
eCAD & VLSI

LABORATORY MANUAL

(R18A0489)

B.TECH
(IV YEAR – I SEM)

(2021-22)

Prepared by:

Mrs M.Anusha, Assistant Professor

Mr K.Suresh, Assistant Professor

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

MALLA REDDY COLLEGE

OF ENGINEERING & TECHNOLOGY
(Autonomous Institution – UGC, Govt. of India)

Recognized under 2(f) and 12 (B) of UGC ACT 1956
Affiliated to JNTUH, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC – ‘A’ Grade - ISO 9001:2015 Certified

Maisammaguda, Dhulapally (Post Via. Kompally), Secunderabad – 500100, Telangana State, India.

(2022-2023)

Mr. M Ramanjaneyulu, Assistant Professor
Mrs K Bhavana, Assistant Professor

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT.OF ECE

i

ELECTRONICS & COMMUNICATION ENGINEERING

VISION

To evolve into a center of excellence in Engineering Technology through creative and innovative
practices in teaching-learning, promoting academic achievement & research excellence to produce
internationally accepted competitive and world class professionals.

MISSION

To provide high quality academic programmes, training activities, research facilities and
opportunities supported by continuous industry institute interaction aimed at employability,
entrepreneurship, leadership and research aptitude among students.

QUALITY POLICY

 Impart up-to-date knowledge to the students in Electronics & Communication area to make

them quality engineers.

 Make the students experience the applications on quality equipment and tools.

 Provide systems, resources and training opportunities to achieve continuous improvement.

 Maintain global standards in education, training and services.

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT.OF ECE

ii

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

PEO1: PROFESSIONALISM & CITIZENSHIP
To create and sustain a community of learning in which students acquire knowledge

and learn to apply it professionally with due consideration for ethical, ecological and economic
issues.

PEO2: TECHNICAL ACCOMPLISHMENTS
To provide knowledge based services to satisfy the needs of society and the industry by

providing hands on experience in various technologies in core field.

PEO3: INVENTION, INNOVATION AND CREATIVITY
To make the students to design, experiment, analyze, interpret in the core field with the

help of other multi disciplinary concepts wherever applicable.

PEO4: PROFESSIONAL DEVELOPMENT

To educate the students to disseminate research findings with good soft skills and become a
successful entrepreneur.

PEO5: HUMAN RESOURCE DEVELOPMENT

To graduate the students in building national capabilities in technology,

education and research.

PSO1

PROGRAMME SPECIFIC OBJECTIVES (PSOs)

To develop a student community who acquire knowledge by ethical learning

and fulfill the societal and industry needs in various technologies of core field.

PSO2

To nurture the students in designing, analyzing and interpreting required in research and
development with exposure in multi disciplinary technologies in order to mould them as successful
industry ready engineers/entrepreneurs

PSO3

To empower students with all round capabilities who will be useful in making nation strong in
technology, education and research domains.

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT.OF ECE

iii

PROGRAM OUTCOMES (POs)

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering
fundamentals, and an engineering specialization to the solution of complex engineering
problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex
engineering problems reaching substantiated conclusions using first principles of
mathematics, natural sciences, and engineering sciences.

3. Design / development of solutions: Design solutions for complex engineering problems and
design system components or processes that meet the specified needs with appropriate
consideration for the public health and safety, and the cultural, societal, and environmental
considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research
methods including design of experiments, analysis and interpretation of data, and synthesis
of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and
modern engineering and IT tools including prediction and modeling to complex engineering
activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess
societal, health, safety, legal and cultural issues and the consequent responsibilities relevant
to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering
solutions in societal and environmental contexts, and demonstrate the knowledge of, and
need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and

norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader
in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the
engineering community and with society at large, such as, being able to comprehend and write
effective reports and design documentation, make effective presentations, and give and receive
clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the
engineering and management principles and apply these to one’s own work, as a member
and leader in a team, to manage projects and in multi disciplinary environments.

12. Life- long learning: Recognize the need for, and have the preparation and ability to engage
in independent and life-long learning in the broadest context of technological change.

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT.OF ECE

iv

LABORATORY RULES

General Rules of Conduct in Laboratories:

1. You are expected to arrive on time and not depart before the end of a laboratory.
2. You must not enter a lab unless you have permission from a technician or lecturer.
3. You are expected to comply with instructions, written or oral, that the laboratory

Instructor gives you during the laboratory session.
4. You should behave in an orderly fashion always in the lab.
5. You must not stand on the stools or benches in the laboratory.
6. Keep the workbench tidy and do not place coats and bags on the benches.
7. You must ensure that at the end of the laboratory session all equipment used is stored

away where you found it.
8. You must put all rubbish such as paper outside in the corridor bins. Broken components

should be returned to the lab technician for safe disposal.
9. You must not remove test equipment, test leads or power cables from any lab without

permission.
10. Eating, smoking and drinking in the laboratories are forbidden.
11. The use of mobile phones during laboratory sessions is forbidden.
12. The use of email or messaging software for personal communications during laboratory

sessions is forbidden.
13. Playing computer games in laboratories is forbidden.

Specific Safety Rules for Laboratories:

1. You must not damage or tamper with the equipment or leads.

2. You should inspect laboratory equipment for visible damage before using it. If there is a

problem with a piece of equipment, report it to the technician or lecturer. DONOT return

equipment to a storage area.

3. You should not work on circuits where the supply voltage exceeds 40 volts without very

specific approval from your lab supervisor. If you need to work on such circuits, you should

contact your supervisor for approval and instruction on how to do this safely before

commencing the work.

4. Always use an appropriate stand for holding your soldering iron.

5. Turn off your soldering iron if it is unlikely to be used for more than 10 minutes.

6. Never leave a hot soldering iron unattended.

7. Never touch a soldering iron element or bit unless the iron has been disconnected from the mains

and has had adequate time to cool down.

8. Never strip insulation from a wire with your teeth or a knife, always use an appropriate wire

stripping tool.

9. Shield wire with your hands when cutting it with a pliers to prevent bits of wire flying about the

bench.

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT.OF ECE

v

CYCLE-I

S.NO.

EXPERIMENT NAME

PAGE
NO.

1 HDL code to realize all the logic gates 1

2
Design of Full adder using 3 modeling styles

8

3 Design Of 2-To-4 Decoder 12

4 Design Of 8-To-3 Encoder (without and with parity) 14

5 Design Of 4 Bit Binary To Gray Converter 15

6
Design Of Flip Flops: SR, D, JK

17

7
Design of Multiplexer

22

8 Ripple Counters Realization-(Mod -10 & Mod-12) 26

9 Design of Sequence Detector (Finite State Machine- Mealy and Moore
Machines)

36

10 Design of ALU to Perform – ADD, SUB, AND-OR, 1’s and 2’s Compliment,
Multiplication, and Division.

CYCLE-II

1 CMOS INVERTER 40

2 NAND Gate 44

3 NOR Gate 48

4 XOR Gate 51

5 CMOS 1-Bit Full Adder 55

6 Common Source Amplifier 58

7 Differential Amplifier 62

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT.OF ECE

6 | P a g e

EXPERIMENT: 1

HDL CODE TO REALIZE ALL LOGIC GATES

AIM: To develop the source code for logic gates by using VERILOG and obtain the simulation, synthesis,
place and route and implement into FPGA.

SOFTWARE & HARDWARE:

XILINX-VIVADO

LOGIC DIAGRAM:

AND GATE: OR GATE:

LOGIC DIAGRAM: TRUTH TABLE: LOGICDIAGRAM TRUTH TABLE:

NOT GATE: NAND GATE:

LOGIC DIAGRAM: TRUTH TABLE: LOGICDIAGRAM TRUTH TABLE

NOR GATE: XOR GATE:

LOGIC DIAGRAM: TRUTH TABLE: LOGICDIAGRAM TRUTH TABLE:

A B Y=A+B

0 0 0

0 1 1

1 0 1

1 1 1

A B Y=AB

0 0 0

0 1 0

1 0 0

1 1 1

A B Y=(AB)’

0 0 1

0 1 1

1 0 1

1 1 0

A Y=A’

0 0

0 1

A B Y=(A+B)’

0 0 1

0 1 0

1 0 0

1 1 0

A B
0 0 0

0 1 1

1 0 1

1 1 0

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT.OF ECE

7 | P a g e

XNOR GATE:

 LOGIC DIAGRAM: TRUTH TABLE:

VERILOG SOURCE CODE:

module logicgates1(a, b, c);
 input a;
 input b;
 OUTPUT: [6:0] c;
 assign c[0]= a & b;
 assign c[1]= a | b;
 assign c[2]= ~(a & b);
 assign c[3]= ~(a | b);
 assign c[4]= a ^ b;
 assign c[5]= ~(a ^ b);
 assign c[6]= ~ a;

endmodule

Simulation output:

RESULT:
 Thus the OUTPUT’s of all logic gates are verified by synthesizing and simulating the VERILOG
code.

A B
0 0 1

0 1 0

1 0 0

1 1 1

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT.OF ECE

8 | P a g e

EXPERIMENT: 2

FULL ADDER

AIM: To develop the source code for Full adder by using VERILOG and obtain the simulation,
synthesis, place and route and implement into FPGA.

SOFTWARE REQUIRED:

XILINX-VIVADO

THEORY:

A combinational circuit that performs the addition of three bits is called a half-adder. This circuit

needs three binary inputs and produces two binary outputs. One of the input variables designates

the augends and other designates the addend. Mostly, the third input represents the carry from

the previous lower significant position. The output variables produce the sum and the carry.

The simplified Boolean functions of the two outputs can be obtained

as below: Sum S = x y z
Carry C = xy + xz + yz
Where x, y & z are the two input variables.

PROGRAM:

//Gate-level description of Full Adder using two Half
Adder //Description of Half Adder

module halfadder(s,co,x,y);
input x,y;
output s,co;

//Instatiate primitive gates
xor (s,x,y);

and (co,x,y);
endmodule

//Description of Full Adder
module
fulladder(s,co,x,y,ci);
input x,y,ci;

output s,co;
wire s1,d1,d2; //Outputs of first XOR and AND gates

//Instantiate Half Adder

halfadder ha_1(s1,d1,x,y);

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT.OF ECE

9 | P a g e

halfadder ha_2(s,d2,s1,ci);
or or_gate(co,d2,d1);
endmodule

//Stimulus for testing Full Adder module
simulation;
reg x,y,ci;
wire s,co;

//Instantiate Full Adder fulladder fa_test(s,co,x,y,ci);
Initial
begin
x=1'b0; y=1'b0; ci=1'b0;

#100 x=1'b0; y=1'b0; ci=1'b1; #100 x=1'b0; y=1'b1; ci=1'b0; #100 x=1'b0;
y=1'b1; ci=1'b1; #100 x=1'b1; y=1'b0; ci=1'b0; #100 x=1'b1; y=1'b0;
ci=1'b1; #100 x=1'b1; y=1'b1; ci=1'b0; #100 x=1'b1; y=1'b1; ci=1'b1;
end
endmodule

Behavioral Modeling:

module fuladbehavioral(x, y, z, sum, carry);
 input x;
 input y;
 input z;
 output sum;
 output carry;
 reg sum,carry;
 reg p1,p2,p3;
 always @ (x or y or z) begin
 sum = (x^y)^z;
 p1=x & y;
 p2=y & z;
 p3=x & z;
 carry=(p1 | p2) | p3;
 end
endmodule

Dataflow Modeling:

module fulladddataflow(x, y, z, sum, carry);
 input x;
 input y;

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT.OF ECE

10 | P a g
e

 input z;
 output sum;
 output carry;
assign#2 p=x&y;
assign#2 q=y&z;
assign#2 r=z&x;
assign#4 sum=x^y^z;
assign#4carry =(p | q) | r;

 endmodule

LOGIC DIAGRAM:

EXPECTED OUTPUT WAVEFORM:

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT.OF ECE

11 | P a g e

Circuit diagram:

SIMULATION OUTPUT WAVEFORM:

RESULT:

Thus the logic circuit for the Full adder is designed in Verilog HDL and the output is verified.

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT.OF ECE

12 | P a g e

EXPERIMENT: 3
DESIGN OF 2-TO-4 DECODER

AIM:

To develop the source code for decoder by using VERILOG and obtain the simulation, synthesis, place and
route and implement into FPGA.

SOFTWARE & HARDWARE:

 XILINX - VIVADO

LOGIC DIAGRAM: TRUTH TABLE:

VERILOG SOURCE CODE:

module decoderbehv(a, b, en, z);
 input a;
 input b;
 input en;
 output [3:0] z;
 reg [3:0] z;
reg abar,bbar;
 always @ (a,b,en) begin
 z[0] = (abar&bbar&en);
 z[1] = (abar&b&en);
 z[2] = (a&bbar&en);
 z[3] = (a&b&en);
 end
endmodule

A B C Z(0) Z(1) Z(2) Z(3)

0 0 1 0 1 1 1

0 1 1 1 0 1 1

1 0 1 1 1 0 1

1 1 1 1 1 1 0

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT.OF ECE

13 | P a g e

SIMULATION OUTPUT:

RESULT:

 Thus the OUTPUT’s of decoder are verified by synthesizing and simulating the VERILOG code.

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT.OF ECE

14 | P a g e

EXPERIMENT: 4

DESIGN OF 8-TO-3 ENCODER
AIM:

To develop the source code for 8-to-3 encoder by using VERILOG

SOFTWARE & HARDWARE:
 XILINX -VIVADO

ENCODER:
LOGIC DIAGRAM: TRUTH TABLE:

VERILOG SOURCE CODE:
module encoderbehav(d, a,b,c);
 input [7:0] d;
 output a,b,c;
 reg a,b,c;
 always @ (d [7:0]) begin
 a= d[4] | d[5] | d[6] | d[7];
 b= d[2] | d[3] | d[6] | d[7];
 c= d[1] | d[3] | d[5] | d[7];
 end
 endmodule

SIMULATION OUTPUT:

RESULT:
Thus the OUTPUT’s of Encoded are verified by synthesizing and simulating the VERILOG code.

D0 D1 D2 D3 D4 D5 D6 D7 X Y Z

1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 1 1

0 0 0 0 1 0 0 0 1 0 0

0 0 0 0 0 1 0 0 1 0 1

0 0 0 0 0 0 1 0 1 1 0

0 0 0 0 0 0 0 1 1 1 1

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT.OF ECE

15 | P a g e

EXPERIMENT: 5
DESIGN OF 4-BIT BINARY TO GRAY CONVERTER

AIM:

To develop the source code for binary to gray converter by using VERILOG and obtained the simulation,
synthesis, place and route and implement into FPGA.

SOFTWARE & HARDWARE:

XILINX-VIVADO

CODE CONVERTER (BCD TO GRAY):

TRUTH TABLE:

BCD GRAY

0000 0000

0001 0001

0010 0011

0011 0010

0100 0110

0101 0111

0110 0101

0111 0100

1000 1100

1001 1101

LOGIC DIAGRAM:

Behavioral Modeling:

module b2g_behv(b, g);
 input [3:0] b;
 output [3:0] g;

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT.OF ECE

16 | P a g e

 reg [3:0] g;
 always@(b) begin
 g[3]=b[3];
 g[2]=b[3]^b[2];
 g[1]=b[2]^b[1];
 g[0]=b[1]^b[0];
 end
endmodule

Simulation output:

RESULT:

Thus the OUTPUT’s of binary to gray converter are verified by synthesizing and simulating the VERILOG
code.

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT.OF ECE

17 | P a g e

EXPERIMENT: 6
DESIGN OF FLIP FLOPS (SR, JK, D)

AIM:

To develop the source code for FLIP FLOPS by using VERILOG and obtained the simulation, synthesis,
place and route and implement into FPGA.

SOFTWARE & HARDWARE:

XILINX-VIVADO

SR FLIPFLOP:
LOGIC DIAGRAM: TRUTH TABLE:

1

2
3

Q

R

S

1

2
3

Q

CP

1

2
3

1

2
3

VERILOG SOURCE CODE:

Behavioral Modeling:

module srflipflop(s, r, clk, rst, q, qbar);
 input s;
 input r;
 input clk;
 input rst;
 output q;
 output qbar;
 reg q,qbar;
 always @ (posedge(clk) or posedge(rst)) begin
 if(rst==1'b1) begin
 q= 1'b0;qbar= 1'b1;
 end
 else if(s==1'b0 && r==1'b0)
 begin
 q=q; qbar=qbar;

Q(t) S R Q(t+1)

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 X

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 X

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT.OF ECE

18 | P a g e

 end
 else if(s==1'b0 && r==1'b1)
 begin
 q= 1'b0; qbar= 1'b1;

 end
 else if(s==1'b1 && r==1'b0)
 begin
 q= 1'b1; qbar= 1'b0;
 end
 else
 begin
 q=1'bx;qbar=1'bx;
 end
 end
endmodule

SIMULATION OUTPUT:

JK FLIPFLOP:

LOGIC DIAGRAM: TRUTH TABLE:

CP

1
2
8

9

1

2
3

1

2
3

Q

1
2
8

9 Q

K

J

Q(t) J K Q(t+1)

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT.OF ECE

19 | P a g e

VERILOG SOURCE CODE:

Behavioral Modeling:

module jkff(j, k, clk, rst, q, qbar);
 input j;
 input k;
 input clk;
 input rst;
 output q;
 output qbar;
 reg q;
 reg qbar;
 always @ (posedge(clk) or posedge(rst)) begin
 if (rst==1'b1)
 begin
 q=1'b0;
 qbar=1'b1;
 end
 else if (j==1'b0 && k==1'b0)
 begin
 q=q;
 qbar=qbar;
 end
 else if (j==1'b0 && k==1'b1)
 begin
 q=1'b0;
 qbar=1'b1;
 end
 else if (j==1'b1 && k==1'b0)
 begin
 q=1'b1;
 qbar=1'b0;
 end
 else
 begin
 q=~q;
 qbar=~qbar;
 end
 end
 endmodule

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT.OF ECE

20 | P a g e

SIMULATION OUTPUT:

D FLIPFLOP:
LOGIC DIAGRAM: TRUTH TABLE:

1

2
3

CP

Q

1 2
3

1

2
31

2
3

1

2
3D

Q

VERILOG SOURCE CODE:

Behavioral Modeling:

module dff(d, clk, rst, q, qbar);
 input d;
 input clk;
 input rst;
 output q;
 output qbar;
 reg q;
 reg qbar;
 always @ (posedge(clk) or posedge(rst)) begin
 if (rst==1'b1)
 begin
 q=1'b0;
 qbar=1'b1;
 end
 else if (d==1'b0)
 begin
 q=1'b0;
 qbar=1'b1;
 end

Q(t) D Q(t+1)

0 0 0

0 1 1

1 0 0

1 1 1

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT.OF ECE

21 | P a g e

 else
 begin
 q=1'b1;
 qbar=1'b0;
 end
 end
 endmodule

SIMULATION OUTPUT:

RESULT:
 Thus the OUTPUT’s of Flip flops using three modeling styles are verified by synthesizing and simulating the
VERILOG code.

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT.OF ECE

22 | P a g e

EXPERIMENT: 7
DESIGN OF MULTIPLEXERS

AIM: Design a 4 to 1 Multiplexer circuit in Verilog.

SOFTWARE REQUIRED:

XILINX-VIVADO

THEORY:

A digital multiplexer is a combinational circuit that selects binary information from one of

many input lines and directs it to a single output line. Multiplexing means transmitting a large

number of information units over a smaller number of channels or lines. The selection of a

particular input line is controlled by a set of selection lines. Normally, there are 2n input lines

and n selection lines whose bit combinations determine which input is selected. A multiplexer is

also called a data selector, since it selects one of many inputs and steers the binary information

to the output lines. Multiplexer ICs may have an enable input to control the operation of the

unit. When the enable input is in a given binary state (the disable state), the outputs are

disabled, and when it is in the other state (the enable state), the circuit functions as normal

multiplexer. The enable input (sometimes called strobe) can be used to expand two or more

multiplexer ICs to digital multiplexers with a larger number of inputs.The size of the multiplexer

is specified by the number 2n of its input lines and the single output line. In general, a 2n – to – 1

line multiplexer is constructed from an n – to 2 n decoder by adding to it 2n input lines, one to

each AND gate. The outputs of the AND gates are applied to a single OR gate to provide the 1 –

line output.

PROCEDURE:

1) The multiplexer circuit is designed and the Boolean function is found out.
2) The Verilog Module Source for the circuit is written.
3) It is implemented in Model Sim and Simulated.
4) Signals are provided and Output Waveforms are viewed.

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT.OF ECE

23 | P a g e

TRUTH TABLE:

INPUT OUTPUT

s[1] s[0] y
0 0 D[0]
0 1 D[1]

1 0 D[2]

1 1 D[3]

LOGIC DIAGRAM 4 TO 1 MULTIPLEXER:

MULTIPLEXER USING VERILOG CODE:

module
multiplexer(y,d,s);
output y;

input [3:0] d;
input [1:0] s;
wire a,b,c,e,f,g,h,i;

//Instantiate Primitive gates
not (a,s[1]);

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT.OF ECE

24 | P a g e

not (b,s[0]);
and (c,d[0],b,a);
and (e,d[1],s[0],a);
and (f,d[2],b,s[1]);
and (g,d[3],s[0],s[1]);
or (h,c,e);
or (i,f,g);
or (y,h,i);
endmodule

//Stimulus for testing 4 to 1 Multiplexer

module simulation;

reg [3:0]d;
reg [1:0]s;
wire y;
//Instantiate the 4 to 1 Multiplexer
multiplexer mux_t(y,d,s);

initial begin

s=2'b00;d[0]=1'b1;d[1]= 1'b0;d[2]= 1'b0;d[3]= 1'b0; #100

s=2'b00;d[0]= 1'b0;d[1]= 1'b1;d[2]= 1'b1;d[3]= 1'b1; #100

s=2'b01;d[0]= 1'b0;d[1]= 1'b1;d[2]= 1'b0;d[3]= 1'b0; #100

s=2'b01;d[0]= 1'b1;d[1]= 1'b0;d[2]= 1'b1;d[3]= 1'b1; #100

s=2'b10;d[0]= 1'b0;d[1]= 1'b0;d[2]= 1'b1;d[3]= 1'b0; #100

s=2'b10;d[0]= 1'b1;d[1]= 1'b1;d[2]= 1'b0;d[3]= 1'b1; #100

s=2'b11;d[0]= 1'b0;d[1]= 1'b0;d[2]= 1'b0;d[3]= 1'b1; #100

s=2'b11;d[0]= 1'b1;d[1]= 1'b1;d[2]= 1'b1;d[3]= 1'b0;
end
endmodule

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT.OF ECE

25 | P a g e

WAVEFORM OF MULTIPLEXERS:

TEST BENCH WAVEFORM OF MULTIPLEXERS:

RESULT: Thus the multiplexer is designed in Verilog HDL and the output is verified.

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT.OF ECE

26 | P a g e

EXPERIMENT: 8

RIPPLE COUNTER REALIZATION IN VERILOG HDL

AIM: To realize an asynchronous ripple counter in Verilog

SOFTWARE REQUIRED:

XILINX-VIVADO

THEORY:

In a ripple counter, the flip-flop output transition serves as a source for triggering other

flip-flops. In other words, the Clock Pulse inputs of all flip-flops (except the first) are triggered

not by the incoming pulses, but rather by the transition that occurs in other flip-flops. A binary

ripple counter consists of a series connection of complementing flip-flops (JK or T type), with the

output of each flip-flop connected to the Clock Pulse input of the next higher-order flip-flop. The

flip-flop holding the LSB receives the incoming count pulses. All J and K inputs are equal to 1. The

small circle in the Clock Pulse /Count Pulse indicates that the flip-flop complements during a

negative-going transition or when the output to which it is connected goes from 1 to 0. The flip-

flops change one at a time in rapid succession, and the signal propagates through the counter in

a ripple fashion. A binary counter with reverse count is called a binary down-counter. In binary

down-counter, the binary count is decremented by 1 with every input count pulse.

PROCEDURE:

1) The 4 bit asynchronous ripple counter circuit is designed.
2) The Verilog Module Source for the circuit is written.
3) It is implemented in Model Sim and Simulated.
4) Signals are provided and Output Waveforms are viewed.

//Structural description of Ripple Counter

module
ripplecounter(A0,A1,A2,A3,COUNT,RESET);
output A0,A1,A2,A3;
input COUNT,RESET;
//Instantiate Flip-Flop

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT.OF ECE

27 | P a g e

FF F0(A0,COUNT,RESET);
FF F1(A1,A0,RESET);

FF F2(A2,A1,RESET);

FF F3(A3,A2,RESET);
endmodule

//Description of Flip-Flop
module
FF(Q,CLK,RESET);
output Q;

input CLK,RESET; reg Q;

always @(negedge CLK or negedge RESET) if(~RESET)

Q=1'b0; else

Q=(~Q); endmodule

//Stimulus for testing Ripple Counter

module simulation; reg COUNT;
reg RESET;
wire A0,A1,A2,A3;

//Instantiate Ripple Counter

ripplecounter rc_t(A0,A1,A2,A3,COUNT,RESET);
always

#5 COUNT=~COUNT;
Initial begin
COUNT=1'b0;

RESET=1'b0; #10 RESET=1'b1; end
endmodule

LOGIC DIAGRAM:
4-BIT RIPPLE COUNTER:

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT.OF ECE

28 | P a g e

TRUTH TABLE:

COUNT A0 A1 A2 A3

0 0 0 0 0

1 1 0 0 0

2 0 1 0 0

3 1 1 0 0

4 0 0 1 0

5 1 0 1 0

6 0 1 1 0

7 1 1 1 0

8 0 0 0 1

9 1 0 0 1

10 0 1 0 1

11 1 1 0 1

12 0 0 1 1

13 1 0 1 1

14 0 1 1 1

15 1 1 1 1

WAVEFORM OF RIPPLE COUNTER:

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT.OF ECE

29 | P a g e

TESTBENCHWAVEFORM OF RIPPLE COUNTER:

LOGIC DIAGRAM MOD-10 RIPPLE COUNTER:

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT.OF ECE

30 | P a g e

TRUTH TABLE:

COUNT A0 A1 A2 A3

0 0 0 0 0

1 1 0 0 0

2 0 1 0 0

3 1 1 0 0

4 0 0 1 0

5 1 0 1 0

6 0 1 1 0

7 1 1 1 0

8 0 0 0 1

9 1 0 0 1

10 0 0 0 0

/Structural description of MOD10 Counter
module
MOD10(A0,A1,A2,A3,COUNT);
output A0,A1,A2,A3;

input COUNT;
wire RESET;
//Instantiate Flip-Flop
FF F0(A0,COUNT,RESET);

FF F1(A1,A0,RESET);

FF F2(A2,A1,RESET);
FF F3(A3,A2,RESET);

//Instantiate Primitive gate
nand (RESET,A1,A3);
endmodule

//Description of Flip-Flop
module FF(Q,CLK,RESET);
output Q;

input CLK,RESET;
reg Q=1'b0;

always @(negedge CLK or negedge RESET)
if(~RESET)

Q=1'b0;
else
Q=(~Q);
endmodule

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT.OF ECE

31 | P a g e

//Stimulus for testing MOD10 Counter module simulation;
reg COUNT;
wire A0,A1,A2,A3;
//Instantiate MOD10 Counter

MOD10 MOD10_TEST(A0,A1,A2,A3,COUNT);
Always #10 COUNT=~COUNT;
initial

begin

COUNT=1'b0;
end
Endmodule

WAVEFORM OF MOD 10 COUNTERS:

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT.OF ECE

32 | P a g e

TESTBENCHWAVEFORM OF MOD 10:

LOGIC DIAGRAM MOD-12 RIPPLE COUNTER:

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT.OF ECE

33 | P a g e

TRUTH TABLE:

COUNT A0 A1 A2 A3

0 0 0 0 0

1 1 0 0 0

2 0 1 0 0

3 1 1 0 0

4 0 0 1 0

5 1 0 1 0

6 0 1 1 0

7 1 1 1 0

8 0 0 0 1

9 1 0 0 1

10 0 1 0 1

11 1 1 0 1

12 0 0 0 0

//Structural description of MOD12 Counter

Module
MOD12(A0,A1,A2,A3,COUNT);
output A0,A1,A2,A3;

input COUNT;
wire RESET;

//Instantiate Flip-Flop

FF F0(A0,COUNT,RESET);
FF F1(A1,A0,RESET);

FF F2(A2,A1,RESET);
FF F3(A3,A2,RESET);

//Instantiate Primitive gates
nand (RESET,A2,A3);
endmodule

//Description of Flip-Flop
module FF(Q,CLK,RESET);
output Q;
input CLK,RESET;
reg Q=1'b0;

always @(negedge CLK or negedge RESET) if(~RESET)

Q=1'b0;

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT.OF ECE

34 | P a g e

else

Q=(~Q);
endmodule

//Stimulus for testing MOD12 Counter

module simulation;
reg COUNT;

wire A0,A1,A2,A3;
//Instantiate MOD12 Counter

MOD12 MOD12_TEST(A0,A1,A2,A3,COUNT);
always

#10 COUNT=~COUNT;
initial
begin

COUNT=1'b0;
end
endmodule

WAVEFORM OF MOD 12 COUNTERS:

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT.OF ECE

35 | P a g e

TESTBENCHWAVEFORM OF MOD 12 COUNTERS:

RESULT:

Thus the ripple counter is designed in Verilog HDL and the output is verified.

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT.OF ECE

36 | P a g e

EXPERIMENT: 9

Sequence Detector (Finite State Machine- Mealy and Moore Machines)
AIM:
To develop the source code for Sequence Detector (Finite State Machine- Mealy and Moore Machines)
by using VERILOG and obtain the simulation, synthesis, place and route and implement into FPGA.

SOFTWARE REQUIRED:
XILINX- VIVADO

MOORE FSM:
LOGIC DIAGRAM:

Behavioral Modeling:

module moorefsm(a,clk,z);
 input a;
 input clk;
 output z;
 reg z;

 parameter st0=0,st1=1,st2=2,st3=3;
 reg[0:1]moore_state;
 initial
 begin
 moore_state=st0;
 end
 always @ (posedge(clk))
 case(moore_state)
 st0:
 begin
 z=1;
 if(a)
 moore_state=st2;
 end

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT.OF ECE

37 | P a g e

 st1:
 begin
 z=0;
 if(a)
 moore_state=st3;
 end

 st2:
 begin
 z=0;
 if(~a)
 moore_state=st1;
 else
 moore_state=st3;
 end

 st3:
 begin
 z=1;
 if(a)
 moore_state=st0;
 end
 endcase
 endmodule

Simulation output:

MEALY FSM:

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT.OF ECE

38 | P a g e

TRUTH TABLE:

Behavioral Modeling:

module mealayfsm(a, clk, z);
 input a;
 input clk;
 output z;
 reg z;

 parameter st0=0,st1=1,st2=2,st3=3;
 reg[0:1]mealy_state;
 initial
 begin
 mealy_state=st0;
 end
 always @ (posedge(clk))
 case(mealy_state)
 st0:
 begin
 if(a) begin
 z=1;
 mealy_state=st3; end
 else
 z=0;
 end

 st1:
 begin
 if(a) begin
 z=0;
 mealy_state=st0; end
 else

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT.OF ECE

39 | P a g e

 z=1;
 end

 st2:
 begin
 if(a) begin
 z=1;
 mealy_state=st1; end
 else
 z=0;
 end

 st3:
 begin
 z=0;
 if(a) begin
 mealy_state=st1; end
 else
 mealy_state=st2;
 end

 endcase
 endmodule

SIMULATION OUTPUT:

RESULT:
 Thus the OUTPUT’s of Moore and Mealy FSM is verified by synthesizing and simulating the VHDL
and VERILOG code.

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT.OF ECE

40 | P a g e

CYCLE -II

EXPERIMENT: I

DESIGN AND IMPLEMENTATION OF AN INVERTER

AIM: To design and Implementation of an Inverter

TOOLS: Mentor Graphics: Pyxis Schematic, Pyxis Layout, Eldo, Ezwave, Calibre

THEORY:

The inverter is universally accepted as the most basic logic gate doing a Boolean operation on

a single input variable. Fig.1 depicts the symbol, truth table and a general structure of a CMOS

inverter. As shown, the simple structure consists of a combination of an pMOS transistor at the

top and a nMOS transistor at the bottom.CMOS is also sometimes referred to as

complementary-symmetry metal–oxide–semiconductor. The words "complementary-

symmetry" refer to the fact that the typical digital design style with CMOS uses

complementary and symmetrical pairs of p-type and n-type metal oxide semiconductor field

effect transistors (MOSFETs) for logic functions. Two important characteristics of CMOS

devices are high noise immunity and low static power consumption. Significant power is only

drawn while the transistors in the CMOS device are switching between on and off states.

Consequently, CMOS devices do not produce as much waste heat as other forms of logic, for

example transistor-transistor logic (TTL) or NMOS logic, which uses all n-channel devices

without p-channel devices.

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT.OF ECE

41 | P a g e

Schematic Capture:

Procedure:

1. Connect the Circuit as shown in the circuit diagram using Pyxis Schematic tool

2. Enter into Simulation mode.

3. Setup the Analysis and library.

4. Setup the required analysis.

5. Probe the required Voltages

6. Run the simulation.

7. Observe the waveforms in EZ wave.

8. Draw the layout using Pysis Layout.

9. Perform Routing using IRoute

10. Perform DRC, LVS, PEX.

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT.OF ECE

42 | P a g e

Schematic Symbol:

Testing the Schematic:

Simulation Output: Input Vs Output Transient and DC Characteristics:

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT.OF ECE

43 | P a g e

Layout of the Inverter:

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT.OF ECE

44 | P a g e

EXPERIMENT: 2

NAND GATE

AIM: To create a library and build a schematic of a NAND GATE, to create a symbol for the

Inverter, To build an Inverter Test circuit using your Inverter, To set up and run simulations

on the Inverter Test design.

EDA Tool: Mentor Graphics

Schematic Diagram

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT.OF ECE

45 | P a g e

PROCEDURE:

1. Connect the Circuit as shown in the circuit diagram using Pyxis schematic.

2. Create a simulation schematic for simulation.

3. Add necessary nets in outputs to view waveforms.

4. Run the Simulation and observe results in EZwave.

5. Draw the Layout for the circuit using Pyxis Layout.

7. Run the physical verification (DRC, LVS, PEX) using Calibre tool .

8. Run the post layout simulation by adding the .dspf file generated in PEX.

9. Observe the post layout results.

Symbol Creation:

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT.OF ECE

46 | P a g e

Building the NAND Test Design

Creating a layout view of NAND gate

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT.OF ECE

47 | P a g e

Simulation Output:

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT.OF ECE

48 | P a g e

EXPERIMENT: 3

 NOR GATE
AIM: To design and simulate the CMOS NOR gate

TOOLS: Mentor Graphics: Pyxis Schematic, Pyxis Layout, Eldo, Ezwave, Calibre

CIRCUIT DIAGRAM:

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT.OF ECE

49 | P a g e

SIMULATION CIRCUIT:

PROCEDURE:

1. Connect the Circuit as shown in the circuit diagram using Pyxis schematic.

2. Create a simulation schematic for simulation.

3. Add necessary nets in outputs to view waveforms.

4. Run the Simulation and observe results in EZwave.

5. Draw the Layout for the circuit using Pyxis Layout.

7. Run the physical verification (DRC, LVS, PEX) using Calibre tool .

8. Run the post layout simulation by adding the .dspf file generated in PEX.

9. Observe the post layout results.

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT.OF ECE

50 | P a g e

Simulation Output:

Layout:

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT.OF ECE

51 | P a g e

EXPERIMENT: 4

XOR GATE

AIM: To create a library and build a schematic of an XOR gate, to create a symbol for the

XOR, to build an inverter test circuit using your XOR, to set up and run simulations on the

XOR_test design.

EDA TOOLS: pyxis schematic, pyxis layout, eldo, ezwave, calibre

PROCEDURE:

1. Connect the Circuit as shown in the circuit diagram using Pyxis schematic.

2. Create a simulation schematic for simulation.

3. Add necessary nets in outputs to view waveforms.

4. Run the Simulation and observe results in EZwave.

5. Draw the Layout for the circuit using Pyxis Layout.

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT.OF ECE

52 | P a g e

7. Run the physical verification (DRC, LVS, PEX) using Calibre tool .

8. Run the post layout simulation by adding the .dspf file generated in PEX.

9. Observe the post layout results.

Symbol Creation:

Building the XOR Gate Test Design

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT.OF ECE

53 | P a g e

PROCEDURE:

1. Connect the Circuit as shown in the circuit diagram using Pyxis schematic.

2. Create a simulation schematic for simulation.

3. Add necessary nets in outputs to view waveforms.

4. Run the Simulation and observe results in EZwave.

5. Draw the Layout for the circuit using Pyxis Layout.

7. Run the physical verification (DRC, LVS, PEX) using Calibre tool .

8. Run the post layout simulation by adding the .dspf file generated in PEX.

9. Observe the post layout results

Simulation output:

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT.OF ECE

54 | P a g e

LAYOUT:

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT.OF ECE

55 | P a g e

EXPERIMENT: 5

CMOS 1-BIT FULL ADDER

AIM: To design and simulate the CMOS 1 Bit Full Adder.

TOOLS: Pyxis Schematic, Pyxis Layout, Eldo, Ezwave, Calibre.

Schematic Diagram:

PROCEDURE:

1. Connect the Circuit as shown in the circuit diagram using Pyxis schematic.

2. Create a simulation schematic for simulation.

3. Add necessary nets in outputs to view waveforms.

4. Run the Simulation and observe results in EZwave.

5. Draw the Layout for the circuit using Pyxis Layout.

7. Run the physical verification (DRC, LVS, PEX) using Calibre tool .

8. Run the post layout simulation by adding the .dspf file generated in PEX.

9. Observe the post layout results

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT.OF ECE

56 | P a g e

Testing the Full Adder:

Layout:

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT.OF ECE

57 | P a g e

Simulation Output:

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT.OF ECE

58 | P a g e

EXPERIMENT: 6
COMMON SOURCE AMPLIFIER

AIM: To design and simulate the Common Source Amplifier.

TOOLS: Pyxis Schematic, Pyxis Layout, Eldo, Ezwave, Calibre.

Circuit Diagram:

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT.OF ECE

59 | P a g e

Simulation Circuit:

PROCEDURE:

1. Connect the Circuit as shown in the circuit diagram using Pyxis schematic.

2. Create a simulation schematic for simulation.

3. Add necessary nets in outputs to view waveforms.

4. Run the Simulation and observe results in EZwave.

5. Draw the Layout for the circuit using Pyxis Layout.

7. Run the physical verification (DRC, LVS, PEX) using Calibre tool .

8. Run the post layout simulation by adding the .dspf file generated in PEX.

9. Observe the post layout results.

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT.OF ECE

60 | P a g e

AC Analysis:

Transient Analysis Result:

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT.OF ECE

61 | P a g e

Layout:

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT.OF ECE

62 | P a g e

EXPERIMENT: 7
DIFFERENTIAL AMPLIFIER

AIM: To design and simulate the Differential Amplifier.

TOOLS: Pyxis Schematic, Pyxis Layout, Eldo, Ezwave, Calibre.

CIRCUIT DIAGRAM:

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT.OF ECE

63 | P a g e

Simulation Circuit:

PROCEDURE:

1. Connect the Circuit as shown in the circuit diagram using Pyxis schematic.

2. Create a simulation schematic for simulation.

3. Add necessary nets in outputs to view waveforms.

4. Run the Simulation and observe results in EZwave.

5. Draw the Layout for the circuit using Pyxis Layout.

7. Run the physical verification (DRC, LVS, PEX) using Calibre tool .

8. Run the post layout simulation by adding the .dspf file generated in PEX.

9. Observe the post layout results.

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT.OF ECE

64 | P a g e

RESULTS:

AC Analysis result:

Transient Analysis

Result:

	VISION
	MISSION
	QUALITY POLICY
	PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)
	PROGRAMME SPECIFIC OBJECTIVES (PSOs)
	PSO2
	PSO3
	PROGRAM OUTCOMES (POs)
	General Rules of Conduct in Laboratories:
	Specific Safety Rules for Laboratories:

	CYCLE-I
	EXPERIMENT: 1
	LOGIC DIAGRAM: TRUTH TABLE: LOGICDIAGRAM TRUTH TABLE:
	LOGIC DIAGRAM: TRUTH TABLE: LOGICDIAGRAM TRUTH TABLE
	LOGIC DIAGRAM: TRUTH TABLE: LOGICDIAGRAM TRUTH TABLE:
	LOGIC DIAGRAM: TRUTH TABLE:
	EXPERIMENT: 2
	FULL ADDER
	AIM: To develop the source code for Full adder by using VERILOG and obtain the simulation, synthesis, place and route and implement into FPGA.
	SOFTWARE REQUIRED:
	THEORY:
	//Instatiate primitive gates xor (s,x,y);
	wire s1,d1,d2; //Outputs of first XOR and AND gates
	//Stimulus for testing Full Adder module
	Initial begin
	end endmodule
	EXPECTED OUTPUT WAVEFORM:
	RESULT:

	EXPERIMENT: 3
	EXPERIMENT: 5
	EXPERIMENT: 6
	EXPERIMENT: 7 DESIGN OF MULTIPLEXERS
	SOFTWARE REQUIRED:
	THEORY:
	PROCEDURE:
	TRUTH TABLE:
	MULTIPLEXER USING VERILOG CODE:
	endmodule
	//Instantiate the 4 to 1 Multiplexer
	end endmodule
	TEST BENCH WAVEFORM OF MULTIPLEXERS:

	EXPERIMENT: 8
	SOFTWARE REQUIRED:
	THEORY:
	PROCEDURE:
	//Structural description of Ripple Counter module
	//Instantiate Flip-Flop
	//Description of Flip-Flop
	//Stimulus for testing Ripple Counter
	//Instantiate Ripple Counter
	always
	endmodule
	TRUTH TABLE:
	TESTBENCHWAVEFORM OF RIPPLE COUNTER:
	TRUTH TABLE: (1)
	endmodule (1)
	else
	endmodule (2)
	//Instantiate MOD10 Counter
	begin
	end Endmodule
	TESTBENCHWAVEFORM OF MOD 10:
	TRUTH TABLE: (2)
	//Instantiate Flip-Flop (1)
	endmodule (3)
	else (1)
	endmodule (4)
	//Instantiate MOD12 Counter
	always (1)
	begin (1)
	end endmodule
	TESTBENCHWAVEFORM OF MOD 12 COUNTERS:

	EXPERIMENT: I
	THEORY:
	Schematic Capture:
	Schematic Symbol:
	Simulation Output: Input Vs Output Transient and DC Characteristics:

	EXPERIMENT: 2 NAND GATE
	Schematic Diagram
	Symbol Creation:
	Creating a layout view of NAND gate

	EXPERIMENT: 3 (1)
	NOR GATE
	CIRCUIT DIAGRAM:
	PROCEDURE:
	Simulation Output:

	EXPERIMENT: 4
	XOR GATE
	PROCEDURE:
	Symbol Creation:
	PROCEDURE: (1)

	EXPERIMENT: 5 (1)
	CMOS 1-BIT FULL ADDER
	Schematic Diagram:
	Testing the Full Adder:

	EXPERIMENT: 6 (1)
	COMMON SOURCE AMPLIFIER
	Circuit Diagram:
	PROCEDURE:
	Transient Analysis Result:

	EXPERIMENT: 7 DIFFERENTIAL AMPLIFIER
	Simulation Circuit:
	Transient Analysis Result:

