Roll No.

67011

M.C.A. Ist Sem. w.e.f. Dec. 2011 (with old notes)

Examination-December, 2014

Mathematical Foundation of Computer Science

Paper-MCA-101

Time: 3 hours

Max. Marks: 80

Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard will be entertained after the examination.

Note: Attempt five questions in all, selecting at least one question from each unit. All questions carry equal marks.

Unit-I

- (a) Define properties of relation. Consider a relation R on the set A = {a, b, c, d}
 R = { (a, b), (b, b), (b, c), (c, a), (c,c), (d, a)}. Find
 - (i) Reflexive closure of R
 - (ii) Symmetric closure of R
 - (b) Let $f(x) = \frac{ax}{x+1}$, $x \ne 1$. If (for)(x) = x, find the value of a.
- 2. (a) Let Z be the set of integers, show that the operation * on Z, defined by a*b = a + b + 1 for all a, b ∈ Z saudies the closure property, associative law and the commutative law. Also find the identity element and inverse of an integer.
 - (b) State and prove Lagrange's theorem. 8

Unit-II

3. (a) Let P, Q, R be the prepositions

1

P: Today is Monday

Q: It is raining

R: It is cold

Convert the following formula in good English sentences:

(i)
$$\sim Q \rightarrow (R \wedge P)$$

- (b) Show that the formula $(P \land \neg Q) \land (P \leftrightarrow Q)$ is contradiction or not.
- (c) Using logical equivalence formulas show that $(P \land Q) \rightarrow (P \lor Q)$ is a tautology. 4

(d) Represent the following argument symbolically and determine whether the argument is valid or not:

If today is Pooja birthday, then today is July 12.

Today is Pooja birthday.

- .. Today is July 12.
- 4. (a) Using principle of mathematical induction, prove that for all n ∈ N,
 3²ⁿ⁺² -8n-9 is divisible by 64.
 - (b) Show that $((P \to Q) \to R) \leftrightarrow ((P \to R) \lor (Q \to R))$ is a tautology or not. 8

Unit-III

5. (a) Determine whether each of the poset {1, 2, 3, 4, 5} and {1, 2, 4, 8, 16} is a lattice under the relation 'divides'. Also draw the Hasse diagram.

- (b) Define complemented lattice. Find out whether the lattice (D₁₂, gcd, lcm) is complemented, where D₁₂ is the set of all factors of 12 under divisibility.
- 6. (a) In the Boolean algebra (B, +, ., '), show that
 - (i) a + b + c.a' = a + b + c for all $a, b, c \in B$
 - (ii) a.b + c.(a/+b/) = a.b + c for all $a, b, c \in B$
 - (b) (i) Prove that in Boolean algebra unit element is unique.
 - (ii) Simplify the Boolean expression a[b+c (ab+ac)] 4

Unit-IV

- (a) Given the string u = a²b and v = bab²,
 find the strings uv, v², λ u, u λ v iso
 find their length.
 - (b) Let A = {a, b}. Describe the following language over A 4
 - (i) $L_1 = \{a, ab, ab^2, ab^3, \dots\}$
 - (ii) $L_2 = \{a^mb^n: m > 0, n > 0\}$
 - (c) Write short note on regular expression.

4

- (d) Explain Chomsky Hierarchy with an example.
- 8. (a) Consider a Non-deterministic Finite State Automation (NDA) whose transition function is given in the table.
 Let S = (s₀, s₁, s₂), F = {s₁}, Σ = {0, 1} 8

Transition Function Table

¥.	б	
S	0	1
$\stackrel{S}{\longrightarrow} \mathbf{s}_0$	{s ₁ }	{ s ₀ }
S 1	(82)	{S ₁ , S ₂ }
S 2	{82}	(82)

Construct a transition diagram for NFA and DFA equivalent to NFA.

(b) Explain Mealy machine with the help of an example.