Name :	- Olean
Roll No. :	As Amount Of Street Edge and Cardinal
Invigilator's Signature :	

CS/BCA/SEM-3/BCA-302/2011-12

2011

DATA STRUCTURE WITH C

Time Allotted : 3 Hours

Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP – A (Multiple Choice Type Questions)

1. Choose the correct alternatives for any *ten* of the following :

 $10 \times 1 = 10$

i) Let q be the queue of integers defined as follows :
 #define MAX10
 struct queue
 { int data [MAX];
 int rear, front;
 }
}

} q;

To insert an element into the queue, we may write operation

- a) ++q.data[q.rear]=x;
- b) q.data[q.rear]++=x;
- c) q.data[++q.rear]=x;
- d) none of these.

- a) post-order traversal b) pre-order traversal
- c) in-order traversal d) none of these.

3131

[Turn over

CS/BCA/	SEM	I-3/BCA-302/2011-12			
iii)	Nun	nber of possible binary t	ree w	vith 4 node is	
	a)	14	b)	34 (Annual () Kanning and Kanford	
	c)	24	d)	none of these.	
iv)	Number of nodes in a complete binary tree of depth k is				
	a)	2k	b)	2^k	
	c)	$2^{k} - 1$	d)	none of these.	
v)	v) The best case complexity of insertion sort is				
	a)	$O(n^2)$	b)	$O(\log n)$	
	c)	<i>O</i> (<i>n</i>)	d)	$O(n \log n).$	
vi)	Grag	ph is a			
	a)	linear data structure			
	b)	non-linear data struct	ure		
	c)	either (a) or (b) depend	ing o	n situation	
	d)	none of these.			
vii) Stack works on					
	a)	LIFO	b)	FIFO	
	c)	both (a) and (b)	d)	none of these.	
viii)	A lir	nked list follows			
	a)	random access mechan	nism		
b) sequential access mechanism		m			
	c)	no access mechanism			
	d)	none of these.			
ix) The best data struct expression has balan		best data structure to ression has balanced pa	o see rentł	whether an arithmetic nesis is a	
	a)	stack	b)	queue	
	c)	tree	d)	list.	
x)	The total number of comparisons in bubble sort is				
	a)	$O(n \log 2^n)$	b)	O(2n)	
	c)	$O(n^2)$	d)	$O(2^{n}).$	

xi) The sparse matrix is a matrix whose

- a) most of the elements are non-zero
- b) half of the elements are zero and half of the elements are non-zero
- c) most of the elements are zero
- d) none of these.
- xii) The prefix notation is also known as
 - a) reverse notation b) reverse polish notation
 - c) polish notation d) none of these.

GROUP – B

(Short Answer Type Questions)

Answer any *three* of the following $3 \times 5 = 15$

- 2. What is Data structure ? What is ADT ? Explain with an example.
- 3. What is circular queue ? How is it different from queue ? What advantage do we get from circular queue over ordinary queue ?
- 4. Convert the following infix expression into postfix form by using stack :

a + b * c - (d - e * f) / g

- 5. What is Linked List ? What are its advantages over array ? What are its disadvantages over array ? 1 + 2 + 2
- Distinguish between DFS and BFS. Indicate their time complexities.
 4 + 1

GROUP – C

(Long Answer Type Questions)

		Answer any <i>three</i> of the following.	$3 \times 15 = 45$
7.	a)	What is binary search tree ?	2
	b)	Construct the binary search tree if the electric the order :	ements are in
		60, 75, 25, 66, 50, 55, 45, 40, 35, 57, 30	4
313	31	3	[Turn over

CS/	'BCA	/SEM-3/BCA-302/2011-12
	c)	Delete the following nodes in order and show each step :
		i) Node with 55
		ii) Node with 66
		iii) Node with 50. 3 + 3 + 3
8.	Wri	te short notes on any <i>three</i> of the following : 3×5
	a)	De-queue
	b)	Non-linear data structure
	c)	Hashing
	d)	Priority queue.
9.	a)	Define General tree. Write an algorithm to convert a General tree into a binary tree. 7
	b)	Define <i>B</i> -tree. Construct a <i>B</i> -tree of order 5 from the following key values :
		a, g, f, b, k, d, h, m, j, e, s, i, r, x, c, l, n, t, u, p.
		Also delete <i>h</i> , <i>r</i> , <i>p</i> , <i>d</i> .
10.	Wri	te the functions of the following :
	a)	Insert a node after a particular node in a Single Linked List. 5
	b)	Reverse display of the list elements in a Doubly Linked List. 5
	c)	Physically reverse the Single Linked List. 5
11.	a)	Write a C function for selection sort.6
	b)	How does binary search give benefit over sequential search ? 3
	c)	Explain the divide and conquer rule with example. 6