Con. 3379-11.

(3 Hours)

RK-1245

[Total Marks: 100

N.B.: (1) Question No. 1 is compulsory

(2) Attempt any four out of remaining six questions.

- (3) Assume suitable data wherever required but justify the same.
- (4) Figures to the right indicate full marks.
- 1. Solve the following —

20

(a) State the properties of positive real function.

(b) Find poles and zeros of the impedance of the following network and plot it on s-plane.

- (c) Explain Y-parameters interms of Z-parameters.
- (d) State the properties of Hurwitz polynomial.
- 2. (a) The reduced incidence matrix of an oriented graph is.

10

$$\mathbf{A} = \begin{bmatrix} 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & -1 & -1 \\ -1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

- (i) Draw the graph.
- (ii) How many trees are possible for this graph?
- (iii) Write TIE set and Cut set.
- (b) The switch is closed at t = 0. Find value of I, di/dt, d^2i/dt^2 at $t = 0^+$. Assume 10 initial current of inductor to be zero for circuit given below.

3. (a) Find Thevenin's equivalent of circuit shown below to the left of X-X1.

Con. 3379-RK-1245-11.

(b) Determine the node voltage at node (1) and (2) of network shown in figure 10 below by using nodal analysis.

4. (a) Find Z and Y parameters.

10

(b) Realise the function in FI and FII forms.

10

$$Y(s) = \frac{s(s+2)(s+6)}{(s+1)(s+4)(s+8)}$$

5. (a) Check the following polynomials for Hurwitz. (i) $P(s) = s^4 + s^3 + 4s^2 + 2s + 3$ (ii) $P(s) = s^3 + 4s^2 + 5s + 20$.

10

10

use continued fraction Expansion. (b) Calculate the mesh currents for the circuit shown.

Con. 3379-RK-1245-11.

6. (a) Find three loop currents at $t = 0^+$.

10

(b) Find magnitude of VCCS by mesh analysis.

· 10

7. (a) Find i through circuit as shown in **figure** below if the switch is closed at t = 0. 10

Test which of the following are positive functions.

10

(i)
$$\frac{s+2}{s^2+3s+2}$$
 (ii) $\frac{s^2+6s+2}{s^2+3s+5}$

(ii)
$$\frac{s^2 + 6s + 2}{s^2 + 3s + 5}$$