\qquad

Paper ID [B0116]

(Please fill this Paper ID in OMR Shect)

MCA (Sem. - $4^{\text {th }}$)

COMPUTER BASED OPTIMIZATION METHODS
(MC - 305)
Time : $\mathbf{0 3}$ Hours

Instruction to Candidates:

1) Attempt any one question from each Sections A, B, C \& D.
2) Section - E is Compulsory.

Section - A

$$
(1 \times 10=10)
$$

Q1) Give the Linear Programming formulation of the following problem:
The products A and B are produced in three machine centers X, Y and Z . Each product involves operation of each of the machine centers. The time required for each operation unit amount of each product is given below: Time available at machine centers X, Y and Z are 100, 77 and 80 hours respectively. The profit per unit of each of A and B is Rs. 12 and Rs. 3 respectively.

Product Machine Centers Profit Per Unit

	X	Y	Z	
A	10	7	2	12
B	2	3	4	3

Q2) What are the various applications, limitations and use of operation research. Explain with example.

Section - B

$$
(1 \times 10=10)
$$

Q3) A firm produces four products. There are four operators who are capable of producing any of these four products. The processing time varies from operator to operator. The firm records 8 hours a day and allows 30 minutes for lunch. The processing time in minutes and the profit for each of the products are given below:

Operators	Products			
	A	B	C	D
1	15	9	10	6
2	10	6	9	6
3	25	15	15	9
4	15	9	10	10
Profit (Rs.) Per unit	8	6	5	4

Find the optimal assignment of products to operators that maximizes the profit.

Q4) What is a traveling salesman problem. How it can be solved optimally. Explain with example.

Section - C

$$
(1 \times 10=10)
$$

Q5) What are the various techniques for decision making under uncertainty. Explain with a case study.

Q6) How probability and uncertainty are related to each other. What is the conditional probability.

Section - D

$$
(1 \times 10=10)
$$

Q7) Solve the following problem using dynamic programming:
Maximize $2 x_{1}+5 x_{2}+x_{3}$
subject to $x_{1}+2 x_{2}+3 x_{3} \leq 7$
$x_{i} \geq 0, x_{i}$ integer,
$\mathrm{i}=1,2,3$

Q8) What is integer programming? What type of problems are formulated and solved in integer programming?

