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UNIT 4 
CODE GENERATION 

The final phase in compiler model is the code generator. It takes as input an 
intermediate representation of the source program and produces as output an equivalent 
target program. The code generation techniques presented below can be used whether or not 
an optimizing phase occurs before code generation. 
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4.1 ISSUES IN  THE DESIGN OF A CODE GENERATOR 
The following  issues arise during the code generation phase : 

1. Input to  code generator  
2. Target  program  
3. Memory  management  
4. Instruction  selection  
5. Register  allocation  
6. Evaluation  order  
Input to  code generator:   
The input  to the code generation consists of the intermediate representation of the 
source program  produced by front end , together with information in the symbol table 
to determine  run-time addresses of the data objects denoted by the names in the 
intermediate representation. 
Intermediate representation can be : 
Linear representation such as postfix notation  
Three address representation such as quadruples  
Virtual machine representation such as stack machine code  
Graphical representations such as syntax trees and dags.  
Prior to code generation, the front end must be scanned, parsed and translated into 
intermediate representation along with necessary type checking. Therefore, input to 
code generation is assumed to be error-free. 
Target program:   

 The output of the code generator is the target program. The output may be : 
Absolute machine language   

 It can be placed in a fixed memory location and can be executed 
immediately. 
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Relocatable machine language   
 It allows subprograms to be compiled separately.  

Assembly language   
- Code generation is made easier.  

Memory management:   
 Names in the source program are mapped to addresses of data objects in run-

time memory by the front end and code generator. 
 It makes use of symbol table, that is, a name in a three-address statement refers 

to a symbol-table entry for the name. 
 Labels in three-address statements have to be converted to addresses of 

instructions. For example, 
j :goto i generates jump instruction as follows :
 if i<j, a backward jump instruction with target address equal to 

location of code for quadruple i is generated. 
  if i>j, the jump is forward. We must store on a list for quadruplei the  

location of the first machine instruction generated for quadruplej. 
When i is  processed, the machine locations for all instructions that 
forward jumps to i are filled. 

Instruction  selection:   
 The  instructions of target machine should be complete and uniform. 
  Instruction speeds and machine idioms are important factors when efficiency of 

target  program is considered. 
 The  quality of the generated code is determined by its speed and size. 
 The  former statement can be translated into the latter statement as shown below: 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Register allocation   

 Instructions involving register operands are shorter and faster than those 
involving operands in memory. 

 The use of registers is subdivided into two subproblems : 
 Register allocation – the set of variables that will reside in registers at a 

point inthe program is selected. 
 Register assignment – the specific register that a  variable will reside in 

ispicked. 



Code Generation   Unit 4 
 

Compiler Design 
Page 3 

 

 Certain machine requires even-odd register pairs for some operands and 
results. For example , consider the division instruction of the form : 

D  x, y 
where, x – dividend even register in even/odd 

register pair y – divisor  
even register holds the 
remainder odd register 
holds the quotient 

Evaluation order   
 The order in which the computations are performed can affect the efficiency of 

the target code. Some computation orders require fewer registers to hold 
intermediate results than others. 

4.2 TARGET MACHINE 
 Familiarity  with the target machine and its instruction set is a prerequisite for 

designing a good  code generator. 
 The target  computer is a byte-addressable machine with 4 bytes to a word. 
 It has n general-purpose registers, R0, R1, . . . , Rn-1. 
 It has  two-address instructions of the form:  

 op source, destination  
where, op is an op-code, and source and destination aredata fields. 

 It has  the following op-codes : 
 MOV (move source to destination) 
 ADD (add source to destination)  
 SUB (subtract source from destination) 

 The source and destination of an instruction are specified by combining 
registers and memory  locations with address modes. 

 Address modes with their assembly-language forms 
MODE FORM ADDRESS ADDED COST 

    

absolute M M 1 
    

register R R 0 
    

indexed c(R) c+contents(R) 1 
    

indirect register *R contents (R) 0 
    

indirect indexed *c(R) contents(c+ 1 
  contents(R))  
    

literal #c c 1 
    

 
 For example : MOV R0, M stores contents of Register R0 into  memory location 
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M ; MOV 4(R0), M stores the value contents(4+contents (R0)) 
into M. 

Instruction costs : 
 Instruction cost = 1+cost for source and destination address modes. This cost 

corresponds to the length of the instruction. 
 Address modes involving registers have cost zero. 
 Address modes involving memory location or literal have cost one. 
 Instruction length should be minimized if space is important. Doing so also 

minimizes the time taken to fetch and perform the instruction. 
For example : MOV R0, R1 copies the contents of register R0 into R1. It has cost 
one, since it occupies only one word of memory. 

 The three-address statement a : = b + c can be implemented by many different 
instruction sequences : 

 
i) MOV b, R0  

ADD  c, R0  cost = 6 
MOV  R0, a  

ii) MOV  b, a  
ADD  c, a  cost = 6 

 
iii)  Assuming R0, R1 and R2 contain the addresses of a, b, and c :  

MOV  *R1, *R0  
ADD  *R2, *R0  cost = 2 

 
 In order  to generate good code for target machine, we must utilize its 

addressing capabilities  efficiently. 
 

4.3 RUN-TIME  STORAGE MANAGEMENT 
 Information  needed during an execution of a procedure is kept in a block of storage 

called  an activation record, which includes storage for names local to the procedure. 
 The two  standard storage allocation strategies are: 

1. Static allocation  
2. Stack allocation   

 In static allocation, the position of an activation record in memory is fixed at 
compile time. 

 In stack allocation, a new activation record is pushed onto the stack for each 
execution of a procedure. The record is popped when the activation ends. 

 The following three-address statements are associated with the run-time allocation 
and deallocation of activation records: 

1. Call,  
2. Return,  
3. Halt, and  
4. Action, a placeholder for other statements.   
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 We assume that the run-time memory is divided into areas for: 
1. Code  
2. Static data  
3. Stack  

 
Static allocation 
Implementation of call statement: 
The codes needed to implement static allocation are as follows: 
MOV #here+20,callee.static_area/*It saves return address*/ 
GOTO callee.code_area/*It transfers control to the target code for the called procedure */ 
where,  
callee.static_area – Address of the activation record 
callee.code_area – Address of the first instruction for called 
procedure  
#here +20 – Literal return address which is the address of the instruction following GOTO. 
Implementation of return statement: 
A return from procedure callee is implemented by : 
GOTO *callee.static _area 
This transfers  control to the address saved at the beginning of the activation record. 
Implementation  of action statement: 
The instruction  ACTION is used to implement action statement. 
Implementation  of halt statement: 
The statement  HALT is the final instruction that returns control to the operating system. 
Stack allocation 

Static  allocation can become stack allocation by using relative addresses for storage 
in activation records.  In stack allocation, the position of activation record is stored in 
register so words in activation  records can be accessed as offsets from the value in this 
register. 
The codes needed to implement stack allocation are as follows: 
Initialization of stack: 
MOV #stackstart, SP      /* initializes stack */ 
Code for the first procedure 
HALT /* terminate execution */ 
Implementation of Call statement: 
ADD #caller.recordsize, SP   /* increment stack pointer */ 
MOV #here+16, *SP     /*Save return address */ 
GOTO callee.code_area 
where,  
caller.recordsize – size of the activation record  
#here +16 – address of the instruction following theGOTO 
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Implementation of Return statement: 
GOTO *0 (SP )   /*return to the caller */ 
SUB #caller.recordsize, SP  /* decrement SP and restore to previous value */ 
 
4.4 BASIC BLOCKS AND FLOW GRAPHS 
Basic Blocks 

 A basic block is a sequence of consecutive statements in which flow of control 
enters at the beginning and leaves at the end without any halt or possibility of 
branching except at the end. 

 The  following sequence of three-address statements forms a basic 
block:

t1 : = a  * a 
t2 : = a  * b 

t3 : = 2  * t2 

 t4 : = t1 + t3 

t5 : = b  * b  
t6 : = t4 + t5

Basic Block  Construction: 
 

Algorithm: Partition into basic blocks 
Input: A  sequence of three-address statements 
Output: A list  of basic blocks with each three-address statement in exactly one block 
Method: 
(1) We first determine the set of leaders, the first statements of basic blocks. 

The rules we use are of the following:  
 The first statement is a leader.  
 Any statement that is the target of a conditional or unconditional 

goto is a leader.  
 Any statement that immediately follows a goto or conditional goto 

statement is a leader.  
 For each leader, its basic block consists of the leader and all statements 

up to but not including the next leader or the end of the program.Consider 
the following source code fordot product of two vectors  a and b of length 20 
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begin 
 

prod 

:=0; 

i:=1; do 

begin 
 

prod :=prod+ a[i]* 

b[i]; i :=i+1; 
 

end 
while i <= 20 

 
end 
 

 The three -address code for the above source program is given as : 
 (1)  prod := 0  

 (2)  i := 1  

 (3)  t1 := 4* i  

 (4)  t2 := a[t1]  /*compute a[i] */ 

 (5)  t3 := 4*i  

 (6)  t4  := b[t3]  /*compute b[i] */ 

 (7)  t5  := t2*t4  

(8) t6 := prod+t5  

(9) prod := t6  

(10) t7 := i+1  

(11) i := t7  

(12) 
if i<=20 goto 
(3)  
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Basic block 1: Statement (1) to (2) 
Basic block 2: Statement (3) to (12) 
Transformations on Basic Blocks: 
A number of transformations can be applied to a basic block without changing the set of 
expressions computed by the block. Two important classes of transformation are : 

 Structure-preserving transformations 
 Algebraic transformations 

 Structure preserving transformations:  
a) Common subexpression elimination:  

a : = b + c  
b : = a – d  
c : = b + c  
d : = a – d 
a : = b + c  
b : = a – d 
 c : = b + c  
d : = b 
Since the  second and fourth expressions compute the same expression, the basic block can 
be transformed  as above. 

b) Dead-code  elimination: 
Suppose x is dead, that is, never subsequently used, at the point where the statement 

x : = y + z appears  in a basic block. Then this statement may be safely removed without 
changing the value of  the basic block. 

 
c) Renaming  temporary variables: 
A statement t : = b + c ( t is a temporary ) can be changed to u : = b + c (u is a new 
temporary)  and all uses of this instance of t can be changed to u without changing the 
value of the basic  block.  
Such a block  is called a normal-form block. 
d) Interchange  of statements: 
Suppose a block has the following two adjacent statements: 

t1 : = b + c  
t2 : = x + y 

We can interchange the two statements without affecting the value of the block 
if and only if neither x nor y is t1 and neither b nor c is t2. 

 
1. Algebraic transformations:  

Algebraic transformations can be used to change the set of expressions computed by a 
basic block into an algebraically equivalent set.   
Examples:   
i) x : = x + 0 or x : = x * 1 can be eliminated from a basic block without changing the set 
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of expressions it computes.  
ii) The exponential statement x : = y * * 2 can be replaced by x : = y * y. 
4.6 Flow Graphs 

 
 
 
 
 
 
 

 Flow graph is a directed graph containing the flow-of-control information for the set 
of basic blocks making up a program. 

 The nodes of the flow graph are basic blocks. It has a distinguished initial node. 
 E.g.: Flow graph for the vector dot product is given as follows:  

 
 

t1 : = 4 * i  
t2 : = a [ t1 ] 
t3 : = 4 * iB2  
t4 : = b [ t3 ]  
t5 : = t2 * t4  
 t6 : = prod + t5 
 prod : = t6 
 t7 : = i + 1  
 i : = t7        B2  
 if i <= 20 goto B2 

 
 
 
 

 B1 is  the initial node. B2 immediately follows B1, so there is an edge from B1 to 
B2. The target  of jump from last statement of B1 is the first statement B2, so 
there is an edge from B1 (last  statement) to B2 (first statement). 

 B1 is the predecessor of B2, and B2 is a successor of B1. 
 
Loops 
 

 A loop is a collection of nodes in a flow graph such that 
o All nodes in the collection are strongly connected.   
o The collection of nodes has a unique entry.   

 A loop that contains no other loops is called an inner loop. 
4.5 NEXT-USE INFORMATION 

 If the name in a register is no longer needed, then we remove the name from the 
register and the register can be used to store some other names. 

Input: Basic block B of three-address statements 
 

prod : = 0 B1 
i : = 1  
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Output: At each statement i: x= y op z, we attach to i the liveliness and 
next-uses of x,y and z. 
Method: We start at the last statement of B and scan backwards. 

1. Attach to statement i the information currently found in the 
symbol table regarding the next-use and liveliness of x, y and z.  

2. In the symbol table, set x to “not live” and “no next use”.   
3. In the symbol table, set y and z to “live”,and next-uses of y and z to i.  
 

Symbol Table:      
 

       
 

 

Names  Liveliness  Next-use 
  

    
 

       
 

 X   not live   no next-use  
 

       
 

 Y   Live  i  
 

       
 

 Z   Live  i  
 

       
 

 
4.6 A SIMPLE  CODE GENERATOR 

 A code  generator generates target code for a sequence of three- address statements 
and effectively  uses registers to store operands of the statements. 

 For  example: consider the three-address statement a 
:= b+c It can  have the following sequence of codes: 

 
ADD Rj, Ri Cost = 1  // if Ri contains b and Rj contains c 

 (or)  

ADD c, Ri Cost = 2 // if c is in a memory location 

 (or)  

MOV c, Rj Cost = 3 // move c from memory to Rj and add 

ADD Rj, Ri   
 
Register and Address Descriptors: 

 A register descriptor is used to keep track of what is currently in each registers. The 
register descriptors show that initially all the registers are empty. 

 An address descriptor stores the location where the current value of the name can be 
found at run time.  

 
A code-generation algorithm: 

The algorithm takes as input a sequence of three -address statements constituting a basic 
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block. For each three-address statement of the form x : = y op z, perform the following 
actions: 
 Invoke a function getreg to determine the location L where the result of the 

computation y op z should be stored.  
 Consult the address descriptor for y to determine y’, the current location of y. 

Prefer the register for y’ if the value of y is currently both in memory and a 
register. If the value of y is not already in L, generate the instruction MOV y’ , L 
to place a copy of y in L.  

 Generate the instruction OP z’ , L where z’ is a current location of z. Prefer a 
register to a memory location if z is in both. Update the address descriptor of x 
to indicate that x is in location L. If x is in L, update its descriptor and remove x 
from all other descriptors.  

 If the current values of y or z have no next uses, are not live on exit from the block, 
and are in registers, alter the register descriptor to indicate that, after execution of x 
: = y op z , those registers will  no longer contain y or z.  

Generating  Code for Assignment Statements: 
The  assignment d : = (a-b) + (a-c) + (a-c) might be translated into the following three-
address  code sequence:  

 t : = a – b  u : = a – c  v : = t + u  d : = v + u 
with d live at  the end. 
Code sequence  for the example is: 
Statements  Code Generated  Register descriptor  Address descriptor 

 

    
 

   Register empty  
 

    
 

t : = a - b MOV a, R0 R0 contains t t in R0 
 

 SUB b, R0    
 

     
 

u : = a - c MOV a , R1 R0 contains t t in R0 
 

 SUB c , R1 R1 contains u u in R1 
 

     
 

v : =t + u ADD R1, R0 R0 contains v u in R1 
 

  R1 contains u v in R0 
 

d : = v + u ADD R1, R0 R0 contains d d in R0 
 

 
MOV R0, d 

  d in R0 and memory 
 

    
 

     
 

Generating Code for Indexed Assignments 
The table shows the code sequences generated for the indexed assignment 
statements a : = b [ i ] and a [ i ] : = b 
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Statements Code Generated Cost 
   

a : = b[i] MOV b(Ri), R 2 
   

a[i] : = b MOV b, a(Ri) 3 
   
 

Generating Code for Pointer Assignments 
The table shows the code sequences generated for the pointer assignments 
a : = *p and *p : = a 

 Statements  Code Generated    Cost 
 

      
 

 a : = *p  MOV *Rp, a   2 
 

      
 

 *p : = a  MOV a, *Rp   2 
 

       
 

 Generating  Code for Conditional Statements    
 

       
 

 

Statement 
 

 Code 
    

     
 

       
 

 if x < y goto z   CMP x, y    
 

    CJ<z  /* jump to z if condition code 
 

       is negative */ 
 

       
 

x : = y +z if x 
<0 goto z 

 MOV y, R0  
 ADD z, R0 
MOV R0,x 
CJ< z 

 
 
4.7 THE DAG REPRESENTATION FOR BASIC BLOCKS 
A DAG for a basic block is a directed acyclic graph with the following labels on nodes: 

Leaves are labeled by unique identifiers, either variable names or constants.  
 Interior nodes are labeled by an operator symbol.  
 Nodes are also optionally given a sequence of identifiers for labels to store the 

computed values.  
 DAGs are useful data structures for implementing transformations on basic blocks. 
 It gives a picture of how the value computed by a statement is used in subsequent 

statements. 
 It provides a good way of determining common sub - expressions. 
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Algorithm for construction of DAG 
Input: A basic block 
 

Output: A DAG for the basic block containing the following information: 
 

1. A label for each node. For leaves, the label is an identifier. For interior 
nodes, an operator symbol.  

2. For each node a list of attached identifiers to hold the computed values.  
Case (i)x := y OP z 

 
Case (ii)x := OP y 

 
Case (iii)x := y 

Method: 
Step 1: If y is  undefined then create node(y). 

If z is  undefined, create node(z) for case(i). 
Step 2: For the  case(i), create a node(OP) whose left child is node(y) and right child is 

node(z) . (Checkingfor common sub expression). Let n be this node. 
For  case(ii), determine whether there is node(OP) with one child node(y). If not 
create such a node. 
For  case(iii), node n will be node(y). 

Step 3: Delete  x from the list of identifiers for node(x). Append x to the list of attached 
identifiers  for the noden found in step 2 and set node(x) to n. 
 

 Consider the block of three- address statements: 
 
Example: 

1. t1 := 4* i   
2. t2 := a[t1]   
3. t3 := 4* i   
4. t4 := b[t3]   
5. t5 := t2*t4  
6. t6 := prod+t5  
7. prod := t6  
8. t7 := i+1   
9. i := t7  
10. if i<=20 goto (1)  
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Stages in DAG Construction 
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Application of DAGs: 
 We can automatically detect common sub expressions.  
 We can determine which identifiers have their values used in the block.  
 We can determine which statements compute values that could be used outside the block. 

4.8 GENERATING CODE FROM DAGs 
The advantage of generating code for a basic block from its dag representation is that, 

from a dag we can easily see how to rearrange the order of the final computation sequence than 
we can starting from a linear sequence of three-address statements or quadruples. 
Rearranging the order  
The order in which computations are done can affect the cost of resulting object code. 
For example, consider the following basic block:  

t1 : = a + b 
 t2 : = c + d 
 t3 : = e – t2 
t4 : = t1 – t3 

Generated code sequence for basic block: 
MOV a , R0  
ADD b , R0  
MOV c , R1  
ADD d , R1  
MOV R0 , t1  
MOV e , R0  
SUB R1 , R0  
MOV t1 , R1  
SUB R0 , R1  
MOV R1 , t4 
Rearranged  basic block:  
Now t1 occurs  immediately before t4. 

t2 : = c + d  
t3 : = e – t2 

 t1 : = a + b 
 t4 : = t1 – t3 

Revised code sequence: 
MOV c , R0 
ADD d , R0 
MOV a , R0 
SUB R0 , R1 
MOV a , R0 

 ADD b , R0 
SUB R1 , R0 
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MOV R0 , t4 
In this order, two instructions MOV R0, t1 and MOV t1, R1 have been saved. 
A Heuristic ordering for Dags 
The heuristic ordering algorithm attempts to make the evaluation of a node immediately follow 
the evaluation of its leftmost argument. 
The algorithm shown below produces the ordering in reverse. 
Algorithm: 
(5) while unlisted interior nodes remain do begin   
(6) select an unlisted node n, all of whose parents have been listed;   
(7) list n;   
(8) while the leftmost child m of n has no unlisted parents and is not a leaf do 

begin   
(9) list m;   
(10) n : = m   

end 
end 
Example: Consider the DAG shown below: 

 1  * 
 
 

 2  +  -  3 
 

 
* 4 

 
 

 5 -  + 8 

 6  + 7 c d  11 e  12 

a 9 b 10   
 
 Initially, the only node with no unlisted parents is 1 so set n=1 at line (2) and list 1 at line 
(3). Now, the left argument of 1, which is 2, has its parents listed, so we list 2 and set n=2 at line (6). 
Now, at line (4) we find the leftmost child of 2, which is 6, has an unlisted parent 5. Thus we 
select anew n at line (2), and node 3 is the only candidate. We list 3 and proceed down its left 
chain, listing 4, 5 and 6. This leaves only 8 among the interior nodes so we list that. The resulting 
list is 1234568 and the order of evaluation is 865432. 
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Code sequence: 
t8 : = d + e t6 : 
= a + b t5 : = t6 
– c t4 : = t5 * t8 
t3 : = t4 – e t2 : 
= t6 + t4 t1 : = 
t2 * t3 
 
This will yield an optimal code for the DAG on machine whatever be the number of registers. 
4.9 PEEPHOLE  OPTIMIZATION 

 A  statement-by-statement code-generations strategy often produce target code that 
contains  redundant instructions and suboptimal constructs .The quality of such target 
code  can be improved by applying “optimizing” transformations to the target program. 

 A simple but effective technique for improving the target code is peephole optimization, a 
method for trying to improving the performance of the target program by examining a 
short sequence of target instructions (called the peephole) and replacing these instructions 
by a shorter or faster sequence, whenever possible. 

 The peephole is a small, moving window on the target program. The code in the peephole 
need not contiguous, although some implementations do require this.it is characteristic of 
peephole optimization that each improvement may spawn opportunities for additional 
improvements. 

 We shall give the following examples of program transformations that are characteristic 
of peephole optimizations: 


 Redundant-instructions elimination 
 Flow-of-control optimizations 
 Algebraic simplifications 
 Use of machine idioms 
 Unreachable Code 

 
Redundant Loads And Stores: 
If we see the instructions sequence 

(1) MOV R0,a  
(2) MOV a,R0 

we can delete instructions (2) because whenever (2) is executed. (1) will ensure that the value of 
a is already in register R0.If (2) had a label we could not be sure that (1) was always 
executedimmediately before (2) and so we could not remove (2). 
Unreachable Code: 
 Another opportunity for peephole optimizations is the removal of unreachable instructions. 

An unlabeled instruction immediately following an unconditional jump may be removed. 
This operation can be repeated to eliminate a sequence of instructions. For example, for 
debugging purposes, a large program may have within it certain segments that are executed 
only if a  variable debug is 1. In C, the source code might look like: 

define  debug 0 
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…. 

If (  debug ) { 
 

Print  debugging information 
 

} 
 In the  intermediate representations the if-statement may be translated as: If 

debug  =1 goto L2 
 

goto  L2 
 

L1: print debugging information 
 

L2: …………………………(a) 
 
 One obvious peephole optimization is to eliminate jumps over jumps .Thus no matter what 

the value of debug; (a) can be replaced by: 
 

If debug ≠1 goto L2 
 

Print debugging information 
 

L2: ……………………………(b) 
 
 As the argument of the statement of (b) evaluates to a constant true it can be replaced by

If debug ≠0 goto L2 
 

Print debugging information 
 

L2: ……………………………(c) 
 
 As the argument of the first statement of (c) evaluates to a constant true, it can be replaced by 

goto L2. Then all the statement that print debugging aids are manifestly unreachable and can 
be eliminated one at a time. 

 
Flows-Of-Control Optimizations: 

The unnecessary jumps can be eliminated in either the intermediate code or the target code 
by the following types of peephole optimizations. We can replace the jump sequence 

goto L1 
…. 

L1:  gotoL2 
by the sequence 
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goto  L2 
…. 

L1: goto  L2 
If there are  now no jumps to L1, then it may be possible to eliminate the statement L1:goto 
L2 provided  it is preceded by an unconditional jump .Similarly, the sequence 

if a < b  goto L1 
…. 

L1: goto L2 
can be replaced by 

Ifa < b goto L2 
…. 
L1: goto L2 

Finally, suppose there is only one jump to L1 and L1 is preceded by an unconditional goto. 
Then the sequence 

goto L1 
……. 
L1: if a <b goto L2 
L3: …………………………………..(1) 

 Maybe replaced by 
Ifa<b goto L2 
goto L3 
……. 
L3: ………………………………….(2) 

 
While the number of instructions in (1) and (2) is the same, we sometimes skip the 
unconditional jump in (2), but never in (1).Thus (2) is superior to (1) in execution time 

Algebraic Simplification: 
There is  no end to the amount of algebraic simplification that can be attempted through 
peephole  optimization. Only a few algebraic identities occur frequently enough that it is 
worth  considering implementing them .For example, statements such as 

(a) x:=  x+0  
Or 
x := x  * 1 

Areoften  produced by straightforward intermediate code-generation algorithms, and they can 
be eliminated  easily through peephole optimization. 

Reduction in  Strength: 
 Reduction  in strength replaces expensive operations by equivalent cheaper ones on the 

target machine. Certain machine instructions are considerably cheaper than others and 
can often be used as special cases of more expensive operators. 

 For example, x² is invariably cheaper to implement as x*x than as a call to an 
exponentiation routine. Fixed-point multiplication or division by a power of two is 
cheaper to implement as a shift. Floating-point division by a constant can be implemented 
as multiplication by a constant, which may be cheaper. 

X2 → X*X 
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Useof Machine Idioms: 
 The target machine may have hardware instructions to implement certain specific 

operations efficiently. For example, some machines have auto-increment and auto-
decrement addressing modes. These add or subtract one from an operand before or after 
using its value. 

 The use of these modes greatly improves the quality of code when pushing or popping a 
stack, as in parameter passing. These modes can also be used in code for statements like i 
: =i+1.  
i:=i+1 → i++ 
i:=i-1 → i-- 

 


