B.E. / B.Tech DEGREE END SEM EXAMINATIONS, APRIL/ MAY 2012 DEPARTMENT OF ELECTRONICS ENGINEERING B.E. ECE – II SEMESTER – Regulations 2009

EC 9151 – ELECTRON DEVICES

Time: 3 Hours

Max. Marks:100

Answer All Questions

Part-A (10 x 2 = 20 marks)

- 1. Draw the switching characteristics of PN junction diode and define its parameters.
- 2. A Si p-n junction at T = 300R with zero applied bias has doping concentrations of $N_d = 5 \times 10^6 \text{ cm}^{-3} N_a = 5 \times 10^{15} \text{ cm}^{-3}$. Determine the peak electric field in the space charge region of p-n junction.
- 3. Draw the minority carrier distribution of forward active mode for NPN transistor.
- 4. Define early effect.
- 5. Why an N-channel MOSFETs preferred over P-channel MOSFETs?
- 6. What is channel length modulation ?
- 7. Show that a reverse biased p-n junction can be used as a variable capacitor.
- 8. Compare the Schottky barrier diode and conventional p-n junction diode.
- 9. Define holding current and latching current of SCR.
- 10. Compare the VMOS and DMOS.

$PART - B (16 \times 5 = 80 \text{ marks})$

- 11. (i) Derive and explain the expression for ideal voltage-current characteristics of the p-n junction diode. (12)
 - (ii) A silicon p-n junction with a cross-sectional area of 10^{-4} cm² has the following properties at T = 300K : (4)

n region	p region
$N_{d} = 10^{17} \text{ cm}^{-3}$	Na = 5 x 10^{15} cm ⁻³
$\zeta_{p0} = 10^{-7} \text{s}$	$\zeta_{n0} = 10^{-6}$ s
$\mu_{n} = 850 \text{ cm}^{2}/\text{V-s}$	$\mu_n = 1250$ cm ² /V-s
$\mu_{p} = 320 \text{ cm}^{2}/\text{V-s}$	$\mu_p = 420$ cm ² /V-s

- (a) Calculate the reverse saturation current I, and determine the forward-bias current I at a forward-bias voltage of 0.5V.
- (b) Determine the ratio of hole current to total current at the space charge edge x_n.