
Code Generation Unit 4

Compiler Design
Page 1

UNIT 4
CODE GENERATION

The final phase in compiler model is the code generator. It takes as input an
intermediate representation of the source program and produces as output an equivalent
target program. The code generation techniques presented below can be used whether or not
an optimizing phase occurs before code generation.

 Position of code generator

source

intermediate

intermediate

target

front end code code

program optimizer generator program

symbol table

4.1 ISSUES IN THE DESIGN OF A CODE GENERATOR
The following issues arise during the code generation phase :

1. Input to code generator
2. Target program
3. Memory management
4. Instruction selection
5. Register allocation
6. Evaluation order
Input to code generator:
The input to the code generation consists of the intermediate representation of the
source program produced by front end , together with information in the symbol table
to determine run-time addresses of the data objects denoted by the names in the
intermediate representation.
Intermediate representation can be :
Linear representation such as postfix notation
Three address representation such as quadruples
Virtual machine representation such as stack machine code
Graphical representations such as syntax trees and dags.
Prior to code generation, the front end must be scanned, parsed and translated into
intermediate representation along with necessary type checking. Therefore, input to
code generation is assumed to be error-free.
Target program:

 The output of the code generator is the target program. The output may be :
Absolute machine language

 It can be placed in a fixed memory location and can be executed
immediately.

Code Generation Unit 4

Compiler Design
Page 2

Relocatable machine language
 It allows subprograms to be compiled separately.

Assembly language
- Code generation is made easier.

Memory management:
 Names in the source program are mapped to addresses of data objects in run-

time memory by the front end and code generator.
 It makes use of symbol table, that is, a name in a three-address statement refers

to a symbol-table entry for the name.
 Labels in three-address statements have to be converted to addresses of

instructions. For example,
j :goto i generates jump instruction as follows :
 if i<j, a backward jump instruction with target address equal to

location of code for quadruple i is generated.
 if i>j, the jump is forward. We must store on a list for quadruplei the

location of the first machine instruction generated for quadruplej.
When i is processed, the machine locations for all instructions that
forward jumps to i are filled.

Instruction selection:
 The instructions of target machine should be complete and uniform.
 Instruction speeds and machine idioms are important factors when efficiency of

target program is considered.
 The quality of the generated code is determined by its speed and size.
 The former statement can be translated into the latter statement as shown below:

Register allocation

 Instructions involving register operands are shorter and faster than those
involving operands in memory.

 The use of registers is subdivided into two subproblems :
 Register allocation – the set of variables that will reside in registers at a

point inthe program is selected.
 Register assignment – the specific register that a variable will reside in

ispicked.

Code Generation Unit 4

Compiler Design
Page 3

 Certain machine requires even-odd register pairs for some operands and
results. For example , consider the division instruction of the form :

D x, y
where, x – dividend even register in even/odd

register pair y – divisor
even register holds the
remainder odd register
holds the quotient

Evaluation order
 The order in which the computations are performed can affect the efficiency of

the target code. Some computation orders require fewer registers to hold
intermediate results than others.

4.2 TARGET MACHINE
 Familiarity with the target machine and its instruction set is a prerequisite for

designing a good code generator.
 The target computer is a byte-addressable machine with 4 bytes to a word.
 It has n general-purpose registers, R0, R1, . . . , Rn-1.
 It has two-address instructions of the form:

 op source, destination
where, op is an op-code, and source and destination aredata fields.

 It has the following op-codes :
 MOV (move source to destination)
 ADD (add source to destination)
 SUB (subtract source from destination)

 The source and destination of an instruction are specified by combining
registers and memory locations with address modes.

 Address modes with their assembly-language forms
MODE FORM ADDRESS ADDED COST

absolute M M 1

register R R 0

indexed c(R) c+contents(R) 1

indirect register *R contents (R) 0

indirect indexed *c(R) contents(c+ 1
 contents(R))

literal #c c 1

 For example : MOV R0, M stores contents of Register R0 into memory location

Code Generation Unit 4

Compiler Design
Page 4

M ; MOV 4(R0), M stores the value contents(4+contents (R0))
into M.

Instruction costs :
 Instruction cost = 1+cost for source and destination address modes. This cost

corresponds to the length of the instruction.
 Address modes involving registers have cost zero.
 Address modes involving memory location or literal have cost one.
 Instruction length should be minimized if space is important. Doing so also

minimizes the time taken to fetch and perform the instruction.
For example : MOV R0, R1 copies the contents of register R0 into R1. It has cost
one, since it occupies only one word of memory.

 The three-address statement a : = b + c can be implemented by many different
instruction sequences :

i) MOV b, R0

ADD c, R0 cost = 6
MOV R0, a

ii) MOV b, a
ADD c, a cost = 6

iii) Assuming R0, R1 and R2 contain the addresses of a, b, and c :

MOV *R1, *R0
ADD *R2, *R0 cost = 2

 In order to generate good code for target machine, we must utilize its

addressing capabilities efficiently.

4.3 RUN-TIME STORAGE MANAGEMENT
 Information needed during an execution of a procedure is kept in a block of storage

called an activation record, which includes storage for names local to the procedure.
 The two standard storage allocation strategies are:

1. Static allocation
2. Stack allocation

 In static allocation, the position of an activation record in memory is fixed at
compile time.

 In stack allocation, a new activation record is pushed onto the stack for each
execution of a procedure. The record is popped when the activation ends.

 The following three-address statements are associated with the run-time allocation
and deallocation of activation records:

1. Call,
2. Return,
3. Halt, and
4. Action, a placeholder for other statements.

Code Generation Unit 4

Compiler Design
Page 5

 We assume that the run-time memory is divided into areas for:
1. Code
2. Static data
3. Stack

Static allocation
Implementation of call statement:
The codes needed to implement static allocation are as follows:
MOV #here+20,callee.static_area/*It saves return address*/
GOTO callee.code_area/*It transfers control to the target code for the called procedure */
where,
callee.static_area – Address of the activation record
callee.code_area – Address of the first instruction for called
procedure
#here +20 – Literal return address which is the address of the instruction following GOTO.
Implementation of return statement:
A return from procedure callee is implemented by :
GOTO *callee.static _area
This transfers control to the address saved at the beginning of the activation record.
Implementation of action statement:
The instruction ACTION is used to implement action statement.
Implementation of halt statement:
The statement HALT is the final instruction that returns control to the operating system.
Stack allocation

Static allocation can become stack allocation by using relative addresses for storage
in activation records. In stack allocation, the position of activation record is stored in
register so words in activation records can be accessed as offsets from the value in this
register.
The codes needed to implement stack allocation are as follows:
Initialization of stack:
MOV #stackstart, SP /* initializes stack */
Code for the first procedure
HALT /* terminate execution */
Implementation of Call statement:
ADD #caller.recordsize, SP /* increment stack pointer */
MOV #here+16, *SP /*Save return address */
GOTO callee.code_area
where,
caller.recordsize – size of the activation record
#here +16 – address of the instruction following theGOTO

Code Generation Unit 4

Compiler Design
Page 6

Implementation of Return statement:
GOTO *0 (SP) /*return to the caller */
SUB #caller.recordsize, SP /* decrement SP and restore to previous value */

4.4 BASIC BLOCKS AND FLOW GRAPHS
Basic Blocks

 A basic block is a sequence of consecutive statements in which flow of control
enters at the beginning and leaves at the end without any halt or possibility of
branching except at the end.

 The following sequence of three-address statements forms a basic
block:

t1 : = a * a
t2 : = a * b

t3 : = 2 * t2

 t4 : = t1 + t3

t5 : = b * b
t6 : = t4 + t5

Basic Block Construction:

Algorithm: Partition into basic blocks
Input: A sequence of three-address statements
Output: A list of basic blocks with each three-address statement in exactly one block
Method:
(1) We first determine the set of leaders, the first statements of basic blocks.

The rules we use are of the following:
 The first statement is a leader.
 Any statement that is the target of a conditional or unconditional

goto is a leader.
 Any statement that immediately follows a goto or conditional goto

statement is a leader.
 For each leader, its basic block consists of the leader and all statements

up to but not including the next leader or the end of the program.Consider
the following source code fordot product of two vectors a and b of length 20

Code Generation Unit 4

Compiler Design
Page 7

begin

prod

:=0;

i:=1; do

begin

prod :=prod+ a[i]*

b[i]; i :=i+1;

end
while i <= 20

end

 The three -address code for the above source program is given as :
 (1) prod := 0

 (2) i := 1

 (3) t1 := 4* i

 (4) t2 := a[t1] /*compute a[i] */

 (5) t3 := 4*i

 (6) t4 := b[t3] /*compute b[i] */

 (7) t5 := t2*t4

(8) t6 := prod+t5

(9) prod := t6

(10) t7 := i+1

(11) i := t7

(12)
if i<=20 goto
(3)

Code Generation Unit 4

Compiler Design
Page 8

Basic block 1: Statement (1) to (2)
Basic block 2: Statement (3) to (12)
Transformations on Basic Blocks:
A number of transformations can be applied to a basic block without changing the set of
expressions computed by the block. Two important classes of transformation are :

 Structure-preserving transformations
 Algebraic transformations

 Structure preserving transformations:
a) Common subexpression elimination:

a : = b + c
b : = a – d
c : = b + c
d : = a – d
a : = b + c
b : = a – d
 c : = b + c
d : = b
Since the second and fourth expressions compute the same expression, the basic block can
be transformed as above.

b) Dead-code elimination:
Suppose x is dead, that is, never subsequently used, at the point where the statement

x : = y + z appears in a basic block. Then this statement may be safely removed without
changing the value of the basic block.

c) Renaming temporary variables:
A statement t : = b + c (t is a temporary) can be changed to u : = b + c (u is a new
temporary) and all uses of this instance of t can be changed to u without changing the
value of the basic block.
Such a block is called a normal-form block.
d) Interchange of statements:
Suppose a block has the following two adjacent statements:

t1 : = b + c
t2 : = x + y

We can interchange the two statements without affecting the value of the block
if and only if neither x nor y is t1 and neither b nor c is t2.

1. Algebraic transformations:

Algebraic transformations can be used to change the set of expressions computed by a
basic block into an algebraically equivalent set.
Examples:
i) x : = x + 0 or x : = x * 1 can be eliminated from a basic block without changing the set

Code Generation Unit 4

Compiler Design
Page 9

of expressions it computes.
ii) The exponential statement x : = y * * 2 can be replaced by x : = y * y.
4.6 Flow Graphs

 Flow graph is a directed graph containing the flow-of-control information for the set
of basic blocks making up a program.

 The nodes of the flow graph are basic blocks. It has a distinguished initial node.
 E.g.: Flow graph for the vector dot product is given as follows:

t1 : = 4 * i
t2 : = a [t1]
t3 : = 4 * iB2
t4 : = b [t3]
t5 : = t2 * t4
 t6 : = prod + t5
 prod : = t6
 t7 : = i + 1
 i : = t7 B2
 if i <= 20 goto B2

 B1 is the initial node. B2 immediately follows B1, so there is an edge from B1 to
B2. The target of jump from last statement of B1 is the first statement B2, so
there is an edge from B1 (last statement) to B2 (first statement).

 B1 is the predecessor of B2, and B2 is a successor of B1.

Loops

 A loop is a collection of nodes in a flow graph such that
o All nodes in the collection are strongly connected.
o The collection of nodes has a unique entry.

 A loop that contains no other loops is called an inner loop.
4.5 NEXT-USE INFORMATION

 If the name in a register is no longer needed, then we remove the name from the
register and the register can be used to store some other names.

Input: Basic block B of three-address statements

prod : = 0 B1
i : = 1

Code Generation Unit 4

Compiler Design
Page 10

Output: At each statement i: x= y op z, we attach to i the liveliness and
next-uses of x,y and z.
Method: We start at the last statement of B and scan backwards.

1. Attach to statement i the information currently found in the
symbol table regarding the next-use and liveliness of x, y and z.

2. In the symbol table, set x to “not live” and “no next use”.
3. In the symbol table, set y and z to “live”,and next-uses of y and z to i.

Symbol Table:

Names Liveliness Next-use

 X not live no next-use

 Y Live i

 Z Live i

4.6 A SIMPLE CODE GENERATOR

 A code generator generates target code for a sequence of three- address statements
and effectively uses registers to store operands of the statements.

 For example: consider the three-address statement a
:= b+c It can have the following sequence of codes:

ADD Rj, Ri Cost = 1 // if Ri contains b and Rj contains c

 (or)

ADD c, Ri Cost = 2 // if c is in a memory location

 (or)

MOV c, Rj Cost = 3 // move c from memory to Rj and add

ADD Rj, Ri

Register and Address Descriptors:

 A register descriptor is used to keep track of what is currently in each registers. The
register descriptors show that initially all the registers are empty.

 An address descriptor stores the location where the current value of the name can be
found at run time.

A code-generation algorithm:

The algorithm takes as input a sequence of three -address statements constituting a basic

Code Generation Unit 4

Compiler Design
Page 11

block. For each three-address statement of the form x : = y op z, perform the following
actions:
 Invoke a function getreg to determine the location L where the result of the

computation y op z should be stored.
 Consult the address descriptor for y to determine y’, the current location of y.

Prefer the register for y’ if the value of y is currently both in memory and a
register. If the value of y is not already in L, generate the instruction MOV y’ , L
to place a copy of y in L.

 Generate the instruction OP z’ , L where z’ is a current location of z. Prefer a
register to a memory location if z is in both. Update the address descriptor of x
to indicate that x is in location L. If x is in L, update its descriptor and remove x
from all other descriptors.

 If the current values of y or z have no next uses, are not live on exit from the block,
and are in registers, alter the register descriptor to indicate that, after execution of x
: = y op z , those registers will no longer contain y or z.

Generating Code for Assignment Statements:
The assignment d : = (a-b) + (a-c) + (a-c) might be translated into the following three-
address code sequence:

 t : = a – b u : = a – c v : = t + u d : = v + u
with d live at the end.
Code sequence for the example is:
Statements Code Generated Register descriptor Address descriptor

 Register empty

t : = a - b MOV a, R0 R0 contains t t in R0

 SUB b, R0

u : = a - c MOV a , R1 R0 contains t t in R0

 SUB c , R1 R1 contains u u in R1

v : =t + u ADD R1, R0 R0 contains v u in R1

 R1 contains u v in R0

d : = v + u ADD R1, R0 R0 contains d d in R0

MOV R0, d

 d in R0 and memory

Generating Code for Indexed Assignments
The table shows the code sequences generated for the indexed assignment
statements a : = b [i] and a [i] : = b

Code Generation Unit 4

Compiler Design
Page 12

Statements Code Generated Cost

a : = b[i] MOV b(Ri), R 2

a[i] : = b MOV b, a(Ri) 3

Generating Code for Pointer Assignments
The table shows the code sequences generated for the pointer assignments
a : = *p and *p : = a

 Statements Code Generated Cost

 a : = *p MOV *Rp, a 2

 *p : = a MOV a, *Rp 2

 Generating Code for Conditional Statements

Statement

 Code

 if x < y goto z CMP x, y

 CJ<z /* jump to z if condition code

 is negative */

x : = y +z if x
<0 goto z

 MOV y, R0
 ADD z, R0
MOV R0,x
CJ< z

4.7 THE DAG REPRESENTATION FOR BASIC BLOCKS
A DAG for a basic block is a directed acyclic graph with the following labels on nodes:

Leaves are labeled by unique identifiers, either variable names or constants.
 Interior nodes are labeled by an operator symbol.
 Nodes are also optionally given a sequence of identifiers for labels to store the

computed values.
 DAGs are useful data structures for implementing transformations on basic blocks.
 It gives a picture of how the value computed by a statement is used in subsequent

statements.
 It provides a good way of determining common sub - expressions.

Code Generation Unit 4

Compiler Design
Page 13

Algorithm for construction of DAG
Input: A basic block

Output: A DAG for the basic block containing the following information:

1. A label for each node. For leaves, the label is an identifier. For interior
nodes, an operator symbol.

2. For each node a list of attached identifiers to hold the computed values.
Case (i)x := y OP z

Case (ii)x := OP y

Case (iii)x := y

Method:
Step 1: If y is undefined then create node(y).

If z is undefined, create node(z) for case(i).
Step 2: For the case(i), create a node(OP) whose left child is node(y) and right child is

node(z) . (Checkingfor common sub expression). Let n be this node.
For case(ii), determine whether there is node(OP) with one child node(y). If not
create such a node.
For case(iii), node n will be node(y).

Step 3: Delete x from the list of identifiers for node(x). Append x to the list of attached
identifiers for the noden found in step 2 and set node(x) to n.

 Consider the block of three- address statements:

Example:

1. t1 := 4* i
2. t2 := a[t1]
3. t3 := 4* i
4. t4 := b[t3]
5. t5 := t2*t4
6. t6 := prod+t5
7. prod := t6
8. t7 := i+1
9. i := t7
10. if i<=20 goto (1)

Code Generation Unit 4

Compiler Design
Page 14

Stages in DAG Construction

Code Generation Unit 4

Compiler Design
Page 15

Code Generation Unit 4

Compiler Design
Page 16

Code Generation Unit 4

Compiler Design
Page 17

Application of DAGs:
 We can automatically detect common sub expressions.
 We can determine which identifiers have their values used in the block.
 We can determine which statements compute values that could be used outside the block.

4.8 GENERATING CODE FROM DAGs
The advantage of generating code for a basic block from its dag representation is that,

from a dag we can easily see how to rearrange the order of the final computation sequence than
we can starting from a linear sequence of three-address statements or quadruples.
Rearranging the order
The order in which computations are done can affect the cost of resulting object code.
For example, consider the following basic block:

t1 : = a + b
 t2 : = c + d
 t3 : = e – t2
t4 : = t1 – t3

Generated code sequence for basic block:
MOV a , R0
ADD b , R0
MOV c , R1
ADD d , R1
MOV R0 , t1
MOV e , R0
SUB R1 , R0
MOV t1 , R1
SUB R0 , R1
MOV R1 , t4
Rearranged basic block:
Now t1 occurs immediately before t4.

t2 : = c + d
t3 : = e – t2

 t1 : = a + b
 t4 : = t1 – t3

Revised code sequence:
MOV c , R0
ADD d , R0
MOV a , R0
SUB R0 , R1
MOV a , R0

 ADD b , R0
SUB R1 , R0

Code Generation Unit 4

Compiler Design
Page 18

MOV R0 , t4
In this order, two instructions MOV R0, t1 and MOV t1, R1 have been saved.
A Heuristic ordering for Dags
The heuristic ordering algorithm attempts to make the evaluation of a node immediately follow
the evaluation of its leftmost argument.
The algorithm shown below produces the ordering in reverse.
Algorithm:
(5) while unlisted interior nodes remain do begin
(6) select an unlisted node n, all of whose parents have been listed;
(7) list n;
(8) while the leftmost child m of n has no unlisted parents and is not a leaf do

begin
(9) list m;
(10) n : = m

end
end
Example: Consider the DAG shown below:

 1 *

 2 + - 3

* 4

 5 - + 8

 6 + 7 c d 11 e 12

a 9 b 10

 Initially, the only node with no unlisted parents is 1 so set n=1 at line (2) and list 1 at line
(3). Now, the left argument of 1, which is 2, has its parents listed, so we list 2 and set n=2 at line (6).
Now, at line (4) we find the leftmost child of 2, which is 6, has an unlisted parent 5. Thus we
select anew n at line (2), and node 3 is the only candidate. We list 3 and proceed down its left
chain, listing 4, 5 and 6. This leaves only 8 among the interior nodes so we list that. The resulting
list is 1234568 and the order of evaluation is 865432.

Code Generation Unit 4

Compiler Design
Page 19

Code sequence:
t8 : = d + e t6 :
= a + b t5 : = t6
– c t4 : = t5 * t8
t3 : = t4 – e t2 :
= t6 + t4 t1 : =
t2 * t3

This will yield an optimal code for the DAG on machine whatever be the number of registers.
4.9 PEEPHOLE OPTIMIZATION

 A statement-by-statement code-generations strategy often produce target code that
contains redundant instructions and suboptimal constructs .The quality of such target
code can be improved by applying “optimizing” transformations to the target program.

 A simple but effective technique for improving the target code is peephole optimization, a
method for trying to improving the performance of the target program by examining a
short sequence of target instructions (called the peephole) and replacing these instructions
by a shorter or faster sequence, whenever possible.

 The peephole is a small, moving window on the target program. The code in the peephole
need not contiguous, although some implementations do require this.it is characteristic of
peephole optimization that each improvement may spawn opportunities for additional
improvements.

 We shall give the following examples of program transformations that are characteristic
of peephole optimizations:

 Redundant-instructions elimination
 Flow-of-control optimizations
 Algebraic simplifications
 Use of machine idioms
 Unreachable Code

Redundant Loads And Stores:
If we see the instructions sequence

(1) MOV R0,a
(2) MOV a,R0

we can delete instructions (2) because whenever (2) is executed. (1) will ensure that the value of
a is already in register R0.If (2) had a label we could not be sure that (1) was always
executedimmediately before (2) and so we could not remove (2).
Unreachable Code:
 Another opportunity for peephole optimizations is the removal of unreachable instructions.

An unlabeled instruction immediately following an unconditional jump may be removed.
This operation can be repeated to eliminate a sequence of instructions. For example, for
debugging purposes, a large program may have within it certain segments that are executed
only if a variable debug is 1. In C, the source code might look like:

define debug 0

Code Generation Unit 4

Compiler Design
Page 20

….

If (debug) {

Print debugging information

}
 In the intermediate representations the if-statement may be translated as: If

debug =1 goto L2

goto L2

L1: print debugging information

L2: …………………………(a)

 One obvious peephole optimization is to eliminate jumps over jumps .Thus no matter what

the value of debug; (a) can be replaced by:

If debug ≠1 goto L2

Print debugging information

L2: ……………………………(b)

 As the argument of the statement of (b) evaluates to a constant true it can be replaced by

If debug ≠0 goto L2

Print debugging information

L2: ……………………………(c)

 As the argument of the first statement of (c) evaluates to a constant true, it can be replaced by

goto L2. Then all the statement that print debugging aids are manifestly unreachable and can
be eliminated one at a time.

Flows-Of-Control Optimizations:

The unnecessary jumps can be eliminated in either the intermediate code or the target code
by the following types of peephole optimizations. We can replace the jump sequence

goto L1
….

L1: gotoL2
by the sequence

Code Generation Unit 4

Compiler Design
Page 21

goto L2
….

L1: goto L2
If there are now no jumps to L1, then it may be possible to eliminate the statement L1:goto
L2 provided it is preceded by an unconditional jump .Similarly, the sequence

if a < b goto L1
….

L1: goto L2
can be replaced by

Ifa < b goto L2
….
L1: goto L2

Finally, suppose there is only one jump to L1 and L1 is preceded by an unconditional goto.
Then the sequence

goto L1
…….
L1: if a <b goto L2
L3: …………………………………..(1)

 Maybe replaced by
Ifa<b goto L2
goto L3
…….
L3: ………………………………….(2)

While the number of instructions in (1) and (2) is the same, we sometimes skip the
unconditional jump in (2), but never in (1).Thus (2) is superior to (1) in execution time

Algebraic Simplification:
There is no end to the amount of algebraic simplification that can be attempted through
peephole optimization. Only a few algebraic identities occur frequently enough that it is
worth considering implementing them .For example, statements such as

(a) x:= x+0
Or
x := x * 1

Areoften produced by straightforward intermediate code-generation algorithms, and they can
be eliminated easily through peephole optimization.

Reduction in Strength:
 Reduction in strength replaces expensive operations by equivalent cheaper ones on the

target machine. Certain machine instructions are considerably cheaper than others and
can often be used as special cases of more expensive operators.

 For example, x² is invariably cheaper to implement as x*x than as a call to an
exponentiation routine. Fixed-point multiplication or division by a power of two is
cheaper to implement as a shift. Floating-point division by a constant can be implemented
as multiplication by a constant, which may be cheaper.

X2 → X*X

Code Generation Unit 4

Compiler Design
Page 22

Useof Machine Idioms:
 The target machine may have hardware instructions to implement certain specific

operations efficiently. For example, some machines have auto-increment and auto-
decrement addressing modes. These add or subtract one from an operand before or after
using its value.

 The use of these modes greatly improves the quality of code when pushing or popping a
stack, as in parameter passing. These modes can also be used in code for statements like i
: =i+1.
i:=i+1 → i++
i:=i-1 → i--

