
 [Introduction Unit I]

Operating Systems Page 1

UNIT I:Introduction

 What is an Operating System?

 Mainframe Systems

 Desktop Systems

 Multiprocessor Systems

 Distributed Systems

 Clustered System

 Real -Time Systems

 Handheld Systems

 Computing Environments

What is an Operating System?

A program that acts as an intermediary between

a user of a computer and the computer

hardware.

 Operating system goals:

 Execute user programs and make solving

user problems easier.

 Make the computer system convenient to

use.

 Use the computer hardware in an efficient

manner.

Computer System Components
1. Hardware – provides basic computing

resources (CPU, memory, I/O devices).

2. Operating system – controls and coordinates

the use of the hardware among the various

application programs for the various users.

3. Applications programs – define the ways in

which the system resources are used to solve

the computing problems of the users

(compilers, database systems, video games,

business programs).

4. Users (people, machines, other computers).

Abstract View of System Components

Operating System Definitions
 Resource allocator – manages and allocates

resources.

 Control program – controls the execution of

user programs and operations of I/O devices .

 Kernel – the one program running at all times
(all else being application programs).

Mainframe Systems
 Reduce setup time by batching similar jobs
 Automatic job sequencing – automatically

transfers control from one job to another.

First rudimentary operating system.

 Resident monitor

 initial control in monitor

 control transfers to job

 when job completes control transfers pack

to monitor

 [Introduction Unit I]

Operating Systems Page 2

Memory Layout for a Simple Batch

System

Multiprogrammed Batch Systems

OS Features Needed for

Multiprogramming
 I/O routine supplied by the system.

 Memory management – the system must

allocate the memory to several jobs.

 CPU scheduling – the system must choose

among several jobs ready to run.

 Allocation of devices.

Time-Sharing Systems–Interactive

Computing
 The CPU is multiplexed among several jobs

that are kept in memory and on disk (the

CPU is allocated to a job only if the job is in

memory).

 A job swapped in and out of memory to the

disk.

 On-line communication between the user and

the system is provided; when the operating

system finishes the execution of one

command, it seeks the next “control

statement” from the user’s keyboard.

 On-line system must be available for users to
access data and code.

Desktop Systems

 Personal computers – computer system
dedicated to a single user.

 I/O devices – keyboards, mice, display

screens, small printers.

 User convenience and responsiveness.

 Can adopt technology developed for larger

operating system’ often individuals have sole

use of computer and do not need advanced

CPU utilization of protection features.

 May run several different types of operating
systems (Windows, MacOS, UNIX, Linux)

 [Introduction Unit I]

Operating Systems Page 3

Parallel Systems

 Multiprocessor systems with more than on
CPU in close communication.

 Tightly coupled system – processors share

memory and a clock; communication usually

takes place through the shared memory.

 Advantages of parallel system:

 Increased throughput

 Economical

 Increased reliability

 graceful degradation

 fail-soft systems

 Symmetric multiprocessing (SMP)

 Each processor runs and identical copy of

the operating system.

 Many processes can run at once without

performance deterioration.

 Most modern operating systems support

SMP

 Asymmetric multiprocessing

 Each processor is assigned a specific task;

master processor schedules and allocated

work to slave processors.

 More common in extremely large systems

Symmetric Multiprocessing Architecture

Distributed Systems
 Distribute the computation among several

physical processors.

 Loosely coupled system – each processor has

its own local memory; processors

communicate with one another through

various communications lines, such as high-

speed buses or telephone lines.

 Advantages of distributed systems.

 Resources Sharing

 Computation speed up – load sharing

 Reliability

 Communications

 Requires networking infrastructure.

 Local area networks (LAN) or Wide area

networks (WAN)

 May be either client-server or peer-to-peer
systems.

General Structure of Client-
Server

Clustered Systems
 Clustering allows two or more systems to

share storage.

 Provides high reliability.

 Asymmetric clustering: one server runs the

application while other servers standby.

 [Introduction Unit I]

Operating Systems Page 4

 Symmetric clustering: all N hosts are running

the application.

Real-Time Systems
 Often used as a control device in a dedicated

application such as controlling scientific

experiments, medical imaging systems,

industrial control systems, and some display

systems.

 Well-defined fixed-time constraints.

 Real-Time systems may be either hard or soft

real-time.

 Hard real-time:

 Secondary storage limited or absent, data

stored in short term memory, or read-only

memory (ROM)

 Conflicts with time-sharing systems, not

supported by general-purpose operating

systems.

 Soft real-time

 Limited utility in industrial control of

robotics

 Useful in applications (multimedia, virtual

reality) requiring advanced operating-

system features.

Handheld Systems
 Personal Digital Assistants (PDAs)

 Cellular telephones

 Issues:

 Limited memory

 Slow processors & Small display screens.

Migration of Operating-System Concepts and

Features

Computing Environments
 Traditional computing
 Web-Based Computing

Operating-System Structures
 System Components
 Operating System Services
 System Calls
 System Programs
 System Structure
 Virtual Machines
 System Design and Implementation
 System Generation

Common System Components

 Process Management
 Main Memory Management
 File Management
 I/O System Management
 Secondary Management
 Networking
 Protection System
 Command-Interpreter System

 [Introduction Unit I]

Operating Systems Page 5

Process Management

 A process is a program in execution. A
process needs certain resources, including
CPU time, memory, files, and I/O devices, to
accomplish its task.

 The operating system is responsible for the
following activities in connection with
process management.
 Process creation and deletion.
 process suspension and resumption.
 Provision of mechanisms for:

 process synchronization
 process communication

Main-Memory Management

 Memory is a large array of words or bytes,
each with its own address. It is a repository
of quickly accessible data shared by the CPU
and I/O devices.

 Main memory is a volatile storage device. It
loses its contents in the case of system
failure.

 The operating system is responsible for the
following activities in connections with
memory management:
 Keep track of which parts of memory are

currently being used and by whom.
 Decide which processes to load when

memory space becomes available.
 Allocate and deallocate memory space as

needed.

File Management

 A file is a collection of related information
defined by its creator. Commonly, files
represent programs (both source and object
forms) and data.

 The operating system is responsible for the
following activities in connections with file
management:
 File creation and deletion.
 Directory creation and deletion.
 Support of primitives for manipulating

files and directories.
 Mapping files onto secondary storage.
 File backup on stable (nonvolatile)

storage media.

I/O System Management
 The I/O system consists of:
 A buffer-caching system
 A general device-driver interface
 Drivers for specific hardware devices

Secondary-Storage Management

 Since main memory (primary storage) is
volatile and too small to accommodate all
data and programs permanently, the
computer system must provide secondary
storage to back up main memory.

 Most modern computer systems use disks as
the principle on-line storage medium, for
both programs and data.

 The operating system is responsible for the
following activities in connection with disk
management:
 Free space management
 Storage allocation
 Disk scheduling

Networking (Distributed Systems)

 A distributed system is a collection
processors that do not share memory or a
clock. Each processor has its own local
memory.

 The processors in the system are connected
through a communication network.

 Communication takes place using a protocol.
 A distributed system provides user access to

various system resources.
 Access to a shared resource allows:

 Computation speed-up
 Increased data availability
 Enhanced reliability

 [Introduction Unit I]

Operating Systems Page 6

Protection System

 Protection refers to a mechanism for
controlling access by programs, processes, or
users to both system and user resources.

 The protection mechanism must:
 distinguish between authorized and

unauthorized usage.
 specify the controls to be imposed.
 provide a means of enforcement.

Command-Interpreter System

 Many commands are given to the operating
system by control statements which deal
with:
 process creation and management
 I/O handling
 secondary-storage management
 main-memory management
 file-system access
 protection
 networking

 The program that reads and interprets control
statements is called variously:
 command-line interpreter
 shell (in UNIX)

 Its function is to get and execute the next
command statement.

Operating System Services

 Program execution – system capability to
load a program into memory and to run it.

 I/O operations – since user programs cannot
execute I/O operations directly, the operating
system must provide some means to perform
I/O.

 File-system manipulation – program
capability to read, write, create, and delete
files.

 Communications – exchange of information
between processes executing either on the
same computer or on different systems tied
together by a network. Implemented via
shared memory or message passing.

 Error detection – ensure correct computing
by detecting errors in the CPU and memory
hardware, in I/O devices, or in user
programs.

Additional Operating System
Functions

Additional functions exist not for helping the
user, but rather for ensuring efficient system
operations.

• Resource allocation – allocating resources
to multiple users or multiple jobs running
at the same time.

• Accounting – keep track of and record
which users use how much and what
kinds of computer resources for account
billing or for accumulating usage
statistics.

• Protection – ensuring that all access to
system resources is controlled.

System Calls

 System calls provide the interface between a
running program and the operating system.
 Generally available as assembly-language

instructions.
 Languages defined to replace assembly

language for systems programming allow
system calls to be made directly (e.g., C,
C++)

 Three general methods are used to pass
parameters between a running program and
the operating system.
 Pass parameters in registers.
 Store the parameters in a table in memory,

and the table address is passed as a
parameter in a register.

 Push (store) the parameters onto the stack
by the program, and pop off the stack by
operating system.

 [Introduction Unit I]

Operating Systems Page 7

Passing of Parameters As A Table

Types of System Calls

 Process control
 File management
 Device management
 Information maintenance
 Communications

MS-DOS Execution

UNIX Running Multiple Programs

Communication ModelsCommunication
may take place using either message
passing or shared memory.

System Programs

 System programs provide a convenient
environment for program development and
execution. The can be divided into:
 File manipulation
 Status information
 File modification
 Programming language support
 Program loading and execution
 Communications
 Application programs

 Most users’ view of the operation system is
defined by system programs, not the actual
system calls.

 [Introduction Unit I]

Operating Systems Page 8

MS-DOS System Structure

 MS-DOS – written to provide the most
functionality in the least space
 not divided into modules
 Although MS-DOS has some structure, its

interfaces and levels of functionality are
not well separated

MS-DOS Layer Structure

UNIX System Structure

 UNIX – limited by hardware functionality,
the original UNIX operating system had
limited structuring. The UNIX OS consists
of two separable parts.
 Systems programs
 The kernel

 Consists of everything below the
system-call interface and above the
physical hardware

 Provides the file system, CPU
scheduling, memory management, and
other operating-system functions; a
large number of functions for one
level.

UNIX System
Structure

Layered Approach

 The operating system is divided into a
number of layers (levels), each built on top of
lower layers. The bottom layer (layer 0), is
the hardware; the highest (layer N) is the user
interface.

 With modularity, layers are selected such that
each uses functions (operations) and services
of only lower-level layers.

An Operating System Layer

 [Introduction Unit I]

Operating Systems Page 9

OS/2 Layer Structure

Microkernel System Structure

 Moves as much from the kernel into “user”
space.

 Communication takes place between user
modules using message passing.

 Benefits:
 - easier to extend a microkernel
 - easier to port the operating system to new

architectures
 - more reliable (less code is running in kernel

mode)
 - more secure

Windows NT Client-Server Structure

Virtual Machines

 A virtual machine takes the layered approach
to its logical conclusion. It treats hardware
and the operating system kernel as though

they were all hardware.
 A virtual machine provides an interface

identical to the underlying bare hardware.
 The operating system creates the illusion of

multiple processes, each executing on its own
processor with its own (virtual) memory.

 The resources of the physical computer are
shared to create the virtual machines.
 CPU scheduling can create the appearance

that users have their own processor.
 Spooling and a file system can provide

virtual card readers and virtual line
printers.

 A normal user time-sharing terminal
serves as the virtual machine operator’s
console.

System Models

Advantages/Disadvantages of Virtual
Machines

 The virtual-machine concept provides
complete protection of system resources
since each virtual machine is isolated from all
other virtual machines. This isolation,
however, permits no direct sharing of
resources.

 A virtual-machine system is a perfect vehicle
for operating-systems research and
development. System development is done
on the virtual machine, instead of on a
physical machine and so does not disrupt

 [Introduction Unit I]

Operating Systems Page 10

normal system operation.
 The virtual machine concept is difficult to

implement due to the effort required to
provide an exact duplicate to the underlying
machine.

Java Virtual Machine

 Compiled Java programs are platform-neutral
bytecodes executed by a Java Virtual
Machine (JVM).

 JVM consists of
 - class loader ; - class verifier ; -

runtime interpreter
 Just-In-Time (JIT) compilers increase

performance

Java Virtual Machine

System Design Goals

 User goals – operating system should be
convenient to use, easy to learn, reliable,
safe, and fast.

 System goals – operating system should be
easy to design, implement, and maintain, as
well as flexible, reliable, error-free, and
efficient.

Mechanisms and Policies

 Mechanisms determine how to do something,
policies decide what will be done.

 The separation of policy from mechanism is a

very important principle, it allows maximum
flexibility if policy decisions are to be
changed later.

System Implementation

 Traditionally written in assembly language,
operating systems can now be written in
higher-level languages.

 Code written in a high-level language:
 can be written faster.
 is more compact.
 is easier to understand and debug.

 An operating system is far easier to port
(move to some other hardware) if it is written
in a high-level language.

System Generation (SYSGEN)

 Operating systems are designed to run on any
of a class of machines; the system must be
configured for each specific computer site.

 SYSGEN program obtains information
concerning the specific configuration of the
hardware system.

 Booting – starting a computer by loading the
kernel.

 Bootstrap program – code stored in ROM
that is able to locate the kernel, load it into
memory, and start its execution.

 Processes
 Process Concept
 Process Scheduling
 Operations on Processes
 Cooperating Processes
 Interprocess Communication
 Communication in Client-Server

Systems

Process Concept

 An operating system executes a variety of
programs:

 [Introduction Unit I]

Operating Systems Page 11

 Batch system – jobs
 Time-shared systems – user programs or

tasks
 Textbook uses the terms job and process

almost interchangeably.
 Process – a program in execution; process

execution must progress in sequential
fashion.

 A process includes:
 program counter
 stack
 data section

Process State

 As a process executes, it changes state
 new: The process is being created.
 running: Instructions are being executed.
 waiting: The process is waiting for some

event to occur.
 ready: The process is waiting to be

assigned to a process.
 terminated: The process has finished

execution.

 Diagram of Process State
Process Control Block (PCB)

Information associated with each process.
 Process state
 Program counter
 CPU registers
 CPU scheduling information
 Memory-management information
 Accounting information
 I/O status information

Process Control Block (PCB)

CPU Switch From Process to Process

Process Scheduling Queues

 Job queue – set of all processes in the system.
 Ready queue – set of all processes residing in

main memory, ready and waiting to execute.
 Device queues – set of processes waiting for

an I/O device.
 Process migration between the various

queues.

Ready Queue And Various I/O Device
Queues

 [Introduction Unit I]

Operating Systems Page 12

Representation of Process Scheduling

Schedulers

 Long-term scheduler (or job scheduler) –
selects which processes should be brought
into the ready queue.

 Short-term scheduler (or CPU scheduler) –
selects which process should be executed
next and allocates CPU.

Addition of Medium Term Scheduling

 Short-term scheduler is invoked very

frequently (milliseconds)  (must be fast).
 Long-term scheduler is invoked very

infrequently (seconds, minutes)  (may be
slow).

 The long-term scheduler controls the degree
of multiprogramming.

 Processes can be described as either:
 I/O-bound process – spends more time

doing I/O than computations, many short
CPU bursts.

 CPU-bound process – spends more time
doing computations; few very long CPU
bursts.

Context Switch

 When CPU switches to another process, the
system must save the state of the old process
and load the saved state for the new process.

 Context-switch time is overhead; the system
does no useful work while switching.

 Time dependent on hardware support.

Process Creation

 Parent process create children processes,
which, in turn create other processes, forming
a tree of processes.

 [Introduction Unit I]

Operating Systems Page 13

 Resource sharing
 Parent and children share all resources.
 Children share subset of parent’s

resources.
 Parent and child share no resources.

 Execution
 Parent and children execute concurrently.
 Parent waits until children terminate.

 Address space
 Child duplicate of parent.
 Child has a program loaded into it.

 UNIX examples
 fork system call creates new process
 exec system call used after a fork to

replace the process’ memory space with a
new program.

Processes Tree on a UNIX System

Process Termination

 Process executes last statement and asks the
operating system to decide it (exit).
 Output data from child to parent (via

wait).
 Process’ resources are deallocated by

operating system.
 Parent may terminate execution of children

processes (abort).
 Child has exceeded allocated resources.
 Task assigned to child is no longer

required.
 Parent is exiting.

 Operating system does not allow child
to continue if its parent terminates.

 Cascading termination.

Cooperating Processes

 Independent process cannot affect or be
affected by the execution of another process.

 Cooperating process can affect or be affected
by the execution of another process

 Advantages of process cooperation
 Information sharing
 Computation speed-up
 Modularity
 Convenience

Producer-Consumer Problem

 Paradigm for cooperating processes, producer
process produces information that is
consumed by a consumer process.
 unbounded-buffer places no practical limit

on the size of the buffer.
 bounded-buffer assumes that there is a

fixed buffer size.

Bounded-Buffer – Shared-Memory
Solution

 Shared data
#define BUFFER_SIZE 10
Typedef struct {
 . . .
} item;
item buffer[BUFFER_SIZE];
int in = 0;
int out = 0;

 Solution is correct, but can only use

 [Introduction Unit I]

Operating Systems Page 14

BUFFER_SIZE-1 elements

Bounded-Buffer – Producer Process

 item nextProduced;
 while (1) {

 while (((in + 1) % BUFFER_SIZE) ==
out)

 ; /* do nothing */
 buffer[in] = nextProduced;
 in = (in + 1) % BUFFER_SIZE;
 }

Bounded-Buffer – Consumer Process

 item nextConsumed;

 while (1) {
 while (in == out)
 ; /* do nothing */
 nextConsumed = buffer[out];
 out = (out + 1) % BUFFER_SIZE;
 }

Interprocess Communication (IPC)

 Mechanism for processes to communicate
and to synchronize their actions.

 Message system – processes communicate
with each other without resorting to shared
variables.

 IPC facility provides two operations:
 send(message) – message size fixed or

variable
 receive(message)

 If P and Q wish to communicate, they need
to:
 establish a communication link between

them
 exchange messages via send/receive

 Implementation of communication link
 physical (e.g., shared memory, hardware

bus)
 logical (e.g., logical properties)

Implementation Questions

 How are links established?
 Can a link be associated with more than two

processes?
 How many links can there be between every

pair of communicating processes?
 What is the capacity of a link?
 Is the size of a message that the link can

accommodate fixed or variable?
 Is a link unidirectional or bi-directional?

Direct Communication

 Processes must name each other explicitly:
 send (P, message) – send a message to

process P
 receive(Q, message) – receive a message

from process Q
 Properties of communication link

 Links are established automatically.
 A link is associated with exactly one pair

of communicating processes.
 Between each pair there exists exactly one

link.
 The link may be unidirectional, but is

usually bi-directional.

Indirect Communication

 Messages are directed and received from
mailboxes (also referred to as ports).
 Each mailbox has a unique id.
 Processes can communicate only if they

share a mailbox.
 Properties of communication link

 Link established only if processes share a
common mailbox

 A link may be associated with many
processes.

 Each pair of processes may share several
communication links.

 Link may be unidirectional or bi-
directional.

 Operations
 create a new mailbox

 [Introduction Unit I]

Operating Systems Page 15

 send and receive messages through
mailbox

 destroy a mailbox
 Primitives are defined as:
 send(A, message) – send a message to

mailbox A
 receive(A, message) – receive a message

from mailbox A
 Mailbox sharing

 P1, P2, and P3 share mailbox A.
 P1, sends; P2 and P3 receive.
 Who gets the message?

 Solutions
 Allow a link to be associated with at most

two processes.
 Allow only one process at a time to

execute a receive operation.
 Allow the system to select arbitrarily the

receiver. Sender is notified who the
receiver was.

 CPU Scheduling
 Basic Concepts

 Scheduling Criteria

 Scheduling Algorithms

 Multiple-Processor Scheduling

 Real-Time Scheduling

 Algorithm Evaluation

Basic Concepts
 Maximum CPU utilization obtained with

multiprogramming

 CPU–I/O Burst Cycle – Process execution

consists of a cycle of CPU execution and I/O

wait.

 CPU burst distribution

Alternating Sequence of CPU And I/O

Bursts

 Histogram of CPU-burst Times

CPU Scheduler
 Selects from among the processes in memory

that are ready to execute, and allocates the

CPU to one of them.

 [Introduction Unit I]

Operating Systems Page 16

 CPU scheduling decisions may take place

when a process:

1. Switches from running to waiting state.

2. Switches from running to ready state.

3. Switches from waiting to ready.

4. Terminates.

 Scheduling under 1 and 4 is nonpreemptive.

 All other scheduling is preemptive.

Dispatcher

 Dispatcher module gives control of the CPU
to the process selected by the short-term
scheduler; this involves:
 switching context

 switching to user mode

 jumping to the proper location in the user

program to restart that program

 Dispatch latency – time it takes for the
dispatcher to stop one process and start
another running.

Scheduling Criteria

 CPU utilization – keep the CPU as busy as
possible

 Throughput – # of processes that complete

their execution per time unit

 Turnaround time – amount of time to execute

a particular process

 Waiting time – amount of time a process has

been waiting in the ready queue

 Response time – amount of time it takes from
when a request was submitted until the first
response is produced, not output (for time-
sharing environment)

Optimization Criteria

 Max CPU utilization
 Max throughput

 Min turnaround time

 Min waiting time

 Min response time

First-Come, First-Served (FCFS) Scheduling

 Process Burst Time

 P1 24

 P2 3

 P3 3




 Suppose that the processes arrive in the

order: P1 , P2 , P3

 The Gantt Chart for the schedule is:

 Waiting time for P1 = 0; P2 = 24; P3 = 27

 Average waiting time: (0 + 24 + 27)/3 = 17

Suppose that the processes arrive in the order

 P2 , P3 , P1 .

 The Gantt chart for the schedule is:

Waiting time for P1 = 6; P2 = 0; P3 = 3

 Average waiting time: (6 + 0 + 3)/3 = 3

 Much better than previous case.

 Convoy effect short process behind long
process

P P P

2 2 30

 [Introduction Unit I]

Operating Systems Page 17

Shortest-Job-First (SJR) Scheduling
 Associate with each process the length of its

next CPU burst. Use these lengths to

schedule the process with the shortest time.

 Two schemes:

 nonpreemptive – once CPU given to the

process it cannot be preempted until

completes its CPU burst.

 preemptive – if a new process arrives with

CPU burst length less than remaining time

of current executing process, preempt.

This scheme is know as the

Shortest-Remaining-Time-First (SRTF).

 SJF is optimal – gives minimum average
waiting time for a given set of processes.

Example of Non-Preemptive SJF

 Process Arrival Time Burst Time
 7 P1 0.0

 4 P2 2.0

 1 P3 4.0

 4 P4 5.0

 SJF (non-preemptive)


 Average waiting time = (0 + 6 + 3 + 7)/4 - 4

Example of Preemptive SJF
 Process Arrival Time Burst Time

 P1 0.0 7

 P2 2.0 4

 P3 4.0 1

 P4 5.0 4

 SJF (preemptive)

Average waiting time = (9 + 1 + 0 +2)/4 - 3

Determining Length of Next CPU

Burst
 Can only estimate the length.

 Can be done by using the length of previous

CPU bursts, using exponential averaging.

Prediction of the Length of the Next

CPU Burst

P1 P3 P2

7 3 0 8

 [Introduction Unit I]

Operating Systems Page 18

Examples of Exponential Averaging
  =0


 n+1 = n

 Recent history does not count.

  =1


 n+1 = tn

 Only the actual last CPU burst counts.

 If we expand the formula, we get:

n+1 =  tn+(1 - )  tn -1 + …

 +(1 - )j  tn -1 + …

 +(1 - )n=1 tn 0

 Since both  and (1 - ) are less than or

equal to 1, each successive term has less

weight than its predecessor.

Priority Scheduling
 A priority number (integer) is associated with

each process

 The CPU is allocated to the process with the

highest priority (smallest integer  highest

priority).

 Preemptive

 nonpreemptive

 SJF is a priority scheduling where priority is

the predicted next CPU burst time.

 Problem  Starvation – low priority

processes may never execute.

 Solution  Aging – as time progresses

increase the priority of the process.

Round Robin (RR)
 Each process gets a small unit of CPU time

(time quantum), usually 10-100 milliseconds.

After this time has elapsed, the process is

preempted and added to the end of the ready

queue.

 If there are n processes in the ready queue

and the time quantum is q, then each process

gets 1/n of the CPU time in chunks of at most

q time units at once. No process waits more

than (n-1)q time units.

 Performance

 q large  FIFO

 q small  q must be large with respect to

context switch, otherwise overhead is too

high.

Example of RR with Time Quantum = 20

 Process Burst Time

 P1 53

 P2 17

 P3 68

 P4 24

P1 P2 P3 P4 P1 P3 P4

0 2 3 5 7 9 11 12

 [Introduction Unit I]

Operating Systems Page 19

 The Gantt chart is:

 Typically, higher average turnaround than

SJF, but better response.

Time Quantum and Context Switch

Time

Turnaround Time Varies With The Time

Quantum

Multilevel Queue
 Ready queue is partitioned into separate

queues:

foreground (interactive)

background (batch)

 Each queue has its own scheduling algorithm,

foreground – RR

background – FCFS

 Scheduling must be done between the

queues.

 Fixed priority scheduling; (i.e., serve all

from foreground then from background).

Possibility of starvation.

 Time slice – each queue gets a certain

amount of CPU time which it can

P1 P3 P2

6 3 30 0

 [Introduction Unit I]

Operating Systems Page 20

schedule amongst its processes; i.e., 80%

to foreground in RR

 20% to background in FCFS

Multilevel Queue Scheduling

Multilevel Feedback Queue

 A process can move between the various

queues; aging can be implemented this way.

 Multilevel-feedback-queue scheduler defined

by the following parameters:

 number of queues

 scheduling algorithms for each queue

 method used to determine when to

upgrade a process

 method used to determine when to demote

a process

 method used to determine which queue a

process will enter when that process needs

service

Example of Multilevel Feedback

Queue
 Three queues:

 Q0 – time quantum 8 milliseconds

 Q1 – time quantum 16 milliseconds

 Q2 – FCFS

 Scheduling

 A new job enters queue Q0 which is

served FCFS. When it gains CPU, job

receives 8 milliseconds. If it does not

finish in 8 milliseconds, job is moved to

queue Q1.

 At Q1 job is again served FCFS and
receives 16 additional milliseconds. If it
still does not complete, it is preempted
and moved to queue Q2.

Multilevel Feedback Queues

Multiple-Processor Scheduling
 CPU scheduling more complex when

multiple CPUs are available.

 Homogeneous processors within a

multiprocessor.

 [Introduction Unit I]

Operating Systems Page 21

 Load sharing

 Asymmetric multiprocessing – only one
processor accesses the system data structures,
alleviating the need for data sharing.

Real-Time Scheduling
 Hard real-time systems – required to

complete a critical task within a guaranteed
amount of time.

 Soft real-time computing – requires that
critical processes receive priority over less
fortunate ones.

Dispatch Latency

Algorithm Evaluation
 Deterministic modeling – takes a particular

predetermined workload and defines the

performance of each algorithm for that

workload.

 Queueing models

 ImplementationEvaluation of CPU

Schedulers by Simulation

Solaris 2 Scheduling

Windows 2000 Priorities

UNIT I

 [Introduction Unit I]

Operating Systems Page 22

2 marks with Answers

1. What are the advantages of
Multiprocessor System?
i) Increased throughput
ii) Economy of scale
iii) Increased reliability

2. Define Hand Held System.

 Hand Held System includes
PDAs, Palm Pilots or cellular phones
with connectivity to a network such as
Internet.

3. List the principle advantages of the
multiprogramming.
 Multiprogramming system
increases the CPU utilization by
organizing jobs so that the CPU always
has a one to execute.

4. What is a control program?
 A control program manages the
execution of the user programs to
prevent errors and improper use of the
computer. It is concerned with the
operation and control of I/O devices.

5. Define the term Fault tolerant.
Functions can be distributed among
several processors, then the failure of
one process will not halt the system,
only slow it down. The ability to
continue providing service proportional
to the level of surviving hardware is
called graceful degradation. System
designed for graceful degradation are
called fault tolerant.

6. List the OS Services.
Program execution
I/o operations
File-system manipulations
Communications
Error detection
Resource allocation

Accounting
Protection

7. Define Operating System.
 Os is a program that manages the
computer hardware. It also provides a
basis for application programs and act as
an intermediary between a user of a
computer and the computer hardware.

8. Mention the Categories of a System
program.
File management
Status information
File modification
Programming language support
Program loading and execution
Communications

9. Define Interprocess communication.

 IPC provides a mechanism to allow
processes to communicate and to
synchronize their actions without sharing
the same address space. IPC is
particularly useful in a distributed
environment where the communicating
processes may reside on different
computers connected with a network.

10. What is scheduler?

The os must select, for scheduling
purpose, processes from the queue in
some fashion. The selection process is
carried out by the appropriate scheduler.

Or The processes are kept in the ready
queue. The scheduler is used to decide
which process is to assign the cpu from
the queue.

11. What is a process control block?

Each process is represented in the os by
a process control block(PCB) also called
task control block. A PCB contains
many pieces of information associated
with a specific process.

 [Introduction Unit I]

Operating Systems Page 23

12. Define system call.
System call provides a interface between
a process and the operating system.
System calls are generally available as a
assembly language instructions.

PART-B

1. Write short notes on Batch system and
multiprogrammed system. (8)

2. List and explain the operating system
services. (8)

3. Describe multiprocessor system. (8)
4. Discuss about Distributed System. (8)
5. Describe about the system components.

 (16)
6. Explain the various Process scheduling

algorithms. (16)

