[B19CE1101]

I B. Tech I Semester (R19) Regular Examinations
 ENGINEERING MECHANICS
 Civil Engineering MODEL QUESTION PAPER

TIME: 3Hrs.
Answer ONE Question from EACH UNIT.
All questions carry equal marks.

		UNIT-I	CO	KL	M
1.	a).	The following are the fr forces acting at a point on a body. Find the resultant and its position. i. $\quad 500 \mathrm{~N}$ at $\mathrm{N} 45^{\circ} \mathrm{E}$ ii. $\quad 100 \mathrm{~N}$ at $\mathrm{N} 80^{\circ} \mathrm{E}$ iii. $\quad 300 \mathrm{~N}$ at $\mathrm{S} 30^{\circ} \mathrm{E}$ iv. $\quad 600 \mathrm{~N}$ at N $20^{\circ} \mathrm{W}$	1	K2	8
	b).	Find the centroid of Z - section shown in fig. (All units are in mm)	1	K3	7
		OR			
2.	a).	State and prove Parallel axis theorem.	1	K2	8
	b).	Determine moment of inertia for shaded region shown in fig.(All units are in mm)	1	K3	7

		UNIT-II			
3.		Solve for the Forces in all the members of the trusssupported on roller at A and hinge at B .	2	K3	15
		O OR			
4.	a).	Two identical rollers, each of weight $\mathrm{Q}=100 \mathrm{~kg}$ are supported by an inclined plane and a vertical wall as shown in Fig. Applying conditions of equilibrium, determine the reactions at points of support A, B and C. assume the surfaces are smooth.	2	K3	8

| 6. | | Use virtual work method to determine the tension in the cable in terms
 of θ for the arrangement shown below. | K | 15 |
| :--- | :--- | :--- | :--- | :--- | :--- |

	b).	Two bodies, one of which is 400 N with a velocity of $8 \mathrm{~m} / \mathrm{sec}$ and the other of 250 N with a velocity of $12 \mathrm{~m} / \mathrm{sec}$, move towards each other along a straight line and collide centrally. Find the velocity of each body after impact if the coefficient of restitution is 0.8 . Also find the loss in Kinetic Energy?	5	K3	7
		OR			
10.	a).	Calculate the velocity ' v ' of a block weighing 40 N , when it travels down the 20° incline for 16 m at B (Fig 4); if it is given an initial velocity of $3 \mathrm{~m} / \mathrm{sec}$ at A. The coefficient of friction between the block and the inclined plane is 0.2 .	5	K3	8

| b). | A 5 m long ladder shown in Fig. begins to slip down the wall at A at a
 rate of 1 $\mathrm{m} / \mathrm{sec}$. Find the location of the instantanes centre of rotation
 of the ladder. Also, find the velocity of point B at the base of the ladder
 using instantanes centre method. | $\mathbf{5}$ | K3 | $\mathbf{7}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

