Code: 231201

B.Tech 2nd Semester Exam., 2015

ENGINEERING CHEMISTRY

Time: 3 hours Full Marks: 70

Instructions:

- (i) The marks are indicated in the right-hand margin.
- (ii) There are NINE questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question No. 1 is compulsory.
- 1. Fill in the blanks/answer any seven questions: 2×7=14
 - (a) 50 ml of water sample require 1.5 ml M/50 HCl solution using methyl orange indicator. The temporary hardness of water is — ppm.
 - (b) Natural rubber is polymer of ---
 - (c) Terylene is condensation polymer of and —.
 - (d) Arrange hydrogen gas, LPG, water gas and biogas in increasing order of their calorific value.
 - (e) Aluminium vessels are used to store conc. HNO₃. Explain.

- (f) Why is boiling point of water increases when KCl added?
- (g) Large cathode and small anode area results in intense corrosion. Explain.
- (h) Arrange in increasing order of freezing point of 0.1 M solution of acetic acid, glucose, sodium chloride and calcium nitrate.
- (i) What is power alcohol?
- (j) Why are brass utensils tinned?
- (a) Describe the principle of lime-soda process of softening of water. Give chemical reaction involved during softening of water.

(b) What are advantages and disadvantages of lime-soda process? 5

2

(c) A water sample containing the following in mg/litre:

$$Ca(HCO_3)_2 = 16 \cdot 2$$

 $Mg(HCO_3)_2 = 14 \cdot 6$
 $MgCl_2 = 9 \cdot 5$
 $MgSO_4 = 1 \cdot 2$
 $CaCl_2 = 2 \cdot 22$
 $HCl = 3 \cdot 65$
 $CO_2 = 2 \cdot 2$
 $NaHCO_3 = 4 \cdot 2$

Calculate the amount of lime and soda required for softening 10 m³ water. 7

- 3. (a) What is flue gas? How is analysis of flue gas done by Orsat's apparatus? 2+4
 - (b) What is the significance of the flue gas analysis.

2

6

б

4

(c) A coal sample contains following percentage composition by weight:

$$C = 80$$
, $H = 6$, $O = 8$, $N = 6$

Find the minimum amount of oxygen and air by weight for complete combustion of 1 kg of coal. Also calculate the weight of air if 15% excess air is supplied (air contains 23% O₂ by weight).

- (a) Derive Nernst equation and discuss its application.
 - (b) Calculate the e.m.f. of a concentration cell at 25 °C consisting two Ag electrode immersed in a solution of Ag * of 0.01 M and 0.001 M concentration.
 - (c) For a cell reaction

$$2A + 3B^{*2} = 2A^{*3} + 3B$$

at 298 K the equilibrium constant is 1.0×10^4 . Calculate E° cell.

AK15-2770/529

5.	(a) (b)	but degree of polymenzation.	3	8.	(g)	Explain caustic embrittlement in boiler and how it can be prevented.
	(d)	What is glass transition temperature? Write the preparation and uses of	3 4		Ø	What are the causes of boiler corrosion? How can the boiler corrotion be prevented?
		(i) neoprene and (ii) nylon-6,6.	4		(¢)	What are the causes of— [i] scale formation;
6.	(e)	Discuss the mechanism of electrochemical corrosion.	3			(ii) priming and foaming? 4
	(BQ)	What are the factors that effect the rate of corrosion?	4	9.		te short notes on : 3½×4×14 Water-line corrotion
	(4)	How is corrosion prevented by cathodic protection?	3		(a) (b)	Crevices corrotion
	(d)	What is percentage of iron rusted (Fe ₂ O ₃ ·2H ₂ O) when its weight increased by 25%?	4		(c) (d)	Octane number Colligative properties
7.	(a)	Deduce the relationship between the boiling point elevation of a solution and mole fraction of dissolved solute.	6			***
	ŪН	Explain the terms hypertonic, isotonic and hypotonic solutions.	4			
	ଖ	At 100 °C the vapour pressure of solution of 4.5 g of solute in 108 g water is 742 mm. Find the boiling point of the solution $(K_b \text{ of } H_2O = 0.52 \text{ and water})$				
		vapour pressure at 100 °C is 760 mm).	4			