			ý	M	
Roll No.					

B.E. / B.Tech. (Full Time) DEGREE

EXAMINATIONS, APR / MAY 2014

AGRICULTURAL AND IRRIGATION ENGINEERING BRANCH

SEVENTH SEMESTER

AI 9403 - FOOD PROCESSING ENGINEERING

(REGULATION 2008)

Time: 3 hours

Answer ALL Questions

Max Marks: 100

$Part - A (10 \times 2 = 20 Marks)$

- 1) What are the different types of blanching?
- 2) How is food technology different from food science?
- 3) Write the BET isotherm equation.
- 4) Following data were obtained from a thermal resistance experiment conducted on a spore suspension at 111°C. Find the D value.

Time (minutes)	0	4	8	12
Number of survivors	10 ⁶	1.2 x 10 ⁵	1.4 x 10⁴	1.5 x 10 ³

- 5) How do the particle size and its distribution affect the brewing time and turbidity in coffee?
- 6) List out the driving forces and membranes in membrane separation process
- 7) Differentiate MUFA and PUFA with examples.
- 8) Define radappertization with suitable example.
- 9) What are edible films? Give examples.
- 10) List out any 8 details found in a food packaging material.

$Part - B (5 \times 16 = 80 Marks)$

- 11) (r) Two food powders A and B are mixed in the ratio 80% and 20% respectively. After mixing, they are stored in sealed containers. The moisture sorption isotherm for these materials is approximated to straight lines as $M_A = 9 + 3$ a_w and $M_B = 6 + 5$ a_w where M_A and M_B are moisture contents on dry basis and a_w is the water activity. The initial moisture content of the powder A is 11 g of water / 100 g of dry matter and powder B is 6 g of water /100 g of dry matter. Find out the equilibrium water activity.
 - (i) Write a note on thermal process time and the factors affecting it. (8)
- 12) a) i) Discuss in detail the various constituents of food. (8)
 - ii) What are the objectives of food processing? (8)

- b) i) How is sorting and grading done in processing of fruits and vegetables? (10)
 - ii) Enumerate the various causes of food spoilage with examples. (6)
- 13) a) i) Cut and blanched pieces of mushroom are dehydrated in a cabinet dryer. The initial moisture content of mushroom was 82% wb and it is to be dried to 4% moisture content wb. The critical moisture content is 24% wb. Constant rate drying continues for 7 minutes. Estimate the total drying time for the product. (7)
 - ii) Explain the process of Spray drying with a neat sketch.

(or)

- b) i) Explain the 2 stage freeze concentration process with a neat sketch. (7)
 - ii) Tabulate the applications of various dryers in food processing with suitable examples. (9)
- 14) a) i) With a neat sketch of an extruder discuss extrusion cooking with suitable examples. (8)
 - ii) Discuss the various steps in vegetable oil processing. (8)

(or)

- b) i) Explain the process of dielectric heating and its applications to food industry along with a neat sketch of a microwave oven. (9)
 - ii) What are the basic principles of food preservation? Discuss various methods available for the same. (7)
- 15) a) i) Write short notes on Controlled Atmosphere Storage and Modified Atmosphere Packaging
 (11)
 - ii) It is proposed to establish a fruit processing unit in a potential fruit producing region. The capacity and locations of the godowns of that region are as follows.

Godown	Capacity (T)	Co-ordinates (km)
1	34	(91,105)
2	33	(82,17)
3	26	(12, 128)
4	55	(33,76)
5	45	(89,19)

Find out the location of the proposed fruit processing unit for minimising the transportation cost.

(5)

(9)

(or)

- b) i) Explain in detail the various materials used for packaging and their properties. (8)
 - ii) Discuss the various mango products and their processing methods. (8)