VASAVI LIEBARY

Code No.: 5086

FACULTY OF ENGINEERING B.E. 3/4 (E and EE/Inst.) I Semester (Main) Examination, December 2011 DIGITAL ELECTRONICS AND LOGIC DESIGN

Time: 3 Hours]

[Max. Marks: 75

Note: Answer all questions from Part A. Answer any five questions from Part B.

	PART – A	(25 Marks)	
-Sames	. Perform the following operations a) $567_{(8)} = (?)_2$ b) $63DE_{(16)} = (?)_2$.	2	
2	Simplify the following by using k-maps $f(A, B, C) = \sum (0, 2, 4, 6).$	3	
3	. Define FANIN, FANOUT of digital system.	2	
4	. Distinguish between a encoder and a decoder.	3	
5.	. Realize the EX-OR operation using only NOR gates.	3	
6.	. Is magnitude comparator is a combinational circuit or sequential circuit? Explain.	. 2	
7.		3	
8.	What is Race-around condition? How it is avoided?	2	
9.	What is Register ? Give some applications of Register.	2	
10.	Draw a CMOS inverter and explain its operation.	3	
	PART – B	50 Marks)	
11.	11. Using kasnaugh maps, find minimal SOP expressions for the following logic functions.		
	a) $F = \sum_{w, x, y, z} (0, 1, 2, 3, 7, 8, 10, 11, 15)$	3	
	b) $F = \sum_{w, x, y, z} (4, 5, 9, 13, 15) + d(0, 1, 7, 11, 12)$	4	
	c) $F = \sum_{A,B,C,D} (1, 5, 12, 13, 14, 15) + d(7, 9).$	3	

Code No.: 5086

12.	O e>	btain the prime-implicant chart for the following logic function and obtain the minimal (pression F (A, B, C, D, E) = \sum (0, 1, 2, 3, 4, 5, 10, 14, 15, 20, 21, 24, 25, 26, 27, 28, 29, 30).	40
13.	a)	What is multiplexer? Write a short notes on 8 × 1 multiplexer.	10 5
	b)	F (n) = \sum m (5, 7, 13, 15, 16, 20, 25, 27, 29, 31) realize using $2^{n-1} \times 1$ multiplex.	5
14.		Design 8 to 3 line encoder with its design considerations. Design a BCD to Excess-3 code convertor.	5
15.	a)	Write the truth table of JK flipflop and explain the principle of operation of clocked JK flipflop with output waveform.	5
	b)	Convert a D flipflop into T flipflop and explain its operation.	5
16.	Dr the	aw the block diagrams of programmable logic devices ROM, PLA, PAL and explain eir structural differences.	10
17.		Design a asynchronous modulo-10 counters. Draw the circuit of serial adder 2 Obtain the serial adder 2.	5
	/	Draw the circuit of serial adder? Obtain its state diagram and state table.	5