Roll No.

B.E/B.TECH (FULL TIME) DEGREE END SEMESTER EXAMINATIONS, NOV/DEC 2013 (COMMON TO MECHANICAL ENGINEERING AND MECHANICAL ENGINEERING TAMIL MEDIUM)
IV SEMESTER
CE9213 STRENGTH OF MATERIALS
(Regulation 2008)
Time: 3 Hours
Answer ALL Questions
Max. Marks 100

PART-A ($10 \times 2=20 \mathrm{Marks}$)

1. What is meant by Poisson's ratio?
2. What does the radius of Mohr's Circle denote?
3. A 8 m simply supported beam is carrying a central anti-clockwise moment of 6 kNm . Sketch the bending moment diagram.
4. Draw the bending and shear stress distribution for a T-section.
5. Write down the equation for torsional moment carrying capacity of a solid shaft.
6. Define stiffness of a spring.
7. What is the deflection at mid-span of a cantilever beam carrying a central point load W ?
8. A 8 m cantilever beam carries a point load of 10 kN at its centre. Draw the conjugate beam.
9. Explain the failure of a thin cylinder subjected to internal pressure.
10. Write any two assumptions made in Lame's theory.

Part - B ($5 \times 16=80$ marks $)$

11. Prove that the hollow shaft is stronger and stiffer than the solid shaft of same material, length and weight.
12. a) A rod of 2 m length and 40 mm diameter is subjected to a pull of 30 kN . The extension in length is 0.3 mm and the decrease in diameter is 0.0018 mm . Find the three moduli and Poisson's ratio.
(OR)
b) A block with dimensions $500 \mathrm{~mm} \times 30 \mathrm{~mm} \times 50 \mathrm{~mm}$ is subjected to (i) 40 kN tension on $30 \mathrm{~mm} \times 50 \mathrm{~mm}$ face. (ii) 200 kN tension on $30 \mathrm{~mm} \times 500 \mathrm{~mm}$ face and (iii) 300 kN compression on $50 \mathrm{~mm} \times 500 \mathrm{~mm}$ face. If $E=2 \times 10^{5} \mathrm{MPa}$ and Poisson's ratio $=0.3$, determine the change in volume of the block.
13. a) Draw S.F.D, B.M.D and tocate the point of contraflexure for the beam given in Fig. 13 (a).

Fig 13.a.
b) A beam is having a T-shaped cross section with flange width 125 mm , flange thickness 25 mm , depth of web 175 mm and thickness of web 25 mm . If a bending moment of 2.5 kNm is acting at the section, draw the bending stress distribution.
14. a) Using Macaulay's method, determine the slope at the supports and deflection at C and D for the beam given in 14 (a). $E=210 \times 10^{6} \mathrm{kN} / \mathrm{m}^{2}$ and $\mathrm{I}=200 \times 10^{-4} \mathrm{~m}^{4}$.

Fig 14.9.
(OR)
b) Using conjugate beam method, determine the slope at the supports and deflection at C and D for the beam given in Fig 14 (b). $E=200 \times 10^{6} \mathrm{kN} / \mathrm{m}^{2}$ and $\mathrm{I}=300 \times 10^{-4}$ m^{4}.

Fig 14.b.
15. a) Derive the relations for changes in the dimensions of a thin cylindrical shell subjected to an internal fluid pressure.
(OR)
b) A thick cylinder having 300 mm internal diameter and 70 mm thickness is subjected to a fluid pressure of $70 \mathrm{~N} / \mathrm{mm}^{2}$. Determine the maximum and minimum intensity of radial stress. Also sketch the radial pressure distribution and radial stress distribution across the cross section.

