

Code No.: 5344/A/S

## FACULTY OF INFORMATICS B.E. 2/4 (IT) I Semester (Suppl.) Examination, June 2012 DISCRETE MATHEMATICS

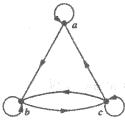
| Time: 3 Hours] [Max. Ma |                                                                                                                                                                              | 75       |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|                         | Note: 1) Answer all questions of Part A. 2) Answer any five questions of Part B.                                                                                             |          |
|                         | PART-A (25 Mari                                                                                                                                                              | (s)      |
| appear .                | Define EXCLUSIVE OR with an example.                                                                                                                                         | 2        |
| 2.                      | State the converse, contra positive and inverse of each of following conditional statements.  a) If it snows tonight, then I will stay at home.                              |          |
|                         | b) I go to the beach whenever it is a sunny summer day.                                                                                                                      | 2        |
| 3.                      | Define contradiction with an example.                                                                                                                                        | 2        |
| 4.                      | State De Morgan laws; write truth table for any one law.                                                                                                                     | 3        |
| 5.                      | Explain predicate and predicate calculus.                                                                                                                                    | 3        |
| 6.                      | Determine the truth value of each of these statements if the domain consists of all integers.                                                                                |          |
|                         | a) $\forall n (n+1>n)$                                                                                                                                                       |          |
|                         | b) ∃n(2n=3n).                                                                                                                                                                | 2        |
| 7.                      | Use predicates, quantifiers, logical connectives and mathematical operators to express the statement that every positive integer is the sum of the squares of four integers. | 3        |
| Q                       | Define Big-O Notation.                                                                                                                                                       | 3        |
|                         |                                                                                                                                                                              | <b>V</b> |
| 9.                      | Determine whether the posets ({1, 2, 3, 4, 5},   ) and ({1, 2, 4, 8, 16},   ) are lattices.                                                                                  | 3        |
| 10.                     | Define wheel graph and give one example.                                                                                                                                     | 2        |
| (This                   | s paper contains 3 pages)  1 P.1                                                                                                                                             | г.о.     |

Code No.: 5344/A/S

## PART-B

(50 Marks)

11. Construct a truth table for each of these compound propositions.

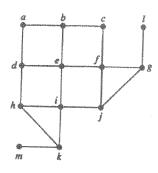

 $(5 \times 2 = 10)$ 

- a)  $(p \lor q) \to (p \oplus q)$
- b)  $(p \oplus q) \rightarrow (p \land q)$
- c)  $(p \lor q) \oplus (p \land q)$
- d)  $(p \leftrightarrow q) \oplus (\neg p \leftrightarrow q)$
- e)  $(p \leftrightarrow q) \oplus (\neg p \leftrightarrow \neg r)$
- 12. a) Show that  $p \rightarrow q$  and  $\neg p \lor q$  are logically equivalent.

(4+6)

(5+5)

- b) Use truth tables to verify the absorption laws.
  - i)  $p \lor (p \land q) \cong p$
  - ii)  $p \wedge (p \vee q) \cong p$
- 13. a) Prove or disprove that [x + y] = [x] + [y] for all real numbers x and y.
  - b) Explain the relationship between logical equivalences and set identities.
- 14. a) Prove that 5 divides n<sup>5</sup> n whenever n is a nonnegative integer.
  - b) Find the number of positive integers between 1000 and 9999 inclusive are divisible by 5 but not by 7? (5+5)
- 15. a) Solve  $a_n = na_{n-1}$ ,  $a_0 = 5$ .
  - b) Find the coefficient of  $x^9$  in  $(x^2 + x^3 + x^4 + x^5 + x^6 + ...)^3$ . (4+6)
- 16. a) Draw the Hasse diagram representing the partial ordering {(a, b) | a divides b} on {1, 2, 3, 4, 6, 8, 12}.
  - b) Determine whether the relations for the following directed graph is reflexive, symmetric, anti symmetric and/or transitive. (4+6)




17. a) How many different spanning trees does each of these simple graphs have ?

- i) K<sub>3</sub>
- ii) K<sub>4</sub>
- iii) K<sub>2,2</sub>
- iv) C<sub>s</sub>

b) Find a spanning tree for the following graph using breadth-first.

(4+6)

