Roll No:	***************************************
Total No.	of Questions: 09]

[Total No. of Pages:03

Paper ID [B0116]

(Please fill this Paper ID in OMR Sheet)

MCA (Sem. - 4th)

COMPUTER BASED OPTIMIZATION METHODS

(MC - 305)

Time: 03 Hours

Maximum Marks: 60

Instruction to Candidates:

- 1) Attempt any one question from each Sections A, B, C & D.
- 2) Section E is Compulsory.

Section - A

 $(1 \times 10 = 10)$

Q1) Give the Linear Programming formulation of the following problem:

The products A and B are produced in three machine centers X, Y and Z. Each product involves operation of each of the machine centers. The time required for each operation unit amount of each product is given below: Time available at machine centers X, Y and Z are 100, 77 and 80 hours respectively. The profit per unit of each of A and B is Rs. 12 and Rs. 3 respectively.

Product	N	lachine (Centers	Profit Per Unit
	X	Y	Z	
A	10	7	2	12
В	2	3	4	3

Q2) What are the various applications, limitations and use of operation research. Explain with example.

Section - B

 $(1 \times 10 = 10)$

Q3) A firm produces four products. There are four operators who are capable of producing any of these four products. The processing time varies from operator to operator. The firm records 8 hours a day and allows 30 minutes for lunch. The processing time in minutes and the profit for each of the products are given below:

E-779 [1208]

Operators	Products			
	A	В	С	D
1	15	9	10	6
2	10	6	9	6
3	25	15	15	9
4	15	9	10	10
Profit (Rs.) Per unit	8	6	5	4

Find the optimal assignment of products to operators that maximizes the profit.

Q4) What is a traveling salesman problem. How it can be solved optimally. Explain with example.

$$(1 \times 10 = 10)$$

- **Q5)** What are the various techniques for decision making under uncertainty. Explain with a case study.
- **Q6)** How probability and uncertainty are related to each other. What is the conditional probability.

$$(1 \times 10 = 10)$$

Q7) Solve the following problem using dynamic programming:

Maximize
$$2x_1 + 5x_2 + x_3$$

subject to $x_1 + 2x_2 + 3x_3 \le 7$
 $x_i \ge 0, x_i$ integer,
 $i = 1, 2, 3$

Q8) What is integer programming? What type of problems are formulated and solved in integer programming?