

IV Semester B.Tech. Degree (Reg./Sup./Imp. - Including Part-Time) Examination, May 2015 (2007 Admn. Onwards)
PT2K6/2K6 CE/ME/EE/EC/CS/IT/AEI 401 : ENGG. MATHEMATICS - III
Time : 3 Hours
Max. Marks : 100

PART-A

1. Show that $u=e^{x} \cos y$ is hormonic.
2. Show that $\mathrm{f}(\mathrm{z})=\mathrm{z}$ lug (z) is differentiable only at $\mathrm{z}=0$.
3. Evaluate $\int_{C} x d z$ where C is $|z|=r$.
4. Find the residue of $f=\frac{e^{z}}{z^{2}\left(z^{2}+9\right)}$ at its poles.
5. The joint pdf of X and Y is given by $f(x, y)=x e^{-x(y+1)}, 0<x, y<\infty$ Find : i) $f(x)$ and $f(y)$ ii) Are X, Y independent?
6. If pdf fX is $\mathrm{f}(\mathrm{x})=\frac{\mathrm{x}}{2}, 0 \leq \mathrm{x} \leq 2$ find $\mathrm{P}(\mathrm{X}>1.5 / \mathrm{X}>1)$.
7. Form the p.d.e. by eliminating the arbitrary function from $z=f\left(x^{2}-y^{2}\right)$.
8. Solve $\frac{\partial^{2} z}{\partial y^{2}}=\sin (x y)$.
PART-B
9. a) Discuss the mapping $w=$ coshz.
b) i) If $f(z)$ is analytic prove that $\left(\frac{d^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|f(z)|^{2}=4\left|f^{\prime}(z)\right|^{2}$.
ii) If u is harmonic show that $\frac{\partial^{2} u}{\partial z \cdot \partial z}=0$.
10. a) i) Expand $f(z)=\frac{1}{z(z-1)}$ as a Laurent's series about $z=0$ and $z=1$.
ii) Evaluate $\int_{c} \frac{d z}{z^{2}\left(z^{2}+4\right)}$ where C is $|z+2 i|=3$.

OR
b) Evaluate $\int_{0}^{\infty} \frac{d x}{\left(x^{2}+a^{2}\right)^{2}}$.
11. a) Fit a curve of the form $y=a e^{b x}$ to the following data:

$$
\begin{array}{l:cccc}
\mathbf{x} & : & 1 & 2 & 3 \\
\mathbf{y} & : & 1.65 & 2.7 & 4.5 \\
\hline
\end{array}
$$

$$
\mathrm{OR}
$$

b) i) If joint pdf of X and Y is

$$
\begin{align*}
f(x, y) & =k(6-x-y), \quad 0<x<2 \tag{8}\\
& =0, \text { elsewhere }
\end{align*}
$$

Find:
i) Value of k
ii) $P(X<1, Y<3)$
iii) $P(X+Y<3)$
iv) $P(X<1 / Y<3)$
ii) Joint pdf of X and Y given by

$$
\begin{gathered}
f(x, y)=\frac{x y}{96}, 0<x<4,1<y<5 . \\
0, \text { elsewhere }
\end{gathered}
$$

Find:
i) $E(X)$
ii) $E(Y)$
iii) $E(X Y)$
iv) $E(2 X+3 Y)$
v) $\operatorname{CoV}(X, Y)$.
12. a) Derive the solution of one dimensional Heat equation.

15

OR

b) Derive one dimensional wave equation.

