Unit - V

- 5. a) What do you understand by circular polarization?
 - Derive the wave equation from Maxwell's equations for free space, charge free region.
 - c) Show that characteristic impedance free space is $120\pi\Omega$.
 - d) What is pointing vector. State pointing theorem? Drive it.

OR

The electric field intensity associated with a uniform plane wave travelling in free space is given by E=10cos $(2\pi \times 10^7 t - \beta z)a_x$ V/m. Find expression for H field. What is direction of propagation of this wave? What is value of β .

Roll No

EX - 302

B.E. III Semester

Examination, December 2015

Electro-Magnetic Theory

Time: Three Hours

Maximum Marks: 70

- Note: i) Answer five questions. In each question part A, B, C is compulsory and D part has internal choice.
 - ii) All parts of each questions are to be attempted at one place.
 - iii) All questions carry equal marks, out of which part A and B (Max.50 words) carry 2 marks, part C (Max.100 words) carry 3 marks, part D (Max.400 words) carry 7 marks.
 - iv) Except numericals, Derivation, Design and Drawing etc.

Unit - I

- 1. a) State divergence theorem.
 - b) Give physical significance of the term divergence.
 - c) Describe the Gauss's law.
 - d) Define electrostatic potential and electric field intensity. Hence show that, $E=-\nabla V$.

OR

Transform the vector field $F=2r\cos\Phi \ a_r+a_\Phi$ into Cartesian co-ordinates and evaluate it at P(4,-2,3). Also find a unit vector a_F at P.

Unit - II

- 2. a) What is an 'electric dipole' and its 'dipole moment'.
 - b) What is a conservative field? Give example.
 - c) Determine whether or not following potential field satisfies Laplace's equation. Justify your answer.
 V=10σΦz volts.
 - d) Show that the energy stored in electric field is given by

$$W_{\rm E} = \frac{1}{2} \int_{vol} \rho_v V dv.$$

OR

A parallel plate capacitor as shown in the figure contains three dielectric layer where $Er_1 = 1$, $d_1 = 0.2$ mm, $Er_2 = 2$, $d_2 = 0.3$ mm, $Er_3 = 3$ and $d_3 = 0.4$ mm. Where $S = surface area of plane = <math>20 \text{ cm}^2$. Find the total capacitance.

Unit - III

- 3. a) Write the point form of Ampere's circuital law.
 - State Ampere's circuital law as applied to time varying magnetic field.
 - Starting from current density J obtain the point form of the continuity equation.

d) Find H at P (2, 3, 5) in cartesian co-ordinates if there is an infinitely long current filament passing through the origin and point C. The current of 50A is directed from origin to C, where the location of C is: (a) C (0, 0, 1); (b) C (0, 1, 0)

OR

Derive for the field at any point P due to long current carrying straight conductor.

Unit - IV

- 4. a) What is Lorentz force equation?
 - b) What is meant by displacement current density?
 - State Maxwell's equation in the integral form for time varying fields.
 - d) Comment on the inductance and the mutual inductance.

OR

A rectangular loop as shown below has dimensions 1m by 2m and lies in the uniform field $F = -6a_y + 8a_z$ T. The loop current is 10mA. Find the vector force on each side of the loop.

EX-302