And find the maximum cam shaft torque hence find its diameter.

(3)

Q.4.(a) Compare the rolling and sliding contact bearings in respect of the following foctors: (8) i) Magnitude of load ii) Nature of load iii) Speed v) Frictional iv) Life vi) Space requirement vii) Positoinal accuracy viii) Noise and ix) Cost. loss

(b) The following data is given for 360⁰ hydrodynamic bearing:

journal diameter 100 mm bearing length 50 mm journal speed 1500 rpm min. oil film thickness 15 microns. viscosity of lubricant 30 cp

specific gravity of oil 0.86

2.09 kJ/kg. °C specific heat of lubricant

The fit between the journal and bearing is normal running fit H₇ e₇. Calculate

> i) The load carrying capacity of bearing

ii) The coefficient of friction

iii) The power lost in friction

The total flow rate of the lubricant iv)

The side leakage v)

vi) The temperature rise.

Q.5.(a) Design a pair of helical gears to transmit a power of 36,800 watts at 30 rps of the pinion. Gear ratio is 4. Helical angle is 15⁰. Teeth is 20⁰ full depth. Material used is C50.

(10)

(20)

(b) A single-row deep-groove ball bearing is subjected to the following work cycle: (10)

Sr.No	Fraction of cycle	Radial load(kN)	Thrust load(kN)	Radial factor	Thrust factor	Race	Service factor	Speed r.p.m
1	1/10	1.5	0.25	1.0	0	Inner	1.2	400
2	1/5	1.0	0.75	0.56	2.0	Outer	1.8	500
3	3/5	5.0	1.1	0.56	2.0	Inner	1.5	600
4	Remaining	1.0	-	1.0	0	Outer	2.0	800

If the desired life of the bearing is 15000 hours, select the bearing from the following data.

Bearing No.	6011	6211	6311	6411	
Dynamic	28.1	43.6	71.5	99.5	
capacity 'C' (kN)	m 008 zi besc	a rieda esta esta acomo	VI-15 10 10 10 10 10 10 10 10 10 10 10 10 10		

Q.6. Design a Centrifugal Pump for the following data:

Static suction head 3.5 m Static delivery head 10 m Length of suction pipe 8 m Length of delivery pipe 60 m Pump discharge 900 lpm

Working fluid water at 30° C

Con. 6837-MP-5524-11.

-	0	7	The	following	specifications	refers	to	FOT	crane:
	V.	1.	1110	Tonowing	specifications	ICICIS	w	LUI	cianc.

Application : class II

Load to be lifted : 100 kN

Hoisting speed : 10 m/min

Maximum lift : 8 m

	Select suitable type and size of wire rope for an expected life of 12 months. Select standard hook, material and design stresses. Check the induced stresses	(6) at the
	most critical sections.	(6)
c)	Design the pulley axel.	(3)
d)	Design the cross piece	(3)
	Design the shackle plates.	(2)