpose
computer. A general purpose computer solves a problem as given below :

1. A program is written in a high level language and its rﬁachine—code is obtained with the help of a complier.
2. Machine code is loaded in main memory. '

3. Input to the program can also be loaded in memory.

4

. Program stored in memory is executed line by line. Execution involves readmg a line of code pointed by IP (instruction pomter),
decoding the code and executing it. .

We can follow a similar approach for a TM. Such a ™ is known as Universal Turing Machine. Universal Turing Machine (UTM)
can solve all sorts of solvable problems.
A Turing machine M is designed to solve a particular probiem P, can be specified as :
1. ‘The initial state q, of the TM M.
A 2. The transition function 8 of M can be specified as given :
If the current state gf M is g; and the symbol under the head is a, then the machine moves to state q; while changing 3 to a. The m;)vc
of tape head may be :)
1. To-left,
2. To-Rightor
3. Neutral
Such a move of TM can be represented by tuple

(GG : Q€ Q3 23y € I g € {To-left, To-Right, Neutral})

" UTM should be able to simulate every turing machine. Simulation of a Turing will involve

feasy-solutions

Scanhed by CamScannér

(2.5 Marks)

J Theory of Computer Science (MU)

_ 1. Encoding behaviour of a particular TM as a program.
2. Execution of the above program by UTM.

A move of the form (9:8,,9;,3,,my) can be represented as 10*"10' 10" 10 10%,

"Where ' K = 1,if move isto the left
K = 2, if moveisto the right
K = 3,if moveis ‘no-move’

State % is represented by 0,.
State q, is mpresenwd by 00,
State q, is represented by 0™,
First symbol can be represented by 0,
Second symbol can be represented by 00 and so on.
Two clements of a tuple representing a move are separated by 1.
Two moves are separated by 11.
Execution by UTM : We can assume the UTM as a 3-tape turing machine.
1. Inputis written on the first tape.
2. Moves of the TM in encoded forrﬁ is written on the second tape
3 'fhean:tentstateo-f'IMiswﬁttenontheﬂlirdtape. _ : | -

The control unit of UTM by counting number of 0’s between 1°s can find out the current symbol under the head. It can find the current

state from the tape 3. Now, it can locate the appropriate move based on current input and the current state from the tape 2. Now, the
control unit can extract the following information from the tape 2 :

1. Nextstate 2. Nextsymbol to be written

3. Move of the head.

Based on this information, the control unit can take the appropriate action,

. Chapter 8 : Undecidability and Recursively Enumerable Languages

[Total Marks — 7.5]
- Q.1(d) Explain Halting Problem. (5 Marks) -
Ans, : |
Halting problem

The halting problem of a Turing machine states :

Given a Turing machine M and an input © to the machine M, determine if the machine M will eventually halt when it is given
input e,

Halting problem of a Turing machine is unsolvable.

) —
€ {easy-solutions

Scanned by CamScanner

Proof :

= Moves of a turing machine can be represented using a binary number. Thus, a Turing machine can be represented using a string over
Z*(0,1).

= Insolvability of halting problem of a Turing machine can be proved through the method of contradiction.

Step 1: Let us assume that the halting problem of a Turing machine is solvable. There exists a machine H,(say)-
H, takes two inputs :

1. A string describing M.

2. Aninput © for machine M.

H, generates an output “halt” if H, determines that M stops on input w; otherwise H outputs “loop”. Working of the machine H, is
shown below.

Step 2: Let us revise the machine H, as H, to take M as both inputs and H, should be able to determine if M will halt

on M as its input. A machine can be described as a string over 0 and 1.

o hat
—>locp

Step 3: Let us construct a new Turing machine H, that takes output of H, as input and does the following :
1. If the output of H, is “loop™ then Hj halts.
" 2. If the output of H, is “halt” than H; will loop forever.
) M

—>halt — Machine Hsluopsfoxever
-» loop —» Machine Hj, halts
H, will do the opposite of the output of H,.

Step 4 : Let us give H, itself as inputs to H,.

If H, halts on H, as input then H, would loop (that is how we constructed it).

If H, loops forever on H, as input H, halts (that is how we constructed it).
In either case, the result is wrong.

Hence,

H, does not exist.

If H, does not exist then H, does not exist.

If H, does not exist then H, does not exist.

b/ {easy-solutions

Scanned by CamScanner

“Bvery property that is satisfied by some but not all recursi\-rely enumerable languages is ﬁn—decfdable” Any property that is gatisfied
by some recursively enumerable language but not all is known as non-trivial property We have seen many properties of R.E. Iangxagu
that are un-decidable. These properties include : ‘ ;

1. GivenaTM M, is L(M) nonempty ?
2. GivenaTM M, is L(M) finite ?

3 Givma'IMMisuNDreglﬂat?‘

4. GivenaTM M, is L(M) recursive ?

The Rice’s theorem can be proved by reducing some other unsolvable problem to non-trivial property of recursively enumerable
language. ‘

[s{sls

EGSU'SUIIHIUIIS ‘

Scanned by CamScanner

| ChaEter1 : Introduction [Total Marks -10] s —

Q.5(b) Convert the following grammars to the Chomsky normal form (CNF)

S —0A0|1B1IBB
>A—»c.
B-SIA
~ C-Sls
Ans.:
Step1: Elimination of € —production.

' The symbols (A, B, C, S) are nullable and hence the given granular leads to the following granular :
S—CAOI001 1B1111IBIBB

May 2019

A—->C,B—-5SIA,C—-S

Step2: Rmivhgzmpmdncﬂonsﬁnm(;l mdalsoreceivingnon-rmhiblesymbol C,

We get,

S—0AOI|0011B11111BB
A—OAOI0011B1111I1BB Granular G,

B—0AOI00IB1111IBPB’

Step 3 : Al the three variables are identical and hence, the granular becomes :
S—0S010011S11111SS Granular Gy

Step 4: Substituting A, for 0 and A, for 1, we get,
S ASA IAA 1A SA 1A A;ISS
A0
Ay 1

Step 5 : Writing productions in CNF
S—AB;, Bi5A
S A1A

" S—AB; , BiSA;
S—=AN;

8§58 |

A0

A1

P

11
:
|

(10 Marks)

Scanned by CamScanner

Tar - aieh Chapter 2 : Finite Automata [Total Marks - 20]]

Q.1(a) Differentiate DFA and NFA. ' . (5Marks)
Ans. : The difference between DFA and NFA Is as follows: '

Rt il e P e A [A Al IR B O SR '-,\ D A B T

e Now S R e R
1. DFA stands for deterministic finite automata. | NFA stands for non-deterministic finite automata.
2 The transition is deterministic. The trangition is non-deterministic.
3. A deterministic finite automata is a quintuple, | A non-deterministic finite automata is a 5-tuple,

M=(Q.X.5,q,F) M=(Qx.5,q,F)
4. The number of states is finite. NFA c:n be in several states at a time.
Q.1(b) Design a DFA to accept string of 0s and 1s ending with the string 100. (5 Ma X 7)

Ans.:
The substring ‘abb’ should be at the end of the string. Transitions from q, should be modified to handle the condition that the string -
has to end in ‘abb’. : :

a b
>4 | 9 9
49| % 9%
9| 9 4,
%G| 9% % ;
(a) State transition diagram (b) State transition table

_ Fig. 1-Q. 1(b) : Final DFA : A
q,toq oninputa: An input of a in g, will make the previous four characters as ‘abba’. Out of the four characters as “abba’ only the last
character ‘a’ is relevant to ‘abb’. 7
q,to g, on input b : An input of b in q, will make the previous four characters ‘abbb’. Out of the four characters ‘abbb’, nothing is
relevant to “abb’.

Q. 2(a) Design NFA for recognizing the strings that end in “aa” over § = {a,b} and convert NFA to DFA. (10 Marks)
Ans.:
(i) NFA for strings ending in “aa” is given below :

(ii) NFA to DFA using the direct method

i Yeasy solutions : R OA SRR

Scanned by CamScanner

Theory of Computer Science (MU M(19)-3
Chapter 3 : Regular Expressions and Languages [Total Marks - 15]

Q. 1(c) Explain the applications of regular expressions. - (5 Marks)
Ans. : Please refer Q. 6(b) of Dec. 2018. '

Q.3(a) Obtain a regular expression for the FA shown below :

(10 Marks) '

Ans.: GivenFA:

Step 2: Receiving the loop among qo, q, and q,, we get

Required R. E. = (b + ab + aaa*b)* aaa® ‘

b Yeasy solulions

Scanned by CamScanner

Theory of Computer Sciénce (MU 5 \Mi9-4
| Chapter 5 : Pushdown Automata (PDA) [Total Marks - 10] .

Q. 4(b) State and explain pumping lemma for context free languages. ‘ (10 Marks)
Ans.: ' ‘ ‘
Let G be a context free grammar. Then there exists a constant n such that any string
w c L (G) with | w 12> n can be rewritten as w = uvxyz, subject to thc following conditions :
1. 1'vxy | <n, the middle portion is less than n.
2. vy#E strings v and y will be pumped.

3. Foralli=0, uv'xy'z is in L. The two strings v and y can be pumped zero or more times.
Proof :

Let us assume that the grammar

G is given by W, T, P, S).

(G) denotes that largest number of symbols on the right-hand side of a production in P.

In pumping lemma, it is a requirement that the constant n should satisfy the following -
condition

n=2@(@G)¥-"

Let us take a string w € L (G), such that | w IZn.Letuscunsuuc;.tapametmeTwiﬂl

root as S. The parse tree T generates w with smallest number of leaves. |

The tree T will have a path length of at least | V—TI+ l.ﬁxis path will have

|V =T |+ 2 nodes with the last node labelled as terminal and remaining non-terminals.

Fig. 1-Q. 4(b) shows paths in detail.

Q—U—“—V—M—X—N—y+z;+

Fig. 1-Q. 4(b) : Paths in the parse tree
x is generated by T2
v is generated by T1
u is generated by T
T, excluding T, can be repeated any number of times,
This will yield a string of the form uv'xy'z where i >0

Pl Yeasy solutions

Scanned by CamScanner

Cha ter 77 Fle ular Grammar [Total Marks 10]

Q. 5(a)’ Design PDA for the following language :
L(M) = {wcw | w {a,b}*} where w" Is reverse of w & c Is a constant.

Ans.: |
W stands for reverse of W. A string of the form WcW* is an odd length palindrome with the middle character as c.
Algorithm :

(10 uaﬁcs)

If the leﬁgth of the string is 20 + 1, then the first n symbols should be matched with the last n symbols in the reverse order. A stack
can be used to reverse the first n input symbols.

Status of the stack and state of the machine is shown in Fig. 1-Q. 5(a). Input applied is abbcbba.

b
R

99 9 9 dp 9. % q4

Fig. 1-Q. 5(a) : A PDA on input abbcbba
The PDA awepﬁng through final state is given by
M=({g,q,.q,}. {2, b,c), {a,b, 7}, 8, q,. % {q,))

Where the transition function 3 is given below :

1. ¥q,a,€) = (q,2) First n symbols are pushed onto the stack

2. &g, b,8) = (q,b) ‘

3, S(qo, c,8) = (q,8) ' o [State changes on c] '

4. &q,2,3) = (q,,¢€)] ‘ Last n symbols are matched with first n symbols in
5. 8q.b.b) = (q,.© | reverse order

6. 5q,&.29= (q,2) . [Accepted through final state]

A transition of the form 8(q,, a, €) = (q,, a) implies that always push a, irrespective of stack symbol.

Chapter 7 : Turing Machine (TM) [Total Marks - 20]

Q.3(b) Explain the types of Turing machine in detall. (10 Marks)
Ans.:

The types of Turing machine are as follows :

1. Two-way infinite Turing machine

In a standard turing machine number of positions for leftmost blanks is fixed and they are included in instantaneous description,
where the right-hand blanks are not included. ,

In the two way infinite Turing machine, there is an infinite sequence of blanks on each side of the input string
description, these blanks ‘are never shown.

I Jeasy solutions

. In an-instantaneous

.Scanned by CamScanner

! TheozofMerSdonce SMUZ ' . ' Mswg-a
2. Turing machine with multiple heads 1 Y ' :
A turing machine with single tape can have multiple heads. Let us consider 8 turing macl:ine with two heads H, and H,.,Eabh hud is
capable of performing read/write /move operation independently.
| BabaabbaBBB
H H
Fig. 1-Q. 3(b) : A Turing machine with two heads
The transition behavior of 2-head one tape Turing machine can be defined as given below :
5 (State, Symbol under H;, Symbol under H,) = (New state, (S;. M,). (S, M)
Where,
S, is the symbol to be written in the cell under H,.
M, is the movement (L, R, N) of H,.
8, is the symbol to be written in the cell under H,.
M, is the movement (L, R, N) of H,.
3. Multi-tape Turing machine

Multi-tape turing machine has multiple tuples with each tape having its own independent head. Let us consider the case of a two tape
turing machine. It is shown in Fig. 2-Q. 3(b). - '

' Fig. 2-Q. 3(b) : A two-tape turing machine
The transition behavior of a two-tape Turing machine can be defined as :
(qi2pa) = (RS M.(S,My)
Where,

q, is the current state,
q, is the next state,
.al is the symbol under the head on tape 1,
8, is the symbol under the head on tape 2,
.S, is the symbol written in the current cell on tape 1,
S, is the symbol written in the current cell on tape 2,
M, is the movement (L, R, N) theadbnmpel,
M, is the movement (L, R, N) of head on tape 2.

I Yeasy solutions

‘

Scanned by CamScanner

4, Non-determinkﬁc Turing machine

= -, Non-deterministic is a powerful feature, A non-deterministic TM machine might have, on certain combinations of state and-
symbol under the head, more than onc possible choice of behaviour.

~ Non-deterministic does not make a TM more powerful.

- For every non-deterministic TM, there is an equivalent deterministic TM.
- Itis easy to design a non-deterministic TM for certain class of problems.
— Astringis said to be accepted by a NDTM, if there is at least one sequence of moves that takes the machine to final state.

- An example of non-deterministic move for a TM is shown in Fig. 3-Q. 3(b).

Fig. 3-Q. 3(b) : A sample move for NDTM

The transition behaviour for state g, for TM of Fig. 3-Q. 3(b) can be written as
3(@»2) = {@»2R)(q.x R)}
5. Universal Turing machine
A general-purpose computer can be programmed to solve different types of problems. A TM can also behave like a general-purpose
computer. A general purpose computer solves a problem as given below :

1. A program is written in a high level language and its machme—code is obtained with the help of a complier.
2. Machine code is loaded in main memory.
3. Input to the program can also be loaded in memory.

4. Program stored in memory is executed line by line. Execution involves reading a line of code pointed by IP (insuuction- pointer),
decoding the code and executing it.

‘We can follow a similar approach for a TM. Such a TM is known as Universal Turing Machine. Universal Turing Machine (UTM)
can solve all sorts of solvable problems.

A Turing machine M is designed to solve a particular problem p, can be specified as :
1. The initial state q, of the TM M.
2. The transition function 8 of M can be specified as given :

If the current state of M is g; and the symbol under the head is s, then the machine movcs to state q; while changmg a, to . The move
of tape head may be :

'1. To-left,
2. To-Right or
3. Neutral
Such a move of TM can be represented by tuple
{(9p3,9;2,m) : g€ Q; aa€ I'; my e (To- left, To-Right, Neutral} }
UTM should be able to simulate every turing machine. Simulation of a Turing will involve :
1. Encoding behav.iour of a particular TM as a program.

[Yeasy-solutions '

Scanned by CamScanner

2. Execution of the above program by UTM.
A move oftheform(q,.n‘.qj,n].m,)canbcmptcsomedns 10" 10 10IH 10 10%,

Where K = 1,if moveisto the left
K

L}

2, if move is to the right
K = 3,if moveis ‘no-move’
State q is represented by 0,
State q, is represented by 00,
State q_ is represented by 0™
First symbol can be represented by 0,
Second symbol can be represented by 00 and so on.
Two elements of a tuple repménting a move are separated by 1.

Two moves are separated by 11.

Q. 4(a) Design a turing machine that computes a funcuonif(m,n) = mn i;e. addition of two Inpggrs. (10 Marks)
Ans. :

Addition of two unary numbers can be performed mmug] append operatlon To add two numbers 5 (say ;) and 3 (say) will
require following steps :

1. Initial configuration of tape :

2. w, is appended to w,.

ofoToTofolo]olm

While every ‘0" from w, is getting appended to @, ‘0’ from w, is erased. w, contains 8 0's, which is sum of 5 and 3.

Chapter 8 : Undecidability and Recursively Enumerable Languages

[Total Marks - 25]
Q. 1(d) What are recursive and recursively enumerable languages? (5 Marks)
Ans.:
Recusive language

A language over an alphabet X can be described nécursivcly. A recursive definition has three steps :
1. Specify some basic objects in the set.
2. Specify the rules for constructing more objet;ts from the objects already known.
3. Declaration that no objects except those constructed as given above are allowed in the set.

S a5y S0lutions]

Scanned by CamScanner

'. ! Thﬂ of ComButer Sclence SMUI - ,—__—_—-J—-' MOD2S Cil »
Recursively enumerable language)
There is a difference between recursively enumerable (Turing Acceptable) and recursive (Turing Decidable) 1‘“‘8““8‘
Following statements are equivalent :
1. The language L is Turing acceptable.
2. The language L is ncurslvely enumerable.
Following statements are equivalent
1. The language L is Turing decidable.
2. The language L is recursive.
3. There is an algorithm for mc(;gnizing L.
Every Turing decidable language is Turing acceptable.
- Every Turing acceptable language need not be Turing decidable.

Q.6 Write detailed note on (any two):-
(a) Post corespondence problem
(®) Haltingproblem ' |
(c) Rice’s theorem - _ ‘ (20 Marks)
Ans.: | | ' '
.(a) Post ;bonupondenee problem _
Let A and B be two ﬁon-cmpty lists of strings over .. A and B are given as below :
A = (XXX '
B

{Yr¥a Y3 - ¥l _
We say, there is a post correspondence between A and B if there is a sequence of one or more integers i, j, k ... m such that :
The StNg X; X; ... Xy, iS €QUAl 1O Y; ; - Yo

Example : To check whether ‘
A = ({a aba’,ab} and
B.= {a,abb}
has a solution.

We wi[l4have to find a sequence using which when the elements of A and B are listed, will produce identical strings.
’Ihc’roquimd sequence is (2, .l, 1,3) .

A,A A A, = aba’apsb=aba’b
aba’a’b=aba’b

B,B,B, B,
Thus, the PCP has solution.

We are accepting the un-decidability of post correspondence problem without proof.

b Yeasy solutions

Scanned by CamScanner

W Thoory of Computer Sclence (MU) - M(19) - 10
'(b) Halting problem
The halting problem of a Turing machine statcs :
| Glm.'m-lngmchheMmdmmwtmmmmm,dmumemMﬂummﬁuum
input .
Hﬂﬁng problem of a Turing machine is unsolvable.
Proof :

Moves of a turing machine can be represented using a binary number. Thus, a'During machine can be represented using a string over
Z*(0.1). _

Insolvability of halting problerh of a Turing machine can be proved through the method of contradiction.
Step 1: Let us assume that the halting problem of a Turing machine is solvable. There exists a machine H,(say). H, takes two inputs :
1. A string describing M.
2. An input o for machine M.

H, generates an output *“halt” if H, determines that M stops on input w; otherwise H outputs “loop”. Working of the machine H, is
shown below.

Step 2: Let us revise the machine H, as H, to take M as both inputs and H, shoald be able to determine if M will halt on M as its input.
A machine can be described as a string over 0 and 1.

TR
Step 3 : Let us construct 2 new Turing machine H, that takes output of H, as input and does the following :

1. If the output of H; is “loop” than H; halts.
2. If the output of H, is “halt” than H, will loop forever.

T—halt —» Machine Hq4 loops forever
—loop —» Machine Hg halts

H, will do the opposite of the output of H,.
Step 4 : Let us give H, itself as inputs to H,.

If H, halts on H, as input then H, would loop (that is how we constructed it).

If H, loops forever on H, a8 input H, halts (that is how we constructed it).

In either case, the result is wrong.

Hence,

H, does not exist.

[fH,doesnotexistthanH,doesnotexist. e
'If}l,doesnmexistmanﬂ,dmnotexm _‘

Scanned by CamScanner

-11.
Theory of uter Science (MU | - . M (19
(¢) Rice’stheorem

Every property that is satisfied by some but not all recursively enumerable language is un-decidable. Any pmpcrty' that :n sauxﬁedmlz
some recursively enumerable Ianguage but not all is known as nontrivial property. We have seen many properties of R.E. languages
are un-decidable. These properties include :

1. Given a TM M, is L(M) nonempty?
2. Given a TM M, is L(M) finite?

3. GivenaTM M, is L(M) regular?

4. Given aTM M, is L(M) recursive?

The Rice’s theorem can be proved by reducing some other unsolvable problem to pontrivial property of recursively enumerable
language.

Qaa

i Yeasy solunions

Scanned by CamScanner

! Theory of Computer Sclence (MU) e Q-1

Q.1 (a) Explain Chomsky Hierarchy.

fo. (5 Marks)
(b) Differentiate between PDA and NPDA. ‘ ! (5 Marks)
- (¢) Define Regular Expression and give regular expression for :
(i) Set of all strings over {0, 1} that end with 1 has no substring 00 (5 Marks)
(d) Explain Halting Problem. ’ (5 Marks)
Q.2 (a) Design a Finite State machine to determine whether ternary number (base 3) is divisible by 5.
: (10 Marks)
(b) Give and explain formal definition of Pumping Lemma for Regular Language and prove that
following language is notregular. L={a"b™ 'Im>0} (10 Marks)
Q.3 (a) Construct PDA accepting the language L = {a*"b" | n>0}. ‘ . (10 Marks)
(b) Consider the following gra'mmar
S—» icts|ictSeS|a
C-> b
For the string ‘ibtaeibta’ find the following :
@ Leftmost derivation e
(i) Rightmost derivation
(iii) Parse tree v
~(iv) Check if above grammar is ambiguous. (10 Marks)
Q.4 (a) Construct TM to check well-formedness of parenthesis. ' (10 Marks)‘
(b) Convert following CFG to CNF (10 Marks)
S - ASA|lAb
A - BIS
B - ble
Q.5 (a) Convert(0+1)(10)*(0 + 1) into NFA with e-moves and obtain DFA. ' (10 Hirlu)
(b) Coristmct Mealy and Moore Machine to convert each occurrence of 100 by 101. (10 Marks)
'Q.6 Wiite short note on (any four) | | (10 Marks)

(a) Closure properties of Context Free Language.

(b) Applications of Regular expression and Finite automata.
(¢) Rice’s Theorem.

d) Mealy and Moore Machine

(e) Universal Turing Machine

J e asy solutions]

Scanned by CamScannér

Theory of Computer Science (MU : ; ___Q-2

Q.1 (a) Differentiate DFA and NFA. (5 Marks)
" (b) ‘Design a DFA to accept string of 0's and 1's ending with the string 100. (5 Marks)

(©) Eiplair) the applications of Regular Expressions. (5 Marks)

(d) What are Recursive and Recursively Enumerable Languages? (5 Marks)

Q.2 (a) Design NFA for recognizing the strings that end in “aa" over X ={a,b} & convert above NFA to DFA.
(10 Marks)

- (b) Design moore m/c for follomng

- If input ends in *101’ then output should be A, if input ends in *110’ output should be B, otherwise _
output should be C and convert it into mealy m/c. ‘ (10 Marks)

Q.3 (a) Obtain a regular emmsion for the FA shown below : ' (10 Marks)

Fig. 1Q.3@)
(b) Explain the types of_furing machine in detail. : (10 Marks)
Q.4 (a) Design a turing machine that computes a function f(m,n) = m + n i.e. addition of two integers.
: (10 Marks)
(b) State and explain pumping Lemma for Context Free Languages. Find out whether the language
L= {x"y"z" | n 21} is context free or not. (10 Marks)
Q.5 (a) Design PDA for the following language :
L(M) = {wew” | w {a,b}*} where wR is reverse of w & ¢ is a constant. - (10 Marks)
(b) Convert the following Grammars to the Chomsky normal form (CNF).
S —0A0 | 1B1| BB
A —C
B—=S|A
C—S|e ‘. (10 Marks)
(& (EITEIIIIITE

Scanned by CamScanner

Q.6 Write detailed note on (any two) :
(a) Post Comespondence Problem
(b) Halting Problem.
P () " Rice’s Theorem.

(20 Marks)

QQa

(& SIS

Scanned by CamScanner .

I
|
i

Your Success is Our Goal

|||||||||||||||||||||||||| L T T T O T T I L AT T

Semester V- computer Engineering

LTI T um O T e E L L

Computer Networks

Database Management System

MIGROPHOGESSOH

| Theory of Computer Sclence

| Multimedia System (Dept. Elective)

: TechKnowledge
Publ:catlons

[
|
|
|
|
|
|
I

e e e e e e e 8t =~

\ Paper Solutions Trusted by lakhs of students from more than 15 years
Distributors [|)
| MUMBAI , |

Student's Agencies (I) Pvt. Ltd.

102, Konark Shram, Ground Floor, Behind Everest
Building, 156 Tardeo Road, Mumbai.

M :=91672 90777.

Vidyarthi Sales Agencies

Shop. No. 5, Hendre Mansion, Khotachiwadi,157/159,
].S.S Road, Girgaum, Mumbai. M :©98197 76110.

Bharat Sales Agency

Goregaonkar Lane, Behind Central Plaza Cinema,
Charnl Road, Mumbai. M :©86572 92797

Ved Book Distributors - Mr. Sachin Waingade
(For Library Orders)

M : B0975 71421 / 92208 77214,

E : mumbai@techknowledgebooks.com

BOOKS ARE AVAILABLE AT ALL LEADING BOOKSELLERS |

EMO46A Price70/-

v
P!
¥
3
- i
. 2 m.
"

Scanned by CamScanner

