

Third Semester B.E. Degrec Examination, July/August 2022 Discrete Mathematical Structures
Time: 3 hrs .
Note: Answer any FIVE full questions, choosing O VE full question from each module.

Module-1

1 a. Detine Tautology. Prove that for any propositions p, q, r the compong preposition . $: p \rightarrow(q \rightarrow r): \rightarrow:(p \rightarrow q) \rightarrow(p \rightarrow r) ;$ is a tatology.
b. Test the validity of the arguments using rules of inference.
$(-p \vee q) \rightarrow r$
$r \rightarrow s \vee 1$

- $\mathrm{S} \wedge-\mathrm{u}$
$\neg \mathrm{u} \rightarrow-\mathrm{t}$
$\therefore \mathrm{p}$
(06) M1arkい)
 odd".
(68 Marks)

OR

2 a. Prove the following iogical equivalences using laws ot loge:
foc Narks)
b. Consider the lollowing open statements with the sel of all real numbers as the universe:
$p(x): x \geq 0, q(x): x^{2} \geq 0, r(x): x^{2}$
$s(x): x^{2}-3>0$. Determine the truth values of the following statements
(i) $\exists x, p(x) \wedge q(x)$
(ii) $\quad \forall \mathrm{x}, \mathrm{p}(\mathrm{x}) \rightarrow \mathrm{q}(\mathrm{x})$
(iii) $\quad \forall \mathrm{x} . \mathrm{q}(\mathrm{x}) \rightarrow \mathrm{s}(\mathrm{x})$
(iv) $\quad \forall \mathrm{x}, \mathrm{r}(\mathrm{x}) \vee \mathrm{s}(\mathrm{x})$
(v) $\exists \mathrm{x}, \mathrm{p}(\mathrm{x}) \wedge \Sigma(\mathrm{x})$
(vi) $\quad \forall \mathrm{x} . \mathrm{r}(\mathrm{x}) \rightarrow \mathrm{p}(\mathrm{x}) \quad$ (06 Narks)
c. Establish the validity of the following :

$\therefore \exists \mathrm{x}, \neg \mathrm{s}(\mathrm{x})$
(08 Narks)
Module- 2
3 a. Prove by mathematical induction $4 n<\left(n^{2}-7\right)$ for all positive integers $n \geq 6$. (06 Marks)
b. A certain question paper contains two parts A and B cach containing 4 yuestions. How thany differemfays a student can answer 5 quest ions by selecting at least 2 yuestions from each pat? (06 Marlas)
Determine the coeflicient of.

$$
x y z^{2} \text { in }(2 x-y-z)^{4} \quad \text { (ii) } x^{\prime \prime} y^{3} \text { in the expansion of }(2 x-3 y)^{2}
$$

(0x Marks)

OR
4 a. Prove by mathemat ical induction. $1.3+2.4-3.5+\ldots .-n(n+2)=\frac{n(n+1)(2 n+7)}{6}$. 006 rarks
b. Find the number of permutations of the lefters of the word MASSASAL'GA. In how inans of these all four A 's are together? How many of them begin with S ?
©. In how many ways can we distribute eight identical white balls into four distinct containets so that.
(1) no comatiner is left empt?
(ii) the fourth container has an odd number of balls in it?

Module-3

S a sitate pigeonhole proneple $\mathrm{A}[\mathrm{BC}$ is an equilateral triangle whose sides are of length 1 cm each. If we select : points inside the triangle, prove that atleast two dy these points are such that the distance between them is less than $\frac{1}{2} \mathrm{~cm}$.
(08 Varks)
b. If $A=A, A, S$ where $A_{1}=\{1.2\}_{1}, A_{2}=\left\{2,3,4 ;\right.$ and $A_{i}=: 5 ;$ deline a relation R on A by , $R y$ if x and y are in the same subset A for $1 \leq i \leq 5$. Is R an egunalence relation.
(06 Marks)
(Iet $f .!: R \rightarrow R$ where $f(x)=a x-b$ and $g(x)=1-1-x^{2}$. $1 f^{\prime}\left(g o f^{\prime}\right)(x)=9 x^{2}-9 x-3$ delerminc a. b.
(06 Marks)
OR
$6:$ Prove that if $f: A \rightarrow B . g: B \rightarrow C$ are invertible timetions. then got : $A \rightarrow C$ in invertible and $\left(\mathrm{got}^{+}\right)^{-}=1^{-1} 0 \mathrm{~g}^{-}$.
(06 Narks)
h. For $A=$: a. b. c. d. e: the Hasse diagram for the poset (A, R) is shown in Fig. Q ((b).
(1) Defermme the relation matria tor R
(ii) Construet the diectedgraph G that is associated with R. (06 Marks)

Fig. © (b)
© If R is an equinatemee relation on a set A and $x . y \in A$ then prove
(1) $\quad A=[x]$
(iit) $N R y f$ and only if $[x]=[y]$ and
(iin) $\operatorname{il}[x] \times[x]=\varphi$ then $[x]=[y]$.

Module-4

7 a. Limd the ytamer of permutations of a. b. $5: z$ in which none of the patterns spin. gitme path or net occurs
(08 Marks)
b. For the positise imtegers 1.2. 3.n there are 11660 derangements where 1. 2. 3. 4 and 5 appear in the lirst live positions. What is the valte of ne? (06 Marks) Solvo the recurrence relation $a_{n}+a_{1,}-6 a_{6-2}=0$ where $n \geq 2$ and $a_{1,}=-1 . a_{1}=8$.
(0) Marks)

OR
8 a. Determine the number of imegers between : and 300 (inclusive) wheh are. (i) divali) ba exactly two of 5.6.8....(ii) divisible by atleast two of 5.6.8.
(06, Marho)
b. Describe the expansion formula for Rook polynomials. Find the Rook polymomeal fion : $:$ board using expansion formula.
 every two hours. Lise a recurrence relation to determine the number of bacterk presemt of er one day

Module-5

9 a. Define with examples. (i) Suhgraph, (ii) Spanning vulgraph (ii) Indueed subgraph (v) Complement of a graph (wi) path.
b. Merge son the list.
$-1,7,4,11.5,-8,15,-3,-26.10,3$
c. Detine somorphism of two graphs. Determine whether the fortow ingerapls G and G ate tsomorphic or not.

Fig. Q9(c)-i

Fig Q9 (た) - i
(10x V1arbs)

10 a lee $(i=$ V. F) be the undirecedgraplatige OlO (a). How many path are there in 6 them a to h° How man of these path frave length s,
((1) Markい)

b. Prove that in every bee $T=(V . E) . V=E+1$ (06 Varh $)$
 $20.2 x+1712.7$ respectively.
(0) N Marla)

GDMN MAN 5N E
 USN

 Third Semester B.E. Degree Examination, Jan./Feb. 2021 Discrete Mathematical Structures
 Time: 3 hrs .
 Max. Marks: 100
 Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Verify that, for any three propositions p, q, r the compound proposition
$[p \rightarrow(q \rightarrow r)] \rightarrow[(p \rightarrow q) \rightarrow(p \rightarrow r)]$ is a tautology or not.
(06 Marks)
b. Test for validity of following argument.

If Ravi goes out with friends, he will not study If Ravi do not study, his father becomes angry His father is not angry
\therefore Ravi has not gone out with friends
(07 Marks)
c. Give direct and indirect proof of following statement "Product of two odd integers is an odd integer".

OR
2 a. For any three propositions p, q, r, prove that $[\sim p \wedge(\neg q \wedge r)] \vee[(q \wedge r) \vee(p \wedge r)] \Leftrightarrow r$
b. Check for validity of following argument,

If a triangle has two equal sides then it is isosceles. If a triangle is isoceles than it has two equal angles.
A certain triangle ABC does not have two equal angles
(07 Marks)
\therefore The triangle ABC does not have two usual sides
c. Consider the following open statement on set of all real numbers as universe: $p(x): x \geq 0 \quad q(x): x^{2} \geq 0 \quad f(x): x^{2}-3 x-4=0 \quad s(x): x^{2}-3>0$
Then find truth value of i) $\exists x p(x) \wedge q(x)$
ii) $\forall \mathrm{x}, \mathrm{p}(\mathrm{x}) \rightarrow \mathrm{q}(\mathrm{x})$
iii) $\forall x, q(x) \rightarrow s(x)$
iv) $\forall x, r(x) \vee s(x)$
a. By mathematical induction prove that

Module- 2

(07 Marks)
$1^{2}+3^{2}+5^{2}+\ldots . .+(2 n-1)^{2}=\frac{1}{2} n(2 n-1)(2 n+1)$
(06 Marks)
b. Find coefficient of i) x^{6} in the expansion of $\left(3 x^{2}-\frac{2}{x}\right)^{1 / 5}$
ii) $x^{11} y^{4}$ in the expansion of $\left(2 x^{3}-3 x y^{2}+z^{2}\right)^{6}$
(07 Marks)
c. A total amount of Rs. 1500 is to be distributed to three students A, B, C. In how many ways distribution can be done in the multiples of Rs. 100 if

Every students sets at least Rs. 300
ii) A must get at least Rs.500, B and C must set at least Rs. 400 cach. (07 Marks)

OR

4 a. By mathematical induction prove that for any positive integer n the number $11^{n-2}+12^{2 n+1}$ is divisible by 133
(06 Marks)
b. How many positive integers n can be formed from the digits $3,4,4,5,5,6,7$ if we want n to exceed $5,000,000$.
(07 Marks)
A certain question paper has 3 parts A, B, C with four questions in Part A. Five in B and Six in C. It is required to answer seven questions by selecting at least two from each part. In how many different ways student can answer seven questions.
(07 Marks)

Module-3

5 a. Let $\mathrm{A}=\{1,2,3,4,5,6\}, \mathrm{B}=\{6,7,8,9,10\}$ and f be a function from A to B defined by $f=\{(1,7)(2,7),(3,8)(4,6)(5,9)(6,9)\}$. Then find $f^{-1}(6), f^{-1}(9)$. If $B_{1}=\{7,8\}$, $B_{2}=\{8,9,10)$ find $f^{-1}\left(B_{1}\right), f^{\prime}\left(B_{2}\right)$.
(06 Marks)
b. Let $A=\{1,2,3,4\}$ and R be a relation on A defined by $x R y$ if and only if x diyides y. Then i) Write R as ordered pairs
ii) Draw diagram
iii) Write matrix of R
(67 Marks)
c. If f, g, h are functions from R to R defined by $f(x)=x^{2}, g(x)=x+5, h(x)=\sqrt{x^{2}+2}$. Then verify that $f \circ(g o h)=(f o g)$ oh
(07 Marks)
OR
6 a. If 30 dictionaries in a library contain total 61,327 pages then preve that at least one of the dictionaries must have at least 2045 pages.
(06 Marks)
b. For any three nonempty sets $\mathrm{A}, \mathrm{B}, \mathrm{C}$ prove that
i) $(A \cup B) \times C=(A \times C) \cup(B \times C)$
ii) $\quad \mathrm{AX}(\mathrm{B} \cap \mathrm{C})=(\mathrm{A} \times \mathrm{B}) \cap(\mathrm{A} \times \mathrm{C})$
(07 Marks)
c. Let $\mathrm{A}=\{1,2,3,4,6,8,12\}$ define a partial order R on A by xR y if and only if x divides y . Draw Hasse diagram of R.
(07 Marks)
Module-4
7 a. For the integers $1,2, \ldots \mathrm{n}$, there are 11660 detangements where $1,2,3,4,5$ appear in first five positions then find value of n.
(06 Marks)
b. Determine number of integers between land 300 which are i) divisible by exactly two of $5,6,8$ ii) at least two of $5,6,8$.
(07 Marks)
c. Solve $a_{n}=2\left(a_{n-1}-a_{n-2}\right)$ for $n \geq 2$ given $a_{0}=1$, a_{1}
(07 Marks)

OR

8 a. Out of 30 students of a hostel 15 stady history, 8 study economics, 6 study geography and 3 study all the three subjects Show that 7 or inore study none of the subjects.
(06 Marks)
b. An apple, a banana, a mango, and an orange to be distributed to 4 boys B_{1}, B_{2}, B_{3} and B_{4}. The boys B_{1} and B_{2} do not wish apple, B_{3} does not want banana or mango B_{1} refuses orange. In how many ways distribution can be made so that all of them are happy.
(07 Marks)
c. Solve $a_{n}-3 a_{n-1}=5 \times 3^{n}$ for $n \geq 1$ given $a_{0}=2$.
(07 Marks)

Module-5

9 a. Show that following graphs in the Fig.Q.9(a)(i) and Fig.Q.9(a)(ii) are isomorphic

Fig.Q.9(a)(ii) i) Complement of a graph $\quad \begin{array}{r}\text { (06 Marks) }\end{array}$ (07 Marks)
(07 Marks)

OR

10 a. Prove that a tree with n vertices has $(n-1)$ edges.
(06 Marks)
b. Determine number of vertices in following graph G : G has 9 edges and all vertices have degree 3
ii) G has 10 edges with 2 vertices of degree 4 and all other have degree 3
(07 Marks)
Obtain optimal prefix code for the message ROAD IS GOOD.

Third Semester B.E. Degree Examination, Jan./Feb. 2021
 Discrete Mathematical Structures

Time: 3 hrs.
Max. Marks: 100
Note: Answer any FIVE full questions, choosing ONE full question from each module.
Module-1
Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

1 a. Verify that, for any three propositions p, q, r the compound proposition.
$[p \rightarrow(q \rightarrow r)] \rightarrow[(p \rightarrow q) \rightarrow(p \rightarrow r)]$ is a tautology or not.
(06 Marks)
b. Test for validity of following argument.

If Ravi goes out with friends, he will not study
If Ravi do not study, his father becomes angry His father is not angry
\therefore Ravi has not gone out with friends
(07 Marks)
c. Give direct and indirect proof of following statement "Product of two odd integers is an odd integer".
(07 Marks)

OR

2 a. For any three propositions p, q, r, prove that $[\sim p \wedge(\neg q \wedge r)] \vee[(q \wedge r) \vee(p \wedge r)] \Leftrightarrow r$
(06 Marks)
b. Check for validity of following argument,

If a triangle has two equal sides then it is isoseeles. If a triangle is isoceles than it has two equal angles.
A certain triangle ABC does not have two equal angles
(07 Marks)
\therefore The triangle ABC does not have two usual sides
c. Consider the following open statement on set of all real numbers as universe:
$p(x): x \geq 0 \quad q(x): x^{2} \geq 0 \quad r(x): x^{2}-3 x-4=0 \quad s(x): x^{2}-3>0$
Then find truth value of i) $\exists x p(x) \wedge q(x) \quad$ ii) $\forall x, p(x) \rightarrow q(x) \quad$ iii) $\forall x, q(x) \rightarrow s(x)$
iv) $\forall x, r(x) \vee s(x)$
(07 Marks)

Module-2

3 a. By mathematical induction prove that

$$
1^{2}+3^{2}+5^{2}+\ldots \ldots+(2 n-1)^{2}=\frac{1}{2} n(2 n-1)(2 n+1)
$$

(06 Marks)
b. Find coefficient of i) x° in the expansion of $\left(3 x^{2}-\frac{2}{x}\right)^{15}$
ii) $x^{11} y^{4}$ in the expansion of $\left(2 x^{3}-3 x y^{2}+z^{2}\right)^{6}$
(07 Marks)
c. A total amount of Rs. 1500 is to be distributed to three students A, B, C. In how many ways distribution can be done in the multiples of Rs. 100 if
i) Every students sets at least Rs. 300
ii) A must get at least Rs.500, B and C must set at least Rs. 400 each.
(07 Marks)
OR
4 a. By mathematical induction prove that for any positive integer n the number $11^{n+2}+12^{2 n+1}$ is divisible by 133
(06 Marks)
b. How many positive integers n can be formed from the digits $3,4,4,5,5,6,7$ if we want n to exceed $5,000,000$.
(07 Marks)
c. A certain question paper has 3 parts A, B, C with four questions in Part A, Five in B and Six in C. It is required to answer seven questions by selecting at least two from each part. In how many different ways student can answer seven questions.
(07 Marks)

Module- $\mathbf{3}$

a. Let $\mathrm{A}=\{1,2,3,4,5,6\}, \mathrm{B}=\{6,7,8,9,10\}$ and f be a function from A to B defined by $f=\{(1,7)(2,7),(3,8)(4,6)(5,9)(6,9)\}$. Then find $f^{-1}(6), f^{-1}(9)$. If $B_{1}=\{7,8\}$, $\mathrm{B}_{2}=\{8,9,10)$ find $\mathrm{f}^{-1}\left(\mathrm{~B}_{1}\right), \mathrm{f}^{-1}\left(\mathrm{~B}_{2}\right)$.
(06 Marks)
b. Let $A=\{1,2,3,4\}$ and R be a relation on A defined by $x R y$ if and only if x divides y. Then
i) Write R as ordered pairs
ii) Draw diagram
iii) Write matrix of R.
(07 Marks)
c. If f, g, h are functions from R to R defined by $f(x)=x^{2}, g(x)=x+5, h(x)=\sqrt{x^{2}+2}$. Then verify that $\mathrm{fo}(\mathrm{goh})=(\mathrm{fog})$ oh
(07 Marks)

OR

a. If 30 dictionaries in a library contain total 61,327 pages then prove that at least one of the dictionaries must have at least 2045 pages.
(06 Marks)
b. For any three nonempty sets $\mathrm{A}, \mathrm{B}, \mathrm{C}$ prove that
i) $(\mathrm{A} \cup \mathrm{B}) \times \mathrm{C}=(\mathrm{A} \times \mathrm{C}) \cup(\mathrm{B} \times \mathrm{C})$
ii) $\quad \mathrm{AX}(\mathrm{B} \cap \mathrm{C})=(\mathrm{A} \times \mathrm{B}) \cap(\mathrm{A} \times \mathrm{C})$
(07 Marks)
c. Let $A=\{1,2,3,4,6,8,12\}$ define a partial order R on A by $x R y$ if and only if x divides y. Draw Hasse diagram of R.
(07 Marks)

Module-4

7 a. For the integers $1,2, \ldots n$, there are 11660 derangements where $1,2,3,4,5$ appear in first five positions then find value of n.
(06 Marks)
b. Determine number of integers between 1 and 300 which are i) divisible by exactly two of $5,6,8$ ii) at least two of $5,6,8$.
(07 Marks)
c. Solve $a_{n}=2\left(a_{n-1}-a_{n-2}\right)$ for $n \geq 2$ given $a_{6}=1, a_{1}=2$

OR

8 a. Out of 30 students of a hostel 15 study history, 8 study economics, 6 study geography and 3 study all the three subjects. Show that 7 or more study none of the subjects.
(06 Marks)
b. An apple, a banana, a mango, and an orange to be distributed to 4 boys B_{1}, B_{2}, B_{3} and B_{4}. The boys B_{1} and B_{2} do not wish apple, B_{3} does not want banana or mango B_{1} refuses orange. In how many ways distribution can be made so that all of them are happy.
(07 Marks)
c. Solve $a_{n}-3 a_{n-1}=5 \times 3^{n}$ for $n \geq 1$ given $a_{0}=2$.
(07 Marks)

Module-5

a. Show that following graphs in the Fig.Q.9(a)(i) and Fig.Q.9(a)(ii) are isomorphic

Fig.Q.9(a)(i)

Fig.Q.9(a)(ii)
(06 Marks)
b. Define with an example to each
i) Complement of a graph
ii) Vertex degree
iii) Rooted tree
iv) Prefix code
(07 Marks)
c. Apply merge sort to the list
$-1,7,4,11,5,-8,15,-3,-2,6,10,3$
(07 Marks)

OR

10 a. Prove that a tree with n vertices has $(n-1)$ edges.
(06 Marks)
b. Determine number of vertices in following graph G :
i) G has 9 edges and all vertices have degree 3
ii) G has 10 edges with 2 vertices of degree 4 and all other have degree 3
(07 Marks)
c. Obtain optimal prefix code for the message ROAD IS GOOD.

THIRD SEMESTER BE DEGREE EXAMINATION -FEB 202
DISCRETE MATHEMATICAL STRUCTURES (18CS 36)

Time: 3 hrs
Solutions./Answers
Module -1.
1a) $[p \rightarrow(q \rightarrow r)] \rightarrow[(p \rightarrow q) \rightarrow(p \rightarrow r)]$ is tautology.

p	q	r	$p \rightarrow q$	$q \rightarrow r$	$p \rightarrow r$	$p \rightarrow(q \rightarrow r)$	$(p \rightarrow q) \forall(p \rightarrow r)$	$A \rightarrow 1$
0	0	0	1	1	1	A	B	
0	0	1	1	1	1	1	1	1
0	1	0	1	0	1	1	1	1
0	1	1	1	1	1	1	1	1
1	0	0	0	1	0	1	1	1
1	0	1	0	1	1	1	1	1
1	1	0	1	0	0	0	0	1
1								
1	1	1	1	1	1	1		
1								
From the truth table,								

From the truth table, we can see that the given proposition is always True for all possible values. \therefore It is tautology.
|b)
Let P : Ravi goes out with friends.
q : Ravi will study.
r : Rani's father becomes angry.
Given argument is $p \rightarrow \neg 9\}$

$$
\begin{array}{r}
\left.\begin{array}{c}
p \rightarrow-9 \\
\sim q \rightarrow r
\end{array}\right\} \\
\frac{\sim r}{\therefore \sim p}
\end{array} \quad \begin{gathered}
\\
\therefore p \rightarrow r
\end{gathered} \quad \begin{aligned}
& \because \text { Rule of } \\
& \text { Syllogism }
\end{aligned}
$$

\therefore This is a valid argument.

1c) Given o statement is,
re If x is odd and y is odd then $x y$ is odd"
Let $P: x$ is odd
q : y is odd
r : $x y$ is odd.
Given statement in Symbolic form: $(p \wedge q) \rightarrow r$
Direct Proof: Let $p \wedge q$ betrue.
$\Rightarrow p$ is true and q is true.
$\Rightarrow x$ is odd \& y is odd

$$
\begin{aligned}
\Rightarrow \quad x & =2 k+1 \quad k, l \in z . \\
\Rightarrow x y & =(2 k+1)(2 l+1) \\
& =4 k l+2 k+2 l+1 \\
& =2(2 k l+k+l)+1 \\
& =2 m+1 \text { where } m=2 k l+k+l . \in z .
\end{aligned}
$$

$\therefore x y$ is odd.
Indirect Proof:
we know that

$$
(p \cap q) \rightarrow r \Leftrightarrow-r \rightarrow \sim(p \cap q)
$$

Let $7 r$ be true $\Rightarrow x y$ ss not odd.
$\Rightarrow x y$ is even.
$\Rightarrow x$ is even and y is odd $\left.\right|^{\text {or }} x$ is odd $\& y$ is even for x is evens is true and.
$\Rightarrow-P$ is true \& q is true
$\Rightarrow-(P \cap q)$ istrue.
$\Rightarrow M_{P} P V_{-} q$ istrue
piseven

- P is true -q it me $\sim q v_{\sim} q$ is true
$\Rightarrow \sim(P \cap q)$ is true. true.
$\therefore \quad \sim r \rightarrow \sim(p \cap q)$ is true
so by $(p \cap q) \rightarrow r$ is true.

2a) Consider

$$
\alpha H S=[\sim P \wedge(\sim q \cap r)] \vee[(q \wedge \gamma) \vee(p \wedge \gamma)]
$$

First consider.
$\Leftrightarrow-p \cap(-q \cap r) \Leftrightarrow(-p \wedge-q) \wedge r) \quad$ Associative law
$\Leftrightarrow[-(p \vee q)] \wedge r \Leftrightarrow r n[\neg(p \vee q)]$
Demorgan's
law \&
and. law \& \&

$$
\begin{aligned}
(q \wedge r) \vee(p \wedge r) & \Leftrightarrow(r \wedge q) \vee(r \wedge p) \\
& \Leftrightarrow r \cap(q \vee p) \quad \text { commatativelao } \\
& \Leftrightarrow r \wedge \text { Distributivelaw } \\
& \Leftrightarrow r \wedge(p \vee q) \quad \text { commutative law }
\end{aligned}
$$

$\therefore\{r \cap(\sim p \vee q) \vee(r \cap(p \vee q)\}$
$\Leftrightarrow r \wedge\{[\neg(p \vee q)] \vee(p \vee q)\}$ Distributive Law.

$$
\Leftrightarrow \quad r \wedge T_{0} \quad \text { Inverse law. }
$$

$\Leftrightarrow \quad r$.
26.

Let $P(x): x$ has two equal sides.
$q(x)$: x is isosceles.
$r(x)$: x has two equal angles.
a : triangle $A B C$.
Universal Specification
Given

$$
\begin{aligned}
& \forall x, p(x) \rightarrow q(x) \\
& \forall x, q(x) \rightarrow r(x) \\
& \sim r(a) \\
& \therefore \quad \sim p(a) \\
& p(a) \rightarrow q(a) \\
& q(a) \rightarrow r(a) \\
& \therefore p(a) \rightarrow r(a) \\
& \sim r(a) \\
& \therefore \quad \sim p(a) \quad \text { of }
\end{aligned}
$$

$$
\therefore \sim P(a)
$$

$\therefore P(a) \rightarrow r(a) \quad \because$ law of Syllogism.

Rc)
i) $f x, p(x) \wedge q(x)$.
we know that, there exists a real no $x=1$, for which both $P(x)$ and $q(x)$ are true. $\exists x, P(x) \cap q(x)$ is a free statement
It s truth value is 1 .
ii) $\quad \forall x, p(x) \rightarrow q(x)$.
for every real no $x, \quad q(x)$ is true.
$\therefore \forall x, P(x) \rightarrow q(x)$ is true
\therefore Its truth value is 1 .
iii) $\forall x, \quad q(x) \rightarrow g(x)$

WK, $S(x)$ is false, and
$q(x)$ is true for $x=1$
Thus $\forall x, q(x) \rightarrow s(x)$ is false.
\therefore It's truth value is 0
iv) $\forall x, \gamma(x) \vee \delta(x)$
$r(x)$ is the only for $x=4$ of $x=-1$
$\gamma(x)$ and $S(x)$ are false for $x=1$
Thus, $\gamma(x) \vee S(x)$ is not always true,
$\therefore \forall x, \gamma(x) \vee S(x)$ is false.
\therefore It's truth value is 0
Ba) Let $s(n)=1^{2}+3^{2}+\cdots+(2 n-1)^{2}=\frac{1}{3} n(2 n-1)(2 n+1)$
Basis step: we know that,

$$
\begin{aligned}
\delta(1): \quad 1^{2} & =\frac{1}{3} \times 1 \times 3 \\
1 & =1 \quad \text { which is true. }
\end{aligned}
$$

Inductive step: we assume that $S(n)$ is true for

$$
n=k \text {, where } k \geq 1
$$

then, $1^{2}+3^{2}+5^{2}+\cdots+(2 k-1)^{2}=\frac{1}{3} k(2 k-1)(2 k+1)$ Adding $(2 k+1)^{2}$ on both sides,

$$
\begin{aligned}
& 1^{2}+3^{2}+5^{2}+\cdots+(2 k-1)^{2}+(2 k+1)^{2}=\frac{1}{3} k(2 x+1)(2 k+1) . \\
& =\frac{1}{3}(2 k+1)[k(2 k-1)+3(2 k+1)] \\
& =\frac{1}{3}(2 k+1)\left[2 k^{2}-k+6 k+3\right] \\
& =\frac{1}{3}(2 k+1)\left(2 k^{2}+5 k+3\right) \\
& =\frac{1}{3}(2 k+1)(k+1)(2 k+3)
\end{aligned}
$$

This stat is true for $S(k+1)$.
Thus $S(k+1)$ is tree for whenever $s(k)$ is true where $k \geq 1$. Hence By Mathematical Induction, $S(n)$ is true for $\forall n \geq 1$.

Bb) i) x^{0} in the expansion of $\left(3 x^{2}-\frac{2}{x}\right)^{15}$
ii) $x^{11} y^{4}$ in the expansion of
ii) $x^{11} y^{4}$ in the expansion of $\left.\left(2 x^{2}-\frac{2}{x}\right)^{15}-3 x^{2}+z^{2}\right)^{6}$
i)

$$
\begin{aligned}
\left(3 x^{2}-\frac{2}{x}\right)^{15} & =\sum_{r=0}^{15}\binom{15}{\gamma}\left(3 x^{2}\right)^{r} \cdot\left(-\frac{2}{x}\right)^{15-\gamma} \\
& =\sum_{r=0}^{15}\binom{15}{\gamma} 3^{r} \cdot(-2)^{15-\gamma} \cdot x^{2 \gamma} \cdot\left(\frac{1}{x}\right)^{15-\gamma} \\
& =\sum_{\gamma=0}^{15}\binom{15}{r} 3^{r} \cdot(-2)^{15-\gamma} \cdot x^{2 \gamma} \cdot x^{r-15} \\
& =\sum_{r=0}^{15}\binom{15}{r} \cdot 3^{r} \cdot(-2)^{15-\gamma} \cdot x^{3 \gamma-15}
\end{aligned}
$$

Taking $r=5$ in the above expansion, the coefficient of

$$
\begin{aligned}
x^{6} \text { is } & =\binom{15}{5} 3^{5} \cdot(-2)^{10} \\
& =15 C_{5} \cdot 3^{5}(-2)^{10} \\
& =74,72,42,496
\end{aligned}
$$

ii) The general term in the expansion of

$$
\begin{aligned}
& \left(2 x^{3}-3 x y^{2}+z^{2}\right)^{6} \text { is } \\
= & \binom{6}{n_{1} n_{2} n_{3}}\left(2 x^{3}\right)^{n_{1}}\left(-3 x y^{2}\right)^{n_{2}}\left(z^{2}\right)^{n_{3}} \\
= & \binom{6}{n_{1} n_{2} n_{3}} 2^{n_{1}}(-3)^{n_{2}} \cdot x^{3 n_{1}} x^{n_{2}} \cdot y^{2 n_{2}} z^{2 n_{3}}
\end{aligned}
$$

for $n_{3}=0, n_{2}=2, \quad n_{1}=3$ we have

$$
\begin{aligned}
&\binom{6}{3,2,0} 2^{3} \cdot(-3)^{2} \cdot x^{11} y^{4} \\
& \therefore \text { co-eff of } x^{11} y^{4} \text { is } 2^{3} \cdot(-3)^{2} \cdot\binom{6}{3,2,0} \\
&=8 \times 9 \times \frac{6!}{3!\cdot 2!0!} \\
&=4,320
\end{aligned}
$$

3c) There are 15 objects. (15 hunched Rs notes), to be distributed among 3 students A, B, C.
i) Every student gets at least Rs. 300 .

Distribute Rs. 300 to every Student. $(300 \times 3)=900$
Remaining ' 6 ' notes should be distributed among 3 , students.

$$
r=6, \quad n=3 .
$$

This can be done in $n+r-1 C_{r}$ ways.

$$
\begin{aligned}
& =3+6-1 C_{6} \\
& =8 C_{6} \text { ways. } \\
& =\frac{8!}{6!(8-6)!} \\
& =\frac{8^{4} \times 7 \times 6!}{6!2!!} \\
& =28 \mathrm{~m}
\end{aligned}
$$

ii) A B

By using combination with Repitition, Distribute Rs 50010 A , Rs 400 to B, C each.

Remaining 2 notes of 100 should be distributed among 3 -students A, B, C.

$$
r=2, \quad n=3 .
$$

No of ways of distributing $={ }^{n+r-1} C_{r}$

$$
\begin{aligned}
& =3+2-1 C_{2}=4 C_{2} \\
& =\frac{4!}{2!\times 2!} \\
& =\frac{4 \times 3 \times 2!}{2 \ell \times 2} \\
& =6 \text { ways }
\end{aligned}
$$

4a) We know that, $11^{n+2}+12^{2 n+1}$

$$
\begin{aligned}
A_{1} & =11^{1+2}+12^{2+1} \\
& =11^{3}+12^{3} \\
& =1331+1728=3059
\end{aligned}
$$

Thus. A_{n} is divisible by 133 for $n=1$
Induction step:
Assume that An is divisible by 133. for $n=k \geq 1$ Now we find that,

$$
\begin{aligned}
A_{k+1} & =11^{k+3}+12^{2(k+1)+1} \\
& =\left(11^{k+2} \times 11\right)+\left(12^{2 k+1} \times 12^{2}\right) \\
& =\left(11^{k+2} \times 11\right)+\left(12^{2 k+1} \times 144\right) \\
& =\left(11^{k+2} \times 11\right)+\left\{12^{2 k+1} \times(11+133)\right\} \\
& =\left(11^{k+2}+12^{2 k+1}\right) \times 11+\left(12^{2 k+1} \times 133\right) \\
& =(A k \times 11)+\left(12^{2 k+1} \times 133\right)
\end{aligned}
$$

This representation shows that A_{k+1} is divisible by 133, when A_{k} is divisible by 133.
\therefore By induction, the given result is true.

4b)
Here ' n ' must be of the form, with 7-digits formed by, $3,4,4,5,5,6,7$

$$
n=x_{1} x_{2} x_{3} x_{4} \quad x_{5} \quad x_{6} \quad x_{7}
$$

If ' n ' wants to exceed 5,000,000 then $x_{1}=5,6$ ort.
Suppose $x_{1}=5$, Then its arrangement of 6 -digits which contains two 4's and one each of 3,5,6,7

$$
\begin{aligned}
\therefore \text { The no of sues arrangements } & =\frac{6!}{2!\times 1!\times 1!\times 1!\times 1!} \\
& =\frac{6 \times 5 \times 4 \times 3 \times 2!}{24} \\
\text { Nett suppose } x_{1}=6, & =360 .
\end{aligned}
$$

then its arrangement of 6-digits, which contains two 4 's \& $2^{\prime} 5^{\prime} \mathrm{s}$ \& each of 3,7

$$
\therefore \text { The no of such arrangements }=\frac{6!}{2!\cdot 2!\cdot 1!!1!\times 1!}
$$

Next suppose $x_{1}=7$,

$$
=\frac{6 \times 5 \times 4 \times 3 \times 2 \%}{2 \times 2!}
$$

$$
\therefore \text { then no of arrangements, }=\frac{180}{6!}
$$

According By the sum rule
\therefore The no of arrangements of which n-exceeds

$$
\begin{aligned}
5,000,000 & =360+180+180 \\
& =720 \text { ways }
\end{aligned}
$$

4c) Question paper has 3-parts. A, B, C with 4. Questions - in Part A

5- Questions - in Part B
6- Questions - in Part C
It is required to answer - 7 -Questions, by selecting atleast © foo questions from each part.
\therefore Different possible ways in which a student can make a selection are
i) 2 questions from part $A, 2$ from $B, 3$ from C
ii) 2 " from A, 3 from $B, 2$ from C
iii) 3 from A, 2 from $B, 2$ from C.

$$
\begin{aligned}
\text { i) The no of selection } & =4 C_{2} \times 5 C_{2} \times 6 C_{3} \\
& =1200 \text { ways } \\
\text { ii) No. of Selection } & =4 C_{2} \times 5 C_{3} \times 6 C_{2} \\
& =\text { 900 ways }
\end{aligned}
$$

$$
\text { iii) } \begin{aligned}
\text { No of Selection } & =4 C_{3} \times 5 C_{2} \times 6 C_{2} \\
& =600 \text { ways }
\end{aligned}
$$

\therefore The total no of possible Selections

$$
=1200+900+600=2700 \text { coals }
$$

MODULE - 3
fa)

$$
\begin{aligned}
& A=\{1,2,3,4,5,6\}, \quad B=\{6,7,8,9,110\} \\
& f: A \rightarrow B, \text { defined by } f=\{(1,7)(2,7)(3,8)(4,6), \\
& (5,9)(6,9)\} . \\
& f^{-1}(6)=\{x \in A \mid f(x)=6 \quad\}=\{4\} . \\
& f^{-1}(9)=\{x \in A \mid f(x)=9\}=\{5,6\} .
\end{aligned}
$$

For $B_{1}=\{7,8\}$,
$f(x) \in B_{1}$ when $f(x)=7$, and $f(x)=8$
Here $f(x)=7$ when $x=1, x=2$
$f(x)=8$ when $x=3$.

$$
\therefore \quad f^{-1}\left(B_{1}\right)=\{1,2,3\} .
$$

Hey $B_{2}=\{8,9,10\}$.

$$
f(x)=8 \text { when } x=3
$$

$f(x)=9$ when $x=5,6$.
$f(x)=10$ for no values of ' x '

$$
\therefore f^{-1}\left(B_{2}\right)=\left\{x \in A \mid f(x) \in B_{2}\right\}=\{3,5,6\} .
$$

sb) Let $A=\{1,2,3,4\}$ and ' B ' be a relation on A defined by $x R y$, iff x divides y.

$$
\therefore R=\{1 / 1,1 / 2,1 / 3,1 / 4,2 / 2,2 / 4,3 / 13,4 / 4\}
$$

i) $R_{r}=\{(1,1),(1,2)(1,3)(1,4)(2,2)(2,4)(3,3)(4,4)\}$
ii)

iii)

$$
M(R)=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

54)

$$
f(x)=x^{2}, \quad g(x)=x+5, \quad h(x)=\sqrt{x^{2}+2}
$$

i) $f \circ\left(g_{0} h\right)$

$$
\begin{aligned}
& g \circ h=g[h(x)]=g\left(\sqrt{x^{2}+2}\right)=\sqrt{x^{2}+2}+5 \\
& f \circ(g \circ h)(x)=f((g \circ h)(x \\
&=f\left(\sqrt{x^{2}+2}+5\right) \\
&=\left(\sqrt{x^{2}+2}+5\right)^{2} \\
&=\left(x^{2}+2\right)+25+10 \sqrt{x^{2}+2} \\
&=x^{2}+27+10 \sqrt{x^{2}+2}
\end{aligned}
$$

ii) $g_{0}\left(f_{0} h\right)$

$$
\begin{aligned}
(f \circ g)(x) & =f(g(x)) \\
& =f(x+5) \\
& =(x+5)^{2}=x^{2}+25+10 x .
\end{aligned}
$$

$$
\begin{aligned}
(f \circ g) \circ h(x) & =(f \circ g) h(x) \\
& =[h(x)]^{2}+25+10(h(x)) \\
& =\left(\sqrt{x^{2}+2}\right)^{2}+25+10 \sqrt{x^{2}+2} \\
& =x^{2}+2+25+10 \sqrt{x^{2}+2} \\
& =x^{2}+27+10 \sqrt{x^{2}+2}
\end{aligned}
$$

$$
\therefore \quad f \circ(g \circ h)(x)=(f \circ g) \circ h(x) .
$$

ba)
30-dictionaries. Total No. of pages $=61,237$
Treating the pages as pigeons and dictionaries as pigeonholes, we find by using the generalized pigeonhole principle, that atleast one of the dictionaries, must contain $P+1$ or more pages.
where $P=\left\lfloor\frac{327-1}{30}\right\rfloor=\lfloor 2044.2\rfloor=2044$.
bb) i) $(A \cup B) \times C=(A \times C) \cup(B \times C)$
Let $\alpha H S \quad(A \cup B) \times C$
Let $(x, y) \in(A \cup B) \times C$
$\Rightarrow x \in A \cup B$ and $y \in C$
$\Rightarrow x \in A$ or $x \in B$ and $y \in c$
$\Rightarrow\{(x \in A)$ and $(y \in C)\}$ or $\{(x \in)$ and $(y \in C)\}$
$\Rightarrow(x, y) \in(A \times C)$ or $(x, y) \in(B \times C)$
$\Rightarrow \quad(x, y) \in(A \times C) \cup(B \times C)$ R.H.S.

$$
\therefore \quad(A \cup B) \times C=(A \times C) \cup(B \times C)
$$

ii) $A \times(B \cap C)=(A \times B) \cap(A \times C)$

Let $(x, y) \in[A \times(B \cap C)]$
$\Rightarrow x \in A$ and $y \in(B \cap C)$

$$
\Rightarrow x \in A \text { and }(y \in B) \text { or }(y \in C)
$$

$\Rightarrow\{(x \in A)$ and $(y \in B)\}$ or $\{x \in A$ and $y \in C\}$
$\Rightarrow\{(x, y) \in(A \times B)\}$ or $\{(x, y),(A \times C)\}$

$$
\Rightarrow \quad\{x, y \in(A \times B) \cap(A \times C)\}
$$

$$
\Rightarrow \quad(A \times B) \cap(A \times C) \text { R.H.S. }
$$

$$
\therefore \quad A \times(B \cap C)=(A \times B) \cap A \times C
$$

6C) $A=\{1,2,3,4,6,8,12\}$. Define partial arden R
$R=\{x R y$ iff x divides $y\}$.

$$
\begin{aligned}
R=\{ & (1,1)(1,2)(1,3)(1,4),(1,6)(1,8)(1,12),(2,2) \\
& (2,4)(2,6)(2,8)(2,12)(3,6)(3,12),(4,8) \\
& (4,12)(6,12)(12,12),(3,3)(4,4)(6,6)(8,8)\}
\end{aligned}
$$

R^{\prime} is pactial-order on set A.
If ' R ' is reflexive, anti, symmetric, and transitive. i) Reflexive: $\forall a \in A,(a, a) \in R$.

$$
(1,1)(2,2)(3,3)(4,4)(6,6)(8,8)(12,12) \in R
$$

Hence R^{\prime} is Reflexive.
ii) Antisymmetric:
if $(a, b) \in R$ and $a \neq b$, then woe see that $(b, a) \notin R, \forall a, b \in A$.
$\therefore R$ is antisymmetric.
iii) Transitive:
if $(a, b) \in R$ and $(b, c) \in R$ then we that $(a, d) \in R$ $\therefore R$ is transitive.
Thus ' R ' is partial order on A. ie (A, R) es poses

Hasse Diagram.

Ta)
For integers $1,2 \ldots n, \quad d_{n}=11,660$.

$$
n=1,2,3,4,5 .
$$

The integers $1,2,3,4,5$ can be deranged in the first five places in d_{5} ways;
The last $n-5$ integers in d_{n-5} ways.
Hence, the no of derangements

$$
\begin{aligned}
d_{n} & =d_{5} \times d_{n-5} \\
11660 & =d_{s} \times d_{n-5} . \text { so that } \\
d_{n-5} & =\frac{11660}{d_{5}}=265 \\
& =\frac{11660}{44}=265
\end{aligned}
$$

But $265=d 6$, Thus $n-5=6$, So that $n=11$

$$
\therefore \quad n=11
$$

Tb) $S=\{1,2 \ldots 30\}$.
Let A_{1}, A_{2}, A_{3} be subsets of ' S ' cohose elements are divisible by $5,6,8$ resply.

$$
\begin{aligned}
& S_{0}=|S|=300 \\
& \left|A_{1}\right|=\left\lfloor\frac{300}{5}\right\rfloor=60, \quad\left|A_{2}\right|=\left\lfloor\frac{300}{6}\right\rfloor=50 \quad\left|A_{3}\right|=\left[\frac{300}{8}\right\rfloor=37 \\
& \left|A_{1} \cap A_{2}\right|=\left\lfloor\frac{300}{30}\right\rfloor=10 \quad\left|A_{1} \cap A_{3}\right|=\left\lfloor\frac{300}{40}\right\rfloor=7 \\
& \left|A_{2} \cap A_{3}\right|=\left\lfloor\frac{300}{24}\right\rfloor=12 \\
& S_{1}=|A|+|B|+|C| \\
& =147 \\
& \left|A_{1} \cap A_{2} \cap A_{3}\right|=\lfloor 300 / 120\rfloor=2 \text {. } \\
& \text { i) } \\
& E_{2}=S_{2}-3 C_{1} \quad S_{3} \\
& =29-3 c_{1} \times 2=23 \text {. } \\
& S_{2}=|A \cap B|+|B \cap C|+|A \cap C| \\
& =29 \text {. } \\
& S_{3}=|A \cap B \cap C|=2
\end{aligned}
$$

ii)

$$
\begin{aligned}
L_{2} & =S_{2}-2 C_{1} S_{3} . \\
& =29-(2 \times 2]=25
\end{aligned}
$$

7c) Solve $a_{n}=2\left(a_{n-1}-a_{n-2}\right)$ for $n \geq 2$, given $a_{0}=1, a_{1}=2$
characteristic eqn is. $k^{2}-2 k+2=0$

$$
k=1 \pm i
$$

\therefore The general solution is:

$$
a_{n}=r^{n}[A \cos n \theta+B \sin n \theta]
$$

where

$$
\begin{aligned}
& r=\sqrt{1^{2}+1^{2}}=\sqrt{2} \quad \& \\
& \theta=\tan ^{-1} 1=\frac{\pi}{4}
\end{aligned}
$$

$$
\therefore \quad a_{n}=(\sqrt{2})^{n}\left[A \cos \frac{n \pi}{4}, B \sin \frac{n \pi}{4}\right]
$$

Given $a_{0}=1 \quad \& \quad a_{1}=2$.

$$
\begin{align*}
& \Rightarrow \quad 1=A, \quad 2=(\sqrt{2})\left[A \cos \frac{\pi}{4}+B \sin \frac{\pi}{4}\right]=A+B \\
& \Rightarrow \quad A=1, Q B=1 \tag{1}
\end{align*}
$$

\therefore Sola is

$$
a_{n}=(\sqrt{2})^{n}\left[\cos \frac{n \pi}{4}+\sin \frac{n \pi}{4}\right] \text { By using (1) }
$$

Ba)
Let 'S' denote the set of all students in a hostel.
A_{1}, A_{2}, A_{3}, who study History, Economics, Geography respectively. $|S|=30, \quad\left|A_{1}\right|=15,\left|A_{2}\right|=8,\left|A_{3}\right|=6$

$$
\begin{aligned}
\therefore \quad S_{1} & =\sum\left|A_{i}\right|=A_{1}+A_{2}+A_{3} \\
& =15+8+6=29 \\
S_{3} & =\left|A_{1} \cap A_{2} \cap A_{3}\right|=3 . \\
\left|\bar{A}_{1} \cap \overline{A_{2}} \cap \overline{A_{3}}\right| & =|S|-\sum\left|A_{i}\right|+\sum\left|A_{i} \cap A_{j}\right|- \\
& \sum\left|A_{1} \cap A_{2} \cap A_{3}\right| \\
& =|S|-S_{1}+S_{2}-S_{3} \\
& =30-29+S_{2}-83 \\
& =S_{2}-2
\end{aligned}
$$

$$
\begin{gathered}
\left.\mid A_{1} \cap A_{2} \cap A_{3}\right) \subseteq\left(A_{i} \cap A_{j}\right) \text { for } i, j=1,2,3 \ldots \\
S_{2}=\sum\left|A_{i} \cap A_{j}\right| \geq 3\left|A_{1} \cap A_{2} \cap A_{3}\right|=9 \\
\left|\bar{A}_{1} \cap \bar{A}_{2} \cap \bar{A}_{3}\right| \geqq 9-2 \geqq 7 .
\end{gathered}
$$

\therefore For more study none of the subjects.
bb)

Let $B_{1}, B_{2}, B_{3}, B_{4}$ represent L_{4}-boys.
Let A, B, M, O represent Apple, Banana \& Mango \& Orange.
Let

$$
\begin{aligned}
\gamma(C, x) & =\gamma\left(c_{1}, x\right) \times \gamma\left(c_{2}, x\right) \times \gamma\left(C_{3}, x\right) \\
& =(1+2 x) \times(1+2 x) \times(1+x) \\
& =1+5 x+8 x^{2}+4 x^{3} .
\end{aligned}
$$

Here $\gamma_{1}=5, \quad r_{2}=8, \quad \gamma_{3}=4$.

$$
\begin{aligned}
& S_{0}=n!=4!=24 . \quad S_{k}=(n-k) \cdot k! \\
& S_{1}=(4-1)!\times r_{1}=30 \\
& S_{2}=(4-2)!\times r_{2}=16 \\
& S_{3}=(4-3)!\times r_{3}=4 . \\
& \therefore \vec{N}=S_{0}-S_{1}+S_{2}-S_{3} \\
& =24-30+16-4=6 .
\end{aligned}
$$

\therefore '6' ways of distribution, can be made, so that all of themare

8c) $a_{n}-3 a_{n-1}=5 \times 3^{n}$ for $n \geq 1$, given $a_{0}=2$
Given: $a_{n}=3 a_{n-1}+\left(5 \times 3^{n}\right)$
is a non-homogeneous relation with $c=3$.

$$
f(n)=5 \times 3^{n}
$$

General solution is given by,

$$
\begin{aligned}
& a_{n}= 3^{n} a_{0}+\sum_{k=1}^{n} 3^{n-k}, f(k) . \\
& a_{n}= 3^{n} a_{0}+3^{n-1} f(1)+3^{n-2} f(2)+\ldots+3^{0} f(n) . \\
& \Rightarrow \quad a_{n}= 3^{n} \times 2+3^{n-1}\left(5 \times 3^{1}\right)+3^{n-2}\left(5 \times 3^{2}\right)+\cdots . \\
& \quad+3^{0} \times\left(5 \times 3^{n}\right) \\
&= 2 \times 3^{n}+5\left[3^{n}+3^{n}+\ldots+3^{n}\right] \text { nimes } \\
&= 2 \times 3^{n}+5 \times n \times 3^{n} \\
& \Rightarrow a_{n}=3^{n}(2+5 n) \text { is the required son } .
\end{aligned}
$$

aa)

Let us consider the one-to-one correspondence betcieen the varices of the two graphs under which the vertices A, B, C, D, P, Q, R, S of the first graph correspond to the varices $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}, P^{\prime}, Q^{\prime}, R^{\prime}, S^{\prime}$ respectively of the second graph. and vice-versa.

$A \leftrightarrow A^{\prime}$	
$B \leftrightarrow B^{\prime}$	$P \leftrightarrow P^{\prime}$
$C \leftrightarrow C^{\prime}$	$Q \leftrightarrow Q^{\prime}$
$D \leftrightarrow D^{\prime}$	$R \leftrightarrow R^{\prime}$

The edges determined by corresponding vertices

$$
\begin{array}{ll}
A B \leftrightarrow A^{\prime} B^{\prime} & B Q \leftrightarrow B^{\prime} Q^{\prime} \\
A P \leftrightarrow A^{\prime} P^{\prime} & B C \leftrightarrow B^{\prime} C^{\prime} \\
A D \leftrightarrow A^{\prime} D^{\prime} & C D \leftrightarrow C^{\prime} D^{\prime} \ldots . \text { and so on }
\end{array}
$$

edges determined by corresponding vertices correspond So that the adjacency of vertices is retained.
Both graphs have \&-vertices \& 12 -edges and one cubic graphs.
\therefore The two graphs are isomorphic.
ab)
i) Complement of a graph:

If ' G ' is a simple graph of order ' n '. Then the Complement of G in k_{n} is called the complement of G. It is denoted by \bar{G}
Ex:

ii) Vertex degree:

Let $G=(V, E)$ be a graph and ' V ' be averted of G, then the no of edges of ' G ', that are incident on V with loops counted twice is called "vertex degree".

Ex:

$$
\begin{aligned}
\operatorname{deg}\left(v_{1}\right) & =2 \\
\left(r_{2}\right) & =2 \\
\left(v_{3}\right) & =3 .
\end{aligned}
$$

iii) Routed tree:

A directed tree ' T ' is called a rooted tree if
(i) T contains a unique vutex called the root. whose indegree is equal to 0^{\prime}
(ii) The in-degree of all other notices of ' T 'are equal to ' 1 '.
εx :

iv) prefix code:

Let ' p ' be a set of binary set of binary sequences that represent a set of symbols. Then ' p ' is called a prefix code, if no sequence in ' p ' is the prefix of any other sequence in P.
Ex. $\quad P_{1}=\{10,0,4101,111,1100\}$ is a prefixcode.
$A_{1}=\{01,0, \underline{101}, \underline{10}, 1\}$. is not a prefixcode $\operatorname{coz} 10$ is sequence of 0 the sequence.
ac> Apply marge sort.

$$
-1,7,4,11,5,-8,15,-3,-2,6,10,3 .
$$

$$
\{-1,7,4,11,5,-8\} \quad\{15,-3,-2,6,10,3\} .
$$

$$
\{-1,7,4\}\{11,5,-8\}
$$

$$
\{15,-3,-2\}\{6,10,3\}
$$

$\{-1,7\}\{4\} \quad\{11,5\}\{-8\}$
$\{15,-3\} \quad\{-2\} \quad\{6,10\}\{3\}$
$\{-1\}\{7\}\{4\}\{11\}\{5\}\{-8\} \quad\{15\}\{-3\}\{-2\}\{6\}\{10\} \quad\{3]$ To merge.

$$
\begin{array}{lllllllllllll}
-1, & 7 & 4 & 11 & 5 & -8 & 1 & 5 & -3 & -2 & 6 & 1 & 0
\end{array}
$$

To merge

$$
\begin{aligned}
& \{-8,-3,-2,-1,3,4,5,6,7,10,11,15\} \\
& \text { the sorted version of the given list. }
\end{aligned}
$$

This is the sorted version of the given list.
10a) Prove that a tree with ' n ' vertices has n-1 edges.

$$
\begin{aligned}
& P f: \rightarrow \quad n=1 \\
& n=2 \\
& n=3
\end{aligned}
$$

Result is true for $n=1,2,3$.
considu a tree with $k+1$ vertices. Remove an edge ' e ' from trues. Now there are too components. both of which are trees $T_{1} \& T_{2}$.
Let the no of edges in $T_{1} \& T_{2}$ be $k_{1} \& k_{2}$ resply.

$$
k_{1}, k_{2} \leq k+1 .
$$

No of edges in $T_{1}=k_{1}-1$

$$
T_{2}=k_{2}-1
$$

Total no of edges in $T_{1} \& T_{2}=k_{1}+k_{2}-2$

$$
\begin{aligned}
& k_{1}+k_{2}-2 \\
= & (k+1)-2 \\
= & (k-1) .
\end{aligned}
$$

keeping the edge ϵ, back in its 8 place No of edges in $T=(k-1)+1=k$. So the result is true for $k+1$ also.
\therefore Hence by Mathematical Induction, the result is true for all tee in ' n.
$10 \mathrm{~b})$ Determine the no of vertices in G.
i) G has 9 edges all vertices have degree 3 .

Let no of vertices be ' n '
Sum of degrees of all vertices $=3 n$.
since ' G ' has 9 edges, we have $3 n=2 \times E$

$$
\begin{gathered}
3 n=2 \times 9 \\
n=6 . \\
\therefore \text { order of } G=6 .
\end{gathered}
$$

ii) G has loedges, with ${ }^{2}$ vertices of elegree 4 and all other have degree 3 .
\therefore the sum of deg of all vertices $=(2 \times 4)+(n-2) \times 3$

$$
\begin{gathered}
\Rightarrow 2 \times 4+(n-2) \times 3=2 \times 10 \\
\Rightarrow 8+(n-2) \times 3=20 \\
(n-2)=\frac{12}{3}=4 \\
n=6 .
\end{gathered}
$$

\therefore order of $\overline{G=6}$.
|OC) ROAD IS GOOD.
The given message consists of the letters R, O, A, D I, S, G with frequencies $1,3,1,2,1,1,1$ res ply. Also there are 2 blank spaces (_) bet? two words. Arranging all these in non-decreasing order.
$\begin{array}{llllllll}\dot{R} & \dot{A} & \dot{I} & \dot{S} & \dot{G}_{1} & \dot{D} & \dot{-} & \dot{O} \\ (1) & (1) & (1) & (1) & (1) & (2) & 12) & (3) .\end{array}$

$$
\begin{gathered}
\dot{0} \\
(3)
\end{gathered}
$$

Wore
$\frac{\text { staff Ic }}{\text { prat }}$ To mobseces

$$
\begin{array}{lll}
R: 1111 & 0: 01 & A: 1111 \\
-: 110 & I: 000 & S: 001
\end{array}
$$

$+5317^{22}$ Dean'ics.
Acadencs

is optimal tree
D: 101
G: 100
code: 11110111111011100000011101000101101

GBCJSCHIME

USN

Third Semester B.E. Degree Examination, Dec.2019/Jan. 2020 Discrete Mathematical Structures
Time: 3 hrs.
Note: Answer FIVE full questions, choosing ONE full question from each module.

Module- 1

1 a. Prove that, for any propositions p, q, r the compound proposition $[(p \rightarrow q) \wedge(q \rightarrow r) \rightarrow(p \rightarrow r)]$ is a tautology.
b. Test the validity of the following argument.

If I study, I will not fail in the examination.
If I do not watch TV in the evenings. I will study.
I failed in the examination.
\therefore I must have watched TV in the evenings
(07 Marks)
c. Let $p(x): x^{2}-7 x+10=0, q(x): x^{2}-2 x+3=0, r(x): x<0$. Find the truth or falsity of the following statements, when the universe U contains only the integers 2 and 5 ,
(i) $\forall \mathrm{x}, \mathrm{p}(\mathrm{x}) \rightarrow \sim \mathrm{r}(\mathrm{x})$
(ii) $\forall \mathrm{x}, \mathrm{q}(\mathrm{x}) \rightarrow \mathrm{r}(\mathrm{x})$
(iii) $\exists \mathrm{x}, \mathrm{q}(\mathrm{x}) \rightarrow \mathrm{r}(\mathrm{x})$
(iv) $\exists \mathrm{x}, \mathrm{p}(\mathrm{x}) \rightarrow \mathrm{r}(\mathrm{x})$
(07 Marks)
a. Prove that, for any three propositions p.q. r
$[(p \vee q) \rightarrow r] \Leftrightarrow[(p \rightarrow r) \wedge(q \rightarrow r)]$
(06 Marks)
b. Prove that, the following are valid arguments:

$$
\text { (i) } \begin{array}{r}
p \rightarrow(q \rightarrow r) \\
\sim q \rightarrow \sim p \\
\therefore r
\end{array}
$$

(ii)

c. Give :
(i) a direct proof
(ii) an indircet proof.
(iii) proof by contradiction for the following statement.
"If in in odd integer, then $\mathrm{n}+9$ is an even integer".
(07 Marks)

Module-2

3 a. Proverthat for each $1^{2}+2^{2}+3^{2}+\ldots .+n^{2}=\frac{1}{6} n(n+1)(2 n+1)$. (06 Marks)
be Determine the coefficient of,
(i) $x y z^{2}$ in the expansion of $(2 x-y-z)^{4}$.
(ii) $x^{2} y^{2} z^{3}$ in the expansion of $(3 x-2 y-4 z)^{7}$.
(07 Marks)
A Aoman has 11 close relatives and she wishes to invite 5 of them to dinner. In how many ways can she invite them in the following situations:
(i) There is no restriction on the choice.
(ii) Two particular persons will not attend separately.
(iii) Two particular persons will not attend together.
(07 Marks)

4 a. Prove that every positive integer $n \geq 24$ can be written as a sum of 5 's and / or 7 's.
(06 Marks) of these all four A's are together? How many of them begin with S?
(07)
c. In how many ways can one distribute eight identical balls into four distinet contamers, so that, (i) No containers is left empty.
(ii) The fourth container gets an oddnumber of balls.

Module-3

5 a. For any non empty sets A, B. C prove that,
(i) $\mathrm{A} \times(\mathrm{B} \cup \mathrm{C})=(\mathrm{A} \times \mathrm{B}) \cup(\mathrm{A} \times \mathrm{C})$
(ii) $(\mathrm{A} \times(\mathrm{B}-\mathrm{C}))=(\mathrm{A} \times \mathrm{B})-(\mathrm{A} \times \mathrm{C})$
b. Let $f: R \rightarrow R$ be defined by $f(x)=\left\{\begin{array}{cl}3 x-5 & \text { for } x>0 \\ -3 x+1 & \text { for } x \leq 0\end{array}\right.$.
(i) Determine $f(0), f\left(\frac{5}{3}\right)$
(ii) Find $f^{-1}([-5,5])$.

c. Let f, g, h be functions form z to z defined by $f(x)=x-1, g(x)=3 x$, $h(x)=\left\{\begin{array}{l}0 \text { if } x \text { is even } \\ 1 \quad \text { if } x \text { is odd }\end{array}\right.$. Verify that $(f \circ g) \circ h(x)=f \circ(g \circ h)(x)$.

OR

6 a. Let $\mathrm{A}=\{1,2,3,4,6\}$ and R be a relation on A defined by aRb if and only if " a is a multiple of b". Represent the relation R as a matrix and draw its diagraph.
(06 Marks)
b. Draw the Hasse diagram representing the positive diyisors of 36 .
(07 Marks)
c. Let $A=\{1,2,3,4,5\}$, define a relation R on $A \times A$, by $\left(x_{1}, y_{1}\right) R\left(x_{2}, y_{2}\right)$ if and only if $x_{1}+y_{1}=x_{2}+y_{2}$
(i) Verify that R is an equivalenee relation.
(ii) Find the partition of $A \times \Lambda$ indueed by R.
(07 Marks)

Module-4

7 a. There are eight letters to eight different people to be placed in eight different addressed envelopes. Find the number of ways of doing this so that at least one letter gets to the right person.
(06 Marks)
b. In how many ways can the 26 letters of the English alphabet be permuted so that none of the patterns CAR, DOG, PUN or BYTE occurs?
(07 Marks)
c. By using the expansion formula, obtain the rook polynomial for the board C. (07 Marks)

8 a. An apple, a banana, a mango and an orange are to be distributed to four boys $B_{1}, B_{2}, B_{3}, B_{4}$. The boys B_{1} and B_{2} do not wish to have apple. The boy B_{3} does not want banana or mango, and B_{+}refuses orange. In how many ways the distribution can be made so that no boy is displeased?
(06 Marks) If atil $=0, a_{1}=1, a_{2}=4$ and $a_{4}=37$ satisfy the recurrence relation $a_{n \cdot 2}+b a_{n+1}+c a_{n}=0$, for $n \geq 0$. find the constants b and c, and solve the relation a_{n}.
(07 Marks) How many integers between 1 and 300 (inclusive) are,
(i) Divisible by at least one of $5,6,8$?
(ii) Divisible by none of $5,6,8$?
(07 Marks)

Module-5

9 a. Show that the following two graphs shown in Fig. Q9 (a) - (i) and Fig. Q9 (a) - (ii) are isomorphic,

Fig. Q9 (a) - (i)

Fig. Q9 (a) - (ii)
b. Define the following with example of each.
(i) Simple graph
(ii) Sub graph
(iii) Compliment of a graph
(iv) Spanning sub graph
(06 Marks)

Construct an optimal profix code for the symbols a, o, q, u, y, z that oceurs with frequencies $20,28,4,17,12,7$ respectively.

OR
10 a. Prove that two simple graphs G_{1} and G_{2} are isomorphic if and only if their eomplements are isomorphic.
b. Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a simple graph of order $|\mathrm{V}|=\mathrm{n}$ and size $\mathrm{E} \mid=\mathrm{m}$, if G is a bipartite graph. Prove that $4 \mathrm{~m} \leq \mathrm{n}^{2}$.
(07 Marks)
c. Construct an optimal prefix code for the letters of the word EN (TNEERING. Hence deduce the code for this word.

CBG® §CMENE

USN

Third Semester B.E. Degree Examination, Feb./Mar. 2022 Discrete Mathematical Structures

Time: 3 hrs.
Note: Answer any FIVE full questions, choosing ONE full question from eaclr nodule.
1 a. Prove that for any propositions $\mathrm{p}, \mathrm{q}, \mathrm{r}$ the compound proposition $[(p \rightarrow q) \wedge(q \rightarrow r)] \rightarrow(p \rightarrow r)$ is a Tautology.
b. Prove the logical equivalence without using truth table:
$\mathrm{p} \rightarrow(\mathrm{q} \rightarrow \mathrm{r}) \Leftrightarrow(\mathrm{p} \wedge \mathrm{q}) \rightarrow \mathrm{r}$
(05 Marks)
c. Find whether the following argument is valid. No engineering student of first or second semester studies logic.
Anil is an Engineering student who studies logic
\therefore Anil is not in second semester
(07 Marks)

2 a. Give a direct proof and an indirect proof for the given statement. "If ' n ' is an odd integer, then $\mathrm{n}+9$ is an even integer".
(06 Marks)
b. Prove the given logical equivalence problem using lavs of logic.
$(p \rightarrow q) \wedge[\neg q \wedge(r \vee \neg q) \Leftrightarrow \neg(q$
(07 Marks)
c. Verify the given argument is valid
$p \rightarrow(q \rightarrow r)$
$\mathrm{pv} \neg \mathrm{s}$
$\frac{q}{\therefore s \rightarrow r}$
(07 Marks)
Module-2
3 a. Prove that for each n
$1^{2}+2^{2}+3^{2}+\ldots \ldots+n^{2}=1 / 6 n(n+1)(2 n+1)$
(07 Marks)
b. Find the number of permutation of the letter of the word "MASSASAUGA". In how many of there all four 'A's are together? How many of them begin with ' S '? (06 Marks)
c. Find how many distinct four digit integers one can make from the digit $1,3,3,7,7,8$.
(07 Marks)
OR
4 a. Determine the co-efficient of $x y z^{2}$ in the expansion of $(2 x-y-z)^{4}$. (06 Marks)
b. In how many ways can 10 identical pencils be distributed among 5 children in following cases:

There are no restrictions.
Ea@h child gets atleast one pencil.
The youngest child gets at least two pencils.
(07 Marks)
Find the number of arrangements of all the letters in "TALLAHASSEE"? How many of these arrangement have no adjacent 'A's?
(07 Marks)

Module-3

5 a. Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be defined by
$f(x)=\left\{\begin{array}{ccc}3 x-5 & \text { for } & x>0 \\ -3 x+1 & \text { for } & x \leq 0\end{array}\right.$
find $f^{-1}(0), f^{-1}(1), f^{1}(3), f^{-1}(-3), f^{-1}(-6), f^{-1}([-5,5])$.
(07 Marks)
b. On the set Z^{-1} a relation ' R ' is defined by $a R b$ if and only if "a divides b (exactly)" verify that ' R ' is equivalence relation.
c. Draw the Hasse diagram representing the positive divisor of 36 .

OR

6 a. Let $\mathrm{A}=\{1,2,3,4,5\}$ define relation ' R ' on $\mathrm{A} \times \mathrm{A}$ by $\left(\mathrm{X}_{1} \mathrm{Y}_{1}\right) \mathrm{R}\left(\mathrm{X}_{2} \mathrm{X}_{2}\right)$ if and only if $\mathrm{X}_{1}+\mathrm{Y}_{1}=\mathrm{X}_{2}+\mathrm{Y}_{2}$.
i) Verify ' R ' is a equivalence relation on $A \times A$
ii) Determine the partition of $A \times A$ induced by R.
(07 Marks)
b. Let $A=\{1,2,3,4,6\}$ and ' R ' be a relation on ' A ' defined by aRb if and only if " a is multiple of b " represent the relation ' R ' as a matrix, draw its diagraph and relation R.
(06 Marks)
c. Let f, g, h be a function from R to R defined by $f(x)=x+2, g(x)=x-2, h(x)=3 x$ for $\forall x \in R$ find gof, fog, fof, gog, foh, fohog.
(07 Marks)

Module-4

7 a. How many integers between 1 and 300 (inclusive) are
i) Divisible by atleast one of $5,6,8$
ii) Divisible by none of $5,6,8$.
(07 Marks)
b. Find the rook polynomial for the 3×3 board by using the expansion formula.
(07 Marks)
c. Solve the recurrence relation
$a_{n}-3 a_{n-1}=5 \times 3^{n}$ for $n \geq 1$ given that $a_{0}=2$.
(06 Marks)
OR
8 a. The number of virus affected files in a system is 1000 (to start with) and this increases 250% every two hours. Use a recurence relation to determine the number of virus affected files in the system after one day.
(06 Marks)
b. Solve the recurrence relation
$a_{n}=2\left(a_{n-1}-a_{n-2}\right)$ for $n \geq 2$ given that $a_{0}=1$ and $a_{1}=2$.
(07 Marks)
c. Compute derangement of $\mathrm{d}_{4}, \mathrm{~d}_{5}, \mathrm{~d}_{6}, \mathrm{~d}_{7}$.
(07 Marks)

Module-5

9
a. Define Isomorphism. Verity the given two graphs are Isomorphic (Fig.Q.9(a)).
(07 Marks)

Fig.Q.9(a)
b. "A tree with ' n ' vertices has $\mathrm{n}-1$ edges". Prove this. Define a tree.
(06 Marks)
c. Construct an optimal prefix code for the given set of frequencies, 20, 28, 4, 17, 12, 7 .
(07 Marks)

OR

10
Explain complete graph, Bipartite graph, subgraph, regular graph, spanning subgraph, minimally connected graph, with example for each.
(07 Marks)
b. Apply merge sort to the given list $-1,7,4,11,5,-8,15,-3,-2,6,10,3$. (06 Marks)
c. Obtain an optimal prefix code for the message "LETTER RECEIVED" indicate the code.
(07 Marks)

Third Semester B.E. Degree Examination, Aug./Sept. 2020

 Discrete Mathematical StructuresTime: 3 hrs .
Note: Answer any FIVE full questions, choosing ONE full question from each module
1 a. Define proposition, tautology, contradiction. Determine whether t statement is a tautology or not.

$$
\{(p \vee q) \rightarrow r\} \leftrightarrow\{\neg r \rightarrow \neg(p \vee q)\}
$$

(06 Marks)
b. Using the laws of logic, show that

$$
(p \rightarrow q) \wedge[\neg q \wedge(r \vee \neg q)] \Leftrightarrow \neg(q \vee p)
$$

(07 Marks)
c. Establish the validity of the following argument :

$$
\begin{aligned}
& \forall \mathrm{x}, \mathrm{p}(\mathrm{x}) \vee \mathrm{q}(\mathrm{x}) \\
& \exists \mathrm{x}, \neg \mathrm{p}(\mathrm{x}) \\
& \forall \mathrm{x}, \neg \mathrm{q}(\mathrm{x}) \vee \mathrm{r}(\mathrm{x}) \\
& \forall \mathrm{x}, \mathrm{~s}(\mathrm{x}) \rightarrow \neg \mathrm{r}(\mathrm{x}) \\
& \therefore \exists \mathrm{x}, \neg \mathrm{~s}(\mathrm{x})
\end{aligned}
$$

(07 Marks)

2 a. Define Converse, Inverse and Contrapositiye of a conditional. Find converse, inverse and contrapositive of $\forall x,(x>3) \rightarrow\left(x^{2}>9\right)$, where universal set is R.
(06 Marks)
b. Test the validity of the following arguments:
(i) If there is a strike by students, the exam will be postponed but the exam was not postponed

$$
\therefore \text { there was no strike by students }
$$

(ii) If Ram studies, then he will pass in DMS. If Ram doesn't play cricket, then he will study. Ram falled in DMS.

$$
\therefore \text { Ram played cricket }
$$

(06 Marks)
c. Let $p(x): x \geq 0$

$$
q(x)>x^{2} \geq 0 \text { and } r(x): x-3 x-4=0 \text {, then }
$$

for the universe completing of all real numbers, find the truth value of
(i) $\exists x\{p(x) \wedge q(x)\}$
(ii) $\forall x\{p(x) \rightarrow q(x)\}$
(iii) $\exists \mathrm{x}\{\phi(\mathrm{x}) \wedge \mathrm{r}(\mathrm{x})\}$
(06 Marks)
d. Define dual of logical statement. Write the dual of the statement
$\left(p \vee T_{0}\right) \wedge\left(q \vee F_{0}\right) \vee\left(r \wedge s \wedge T_{0}\right)$
(02 Marks)

Module-2
3 as Define well ordering principle and prove the following by mathematical induction.
$1^{2}+3^{2}+5^{2}+\ldots \ldots(2 n-1)^{2}=\frac{n(2 n-1)(2 n+1)}{3}$
(ii) $1 * 3+2 * 4+3 * 5+\ldots \ldots .+n(n+2)=\frac{n(n+1)(2 n+7)}{6}$ (12 Marks)
b. Find the coefficients of
(i) $x^{9} y^{3}$ in the expansion of $(2 x-3 y)^{12}$
(ii) $a^{2} b^{3} c^{2} d^{5}$ in the expansion of $(a+2 b-3 c+2 d+5)^{16}$
(08 Marks)

Module-5

9 a. Merge sort the list $-1,7,4,11,5,-8,15,-3,-2,6,10,3$.
b. Determine whether the following graphs are isomorphic or not. [Refer Fig.Q9(b)]

Fig.Q9(b)
c. Define the following with an example to each :
(i) Simple graph
(ii) Complete graph
(v) Spanning subgraph (vi) Induced sub graph (viii) Complement of graph.
(08 Marks)

(iii) Tree
(vii) Complette Bipartite graph

OR
10 a. Let $\mathrm{G}:(\mathrm{V}, \mathrm{E})$ be a connected undirected graph, what is the largest possible value for $|\mathrm{V}|$ if $|\mathrm{E}|=19$ and $\operatorname{deg}(\mathrm{V}) \geq 4$ for all $\mathrm{v} \in \mathrm{V}$?
(06 Marks)
b. Construct an optional prefix code for the letters of the word ENGINEERING. Hence deduce the code for this word.
(08 Marks)
c. $\mathrm{T}:(\mathrm{V}, \mathrm{E})$ is a complete m-ary tree with $|\mathrm{V}|=\mathrm{n}$, if T has ℓ leaves and i internal vertices, prove the following results:
(i) $\mathrm{n}=\mathrm{mi}+1$
(ii) $\ell=(\mathrm{m}-1) \mathrm{i}+1$
(iii) $\mathrm{i}=\frac{\ell-1}{\mathrm{~m}-1}=\frac{\mathrm{n}-1}{\mathrm{~m}}$

Important Questions for VTU Examination (Dec.-2019)

MODULE-1

(I) DEFINITIONS with example for each:

Proposition, Tautology, Contradiction, Open sentence, Disjunction (OR), Conjunction (AND), Negation, Quantifier, compound statement, Converse, Inverse, and Contra Positive. etc.,

(II) Problems on TAUTOLOGY, CONTRADICTION, CONTINGENCY:

Examples:

(1) Prove that, for any propositions $\mathrm{p}, \mathrm{q}, \mathrm{r}$, the compound propositions, are tautologies.
i) $\{(p \rightarrow q) \wedge(q \rightarrow r)\} \rightarrow\{(p \rightarrow r)\}$ ii) $\{p \rightarrow(q \rightarrow r)\} \rightarrow\{(p \rightarrow q) \rightarrow(p \rightarrow r)\}$
(2) Determine whether the following statement is tautology or not.

$$
(p \rightarrow(q \vee r)) \leftrightarrow((p \wedge \neg q) \rightarrow r)
$$

(III) Problems on LOGICALLY EQUIVALENT STATEMENTS: (using truth tables)

Examples:

(1) By constructing the truth table, show that the compound propositions $p \wedge(\neg q \vee r)$ and $p \vee(\wedge \neg r)$ are not logically equivalent.
(2) Use truth tables to verify,

$$
\begin{aligned}
& \text { (i) }[p \rightarrow(q \wedge r) \Leftrightarrow(p \rightarrow q) \wedge(p \rightarrow r) \text { (ii) }[(p \vee q) \rightarrow r] \Leftrightarrow[(p \rightarrow r) \wedge(q \rightarrow r)] \\
& \text { (iii) }[(p \leftrightarrow q) \wedge(q \leftrightarrow r) \wedge(r \leftrightarrow p)] \Leftrightarrow[(p \rightarrow q) \wedge(q \rightarrow r) \wedge(r \rightarrow p)]
\end{aligned}
$$

(IV) Problems on LOGICALLY EQUIVALENT STATEMENT USING Laws of Logic:

Examples:

(1) Define logical equivalence of two propositions. Prove the following logical equivalences without using the truth tables (using laws of logic):

$$
\begin{aligned}
& \text { i) } p \vee[p \wedge(p \vee q)] \Leftrightarrow p \\
& \begin{array}{ll}
\text { (iii) }(p \rightarrow q) \wedge(\neg q \wedge(r \vee \neg q)) \Leftrightarrow & \text { ii) }[(\neg p \vee \neg q) \rightarrow(p \wedge q \wedge r) \Leftrightarrow \wedge q]
\end{array}
\end{aligned}
$$

(2) Show that $[(p \vee q) \wedge \neg(\neg p \wedge(\neg q \vee \neg r))] \vee(\neg p \wedge \neg q) \vee(\neg p \wedge \neg r)$ is tautology using laws of logic.

(V) Problems on TRUTH TABLES AND INDEPENDENTS OF ITS COMPONENTS:

 Examples:(1)_Find the possible truth values of p, q and r if (i) $p \rightarrow(q \vee r)$ isFALSE
(ii) $p \wedge(q \rightarrow r)$ is TRUE
(2) Show that $(p \wedge(p \rightarrow q)) \rightarrow q$ is independent of its components.
(3) Let p, q be primitive statements for which the implication $p \rightarrow q$ is false. Determine the truth values for each of the following: (i) $p \wedge$ (ii) $\neg p \vee q \quad$ (iii) $q \rightarrow p$
(4) Let $\mathrm{p}, \mathrm{q}, \mathrm{r}$ be propositions having truth values 0,0 and 1 respectively. Find the truth values of the following compound propositions: i) $(p \wedge q) \rightarrow r \quad$ ii) $p \rightarrow(q \wedge r)$ iii) $p \wedge(r \rightarrow q) \quad$ iv) $\rightarrow(q \rightarrow \neg r)$.
(5) Show that the truth values of the following statements are independent of their components: i) $[p \wedge(p \rightarrow q)] \rightarrow q$ ii) $(p \rightarrow q) \leftrightarrow[\neg p \vee q]$

(VI) Problems on DUAL AND PRINCIPLE OF DUALITY:

Examples:

(1) Verify the principle of duality for the logical equivalence:

$$
\sim(p \wedge q) \rightarrow \sim p \vee(\sim p \vee q) \Leftrightarrow \sim p \vee q .
$$

(2) Define dual of logical statement. Write the dual of the following logical statements:

$$
\text { i) }\left(p \vee T_{0}\right) \wedge(q \vee r) \vee\left(r \wedge s \wedge T_{0}\right)\left(\text { iii }(p \wedge q) \vee T_{0} \text { (iii) }[\neg(p \vee q) \wedge\{p \vee \neg(q \wedge \neg s)\}]\right.
$$

(VII) Problems on DIRECT PROOF, PROOF BY CONTRADICTION, INDIRECT PROOF:

Examples:

(1) Give : (i) A direct proof (ii) An indirect proof and (iii) Proof by contradiction, for the following statement: "If n is an even integer, then $(\mathrm{n}+7)$ is an even integer".
(2) Give a direct proof for each of the following. (i) For all integers k and l, if k, l are both even, then $k+l$ is even. (ii) For all integers k and l, if k, l are even, then $k . l$ is even.
(3) Prove that for every integer n, n^{2} is even if and only if n is even.
(4) Give a direct proof of the statement "the square of an odd integer is an odd integer".
(5) Give i) direct proof ii) indirect proof iii) proof by contradiction for the following statement:
" if n is an odd integer then $n+9$ is an even integer".

(VIII) Problems on QUANTIFIERS, TRUTH VALUES OF QUANTIFIED STATEMENTS:

(1) Determine the truth value of each of the following quantified statements for the set of all non-zero integers: i) $\exists x, \exists[x y=1]$ (ii) $\forall x, \exists y[x y=1] \quad$ (iii) $\exists x, \exists y[(2 x+y=5) \wedge(x-3 y=-8)]$
iv) $\exists x, \exists y,[(3 x-=17) \wedge(2 x+4 y=3)](v) \exists x, \forall y,[x y=1]$
(2) Determine the truth value of each of the following quantified statements for the set of all non-zero integers: i) $\exists x, \exists y,[x y=2]$ (ii) $\forall x, \exists y,[x y=2]$ iii) $\exists x, \forall y,[x y=2]$
(iv) $\exists x, \exists y,[(3 x+=8) \wedge(2 x-y=7)]$ (v) $\exists x, \exists y,[(4 x+2 y=3) \wedge(x-y=1)]$
(3) Consider the following open statements with the set of all real numbers as the universe, $p(x): x \geq 0, q(x): x^{2} \geq 0, \mathrm{q}(x): x^{2}-3 x-4=0$ and $s(x): x^{2}-3>0$, then find the truth values of (i) $\exists x,[(x) \wedge r(x)]$ (ii) $\forall x,[p(x) \rightarrow q(x)]$ (iii) $\forall x,[q(x) \rightarrow s(x)]$
(4) Let $(x): x \geq 0, \mathrm{q}(x): x^{2} \geq 0$ and $r(x): x^{2}-3 x-4=0$. Then for the universe comprising of all real numbers, find the truth values of, (i) $\exists x,[(x) \wedge q(x)] \quad$ (ii) $\forall x,[p(x) \rightarrow q(x)]$
(iii) $\exists x,[p(x) \wedge r(x)]$ (iv) $\forall x,[(x) \rightarrow s(x)]$ (v) $\forall x,[r(x) \rightarrow p(x)]$ (vi) $\forall x,[r(x) \vee q(x)]$

(IX) Problems on CONVERSE, INVERSE, CONTRA POSITIVE PROBLEMS:

Examples:
(1) Find converse and contra positive of the statement: $p \rightarrow(q / r)$.
(2) Consider the sentence," if $5 x-1=9$ then $x=2 "$ i.e., $: p \rightarrow q$. Find converse, inverse and contra positive statement.

(X) Problems on VALIDITY OF THE ARGUMENT:

(1)_Prove that the following argument is valid.

$$
\begin{aligned}
\forall x,[p(x) \rightarrow q(x)] \\
\forall x,[q(x) \rightarrow r(x)] \\
\therefore \forall x,[p(x) \rightarrow r(x)]
\end{aligned}
$$

(2) Establish the validity of the following Argument

$$
\begin{gathered}
p \rightarrow \mathrm{r} \\
\sim p \rightarrow \mathrm{q} \\
\underset{\sim \sim \mathrm{r} \rightarrow \mathrm{~s}}{\mathrm{q}}
\end{gathered}
$$

NOTE: -For PASSING MARKS, prepare Q.No. (II), (III), (IV), (V),(VII) and (VIII). For good marks, prepare (I) to (X),(all) .

MODULE-2

(I) Problems on MATHEMATICS INDUCTION:

Examples:

(1) By the principle of .Mathematical Induction, prove that, $1^{2}+2^{2}+3^{2}+\ldots \ldots \ldots \ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$
(2) Define Principle of Mathematical Induction. For the Fibonacci sequence $F_{0}, F_{1}, F_{2}, F_{3}, \ldots$. . Prove that, $\quad F_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right]$
(3) By Mathematical Induction, Prove that, for any positive integer n, the number $A_{n}=5^{n}+2 \times 3^{n-1}+1$ is a multiple of 8 .
[OR] Prove by mathematical induction, for every integer 8 divides $5^{n}+2 \times 3^{n-1}+1$.
(4) Prove the following: [or] Prove by using principle of mathematical induction
(i) $\sum_{i=1}^{n} \mathrm{i}\left(2^{i}\right)=2+(\mathrm{n}-1) 2^{\mathrm{n}+1}$
(ii) $\sum_{i=1}^{n} \mathrm{i}=\frac{\mathrm{n}(\mathrm{n}+1)}{2}$
(5) Prove that $4 n<\left(n^{2}-7\right)$ for all positive integers $n \geq 6$.
(6) Prove by mathematical induction that, for every positive integer $\mathrm{n}, 5$ divides $\left(n^{5}-n\right)$. etc.,

(II) Problems on BINOMIAL THEOREM:

Examples: (1) Find the coefficient of $x^{9} y^{3}$ in the expansion of $(2 x-3 y)^{12}$
(2) Find the coefficient of x^{12} in the expansion of $x^{3}(1-2 x)^{10}$ etc.,

(III) Problems on MULTINOMIAL THEOREM:

Example: (1) Find the coefficient of $a^{2} b^{3} c^{2} d^{5}$ and $a^{3} b c^{4} d^{2}$ in the expansion of

$$
(a+2 b-3 c+2 d+5)^{16}
$$

(2) Find the number of distinct terms in the expansion of $\left(x_{1}+x_{2}+x_{3}+x_{4}+x_{5}\right)^{16}$
(3) Find the coefficient of $x y z^{2}$ in the expansion of $(2 x-y-z)^{4}$ etc.,

(IV) Problems on PERMUTATIONS, COMBINATIONS AND PRODUCT RULE:

Examples:

1) In the word ENGINEERING, (i) Find the number of arrangements of all the letters of the word ENGINEERING? (ii) How many different strings of length 4 can be formed?
2) In the word SOCIOLOGICAL, (i) How many arrangements are there for all the letters? (ii) In how many of these arrangements all vowels are adjacent?
3) Find The number of nonnegative integer solutions of the equation $X_{1}+X_{2}+X_{3}+X_{4}+X_{5}=8$
4) A certain question paper contains two parts A and B each containing 4 questions. How many different ways a student can answer 5 questions by selecting at least 2 questions from each part?
5) A certain question paper contains three parts A, B, C with four questions in part A, five questions in part B and six questions in part C. it is required to answer seven questions selecting at least two questions from each part. In how many ways different ways can a student select his seven questions for answering?
6) How many positive integers n can we form using the digits $3,4,4,5,5,6,7$ if we want n to exceed 5,000,000? etc.,

NOTE:

For PASSING MARKS, prepare Q.No. (I), (II) and (III). For good marks, prepare (I) to (IV),(all) .

MODULE-3

RELATIONS

(I) DEFINITIONS with example for each:

Relation, Types/properties of relations (reflexive, transitive, symmetric, antisymmetric, irrreflexive, asymmetric), partial order relation, equivalence relation, lattice, Hasse diagram/poset diagram etc.,

(II) Problems on types of relations/properties of relations:

Examples:

(1) Let $A=\{1,2,3,4\}, R=\{(1,3),(1,1),(3,1),(1,2),(3,3),(4,4)\}$ be the relation on A. Determine whether the relation R is reflexive, irreflexive, symmetric, antisymmetric or transitive.
(2) Let $\mathrm{A}=\{1,2,3,4\}$, and let R be the relation defined by $R=\{(x, y) \mid x, y \in A, x \leq y\}$. Determine whether R is reflexive, symmetric, antisymmetric or transitive.

(III) Problems on EQUIVALENCE REALTION and PARTIAL ORDER RELATION :

Examples:

Type-1 problems:

(1) Define a relation R on AXA by $\left(x_{1}, y_{1}\right) R\left(x_{2}, y_{2}\right)$ iff $x_{1}+y_{1}=x_{2+} y_{2}$ where $A=\{1,2,3,4,5\}$. Verify that R is an equivalence relation.
(2) Define a relation R on the set $\mathrm{A}=\{1,2,3\}$ is as follows. $R=\{(1,1)(2,3)(2,2)(3,3)(3,2\}$. Verify that R is an Equivalence relation and partial order relation.

Type-2 problems:

Prove the following:
(i) on the set of all integers, the relation R defined by aRb if and only if $a \leq b+1$ is reflexive but not irreflexiv.
(ii) On the set of all integers, the relation R defined by $a R b$ if and only if $|a-b|=2$ is irreflexive and symmetric.

(IV) Problems on HASEE DIAGRAM/POSET DIAGRAM, LUB ,GLB etc.,:

Examples:

(1) Draw Hasse diagram representing the positive divisors of 36 (i.e., D_{36}).
(2) Let $A=\{1,2,3,4,6,12\}$. On A define the relation R by $a R b$ if and only if ' a ' divides ' b '. Draw Hasse diagram and write down the matrix relation,
(3) Consider the Hasse diagram of a Poset (A, R) as shown in figure. If $B=\{3,4,5\}$, find (i) all upper bounds of B (ii) all lower bounds of B (iii) the least upper bound of B (iv) the greatest lower bound of $\mathrm{B}(\mathrm{v})$ is this a Lattice (vi) maximal/greatest element of hasse diagram ?

(4) Let $A=\{1,2,3,6,9,8\}$ and R on A by $x R y$ if x / y (i.e., x divides y). Draw the Hasse diagram for the post (A,R).

(V) MISCELLANEOUS PROBLEMS ON RELATIONS:

Examples:

(1) Matrix form/relation matrix of a given relation, Directed graph/digraph of a given relation, composition of relation $\operatorname{RoS}, \mathrm{R}^{2}, \mathrm{R}^{3}$ etc., problems
(2) Number of relations on a given set problems, Equivalence classes etc., problems.

FUNCTIONS

(I) Problems on COMPOSITION OF FUNCTIONS:

Examples:

(1) Let f, g, and h be functions from Z to Z defined by,

$$
\mathrm{f}(\mathrm{x})=\mathrm{x}-1, \mathrm{~g}(\mathrm{x})=3 \mathrm{x} \text { and } \mathrm{h}(\mathrm{x})=\left\{\begin{array}{l}
0, \text { if } \mathrm{x} \text { is even } \\
1, \text { if } \mathrm{x} \text { is odd }
\end{array}\right.
$$

- Determine $(f o(g o h))(x)$ and $((f o g) o h)(x)$. (ii) Verify that $f o(g o h)=(f o g) o h$.
(2) Let f and g functions from R to R defined by
$f(x)=a x+b$ and $b(x)=1-x+x^{2}$.If $(g o f)(x)=3-9 x+9 x^{2}$. Determine a and b values.
(3) Let f, g, h be functions from R to R defined by $f(x)=x+2, g(x)=x-2$ and $h(x)=3 x$. Find gof, fog, fof, hog and foh.

(II) Problems on No. Functions, one-to-one/ Injective and onto/ Surjective functions:

Examples:

(1) Let $A=\{1,2,3,4\}$ and $B=\{1,2,3,4,5,6\}$ be two sets.
(i) Find how many functions are there from A to B? How many of these are one to one? How many are onto?
(ii) Find how many functions are there from B to A? How many of these are onto? How many are one to one?
(2) let $A=\{1,2,3,4,5,6,7\}$ and $B=\{w, x, y, z\}$. Find the number of onto functions from A to B.
(3) The functions $f: R->R$ and $g: R->R$ are defined by, $f(x)=3 x+7$ and $g(x)=x\left(x^{3}-1\right)$.

Verify that $\mathrm{f}(\mathrm{x})$ is one-to-one but $\mathrm{g}(\mathrm{x})$ is not.
(4) Consider the function $f: R->R$ defined by $f(x)=x^{2}$. Determine whether f is one-toone or onto. If f is not onto, find its range. Is f invertible?

(III) Problems on INVERSE OF FUNCTION / INVERTIBLE FUNCTIONS:

Examples:

(1) Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be defined by, $\mathrm{h}(\mathrm{x})=\left\{\begin{array}{c}3 x-5, \text { if } x>0 \\ 1-3 x, \text { if } x \leq 0\end{array}\right.$

Determine $f(0), f(-1), f^{-1}(1), f^{-1}([-5,5]) . f^{-1}(3), f^{-1}(-3), f^{-1}(6)$, and $f^{-1}([-6,5])$.
(2) If f: $\mathrm{A} \rightarrow \mathrm{B}, \mathrm{g}: \mathrm{B} \rightarrow \mathrm{C}$ are invertible functions, then prove that $\mathrm{g} \circ \mathrm{f}: \mathrm{A} \rightarrow \mathrm{C}$ is an invertible function and $(\mathrm{g} \circ \mathrm{f})^{-1}=\mathrm{f}^{-1} \circ \mathrm{~g}^{-1}$.
(3) Let $A=B=R$ be the set of real numbers, the functions f and g from R to R defined by $f(x)=2 x^{3}-1$ and $g(y)=\left\{\frac{1}{2}(y+1)\right\}^{1 / 3}$. Show that, each of f and g is the inverse of the other.
(4) Consider two functions $f(x)=2 x+5$ and $g(x)=\frac{1}{2}(x-5)$. Prove that, g is an inverse of f.

NOTE: For PASSING MARKS, prepare either FUNCTIONS (or) RELATIONS.

For good marks, prepare both Functions and Relations,(all) .

MODULE-4

(I) Problems on RECURRENCE RELATIONS:

Examples:

(1) Find the recurrence relation and the initial conditions for the sequence $0,2,6,12,20,30,42, \ldots \ldots$. and hence find the general term of the sequence.
(2) Slove the recurrence relation,

$$
\begin{aligned}
& \text { (i) } a_{n}+a_{n-1}-6 a_{n-2}=0 \text { for } n \geq 2 \text { with } a_{0}=-1 \text { and } a_{1}=8 . \\
& \text { (ii) } a_{n}=2\left(a_{n-1}-a_{n-2}\right) \text { for } n \geq 2 \text { with } a_{0}=1 \text { and } a_{1}=2 .
\end{aligned}
$$

(3) A sequence $\left\{\mathrm{C}_{\mathrm{n}}\right\}$ is defined recursively by, $C_{n}=3 C_{n-1}-2 C_{n-2}$ for all $n \geq 3$ with $C_{1}=5$ and $C_{2}=3$ as the initial conditions, show that $C_{n}=-2^{n}+7$.
(4) Solve the recurrence relation

$$
D_{n}=b D_{n-1}-b^{2} D_{n-2} \text { for } n \geq 3 \text {, given that } \mathrm{D}_{1}=\mathrm{b}>0 \text { and } \mathrm{D}_{2}=0
$$

(5) Solve the following Recurrence Relation

$$
a_{n+2}^{2}-5 a_{n+1}^{2}+4 a_{n}^{2}=0 \text { for } n \geq 0, \text { given } a_{0}=4 \text { and } a_{1}=13
$$

(6) The number of virus affected files in a system is 1000 (to start with) and this increases 250% every two hours. Use a recurrence relation to determine the number of virus affected files in the system after one day. etc.,

(II) Problems on PRINCIPLE OF INCLUSION AND EXCLUSION:

Examples:

(1) How many integers between 1 and 300 (inclusive) which are divisible by (i) at least one of $5,6,8$ (ii) divisible by none of $5,6,8$? (iii) at least two of $5,6,8$. (i) exactly two of $5,6,8$ and (ii) divisible by at least two of $5,6,8$.
(2) Determine the number of positive integers n such that $1 \leq n \leq 100$ and n is not divisible by 2,3 or 5 .
(3) In a survey of 260 students, the following data were obtained. 64 had taken mathematics, 94 had taken CS, 58 had taken EC, 28 had taken both mathematics and EC, 26 had taken both mathematics and CS, 22 had taken both CS and EC, and 14 had taken all three types of courses.
Determine how many of these students had taken none of the three courses.
(4) In how many ways can the 26 letters of the English alphabet be permuted so that none of the patterns CAR, DOG,P UN or BYTE occurs?
(5) In how many ways can one arrange the letters in the word CORRESPONDENTS so that there is no pair of consecutive identical letters? etc.,

(III) Problems on ROOK POLYNOMIAL:

Examples:
(1) Define Rook Polynomial. Find the ROOK polynomial for 3X3 board using the expansion formula.
(2) An apple ,a banana, a mango and an orange are to be distributed among 4 boys $\mathrm{B} 1, \mathrm{~B} 2, \mathrm{~B} 3$ and B4. The boys B1 and B2 do not wish to have an apple, the boy B3 does not want banana or mango and B4 refuses orange. In how many ways the distribution can made so that no boy is displeased.
(3) Five teachers $\mathrm{T} 1, \mathrm{~T} 2, \mathrm{~T} 3, \mathrm{~T} 4, \mathrm{~T} 5$ are to be made class teachers for five classes $\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 4, \mathrm{C} 5$, one teacher for each class. T 1 and T 2 do not wish to become the class teachers for C 1 or $\mathrm{C} 2, \mathrm{~T} 3$ and T 4 for C 4 or C 5 and T 5 for C 3 or C 4 or C 5 . (i) Construct Board for the given constraints. (ii) Find Rook polynomial (iii) In how many ways can the teacher be assigned work without displeasing any teacher.
(4) Write expansion and product formula. Find the Rook polynomial for 2 X 2 board using the expansion formula.

(IV) Problems on DERANGEMENTS:

Examples: (1) Define derangements. Evaluate $d_{5}, d_{6}, d_{7}, d_{8}, d_{9}$.
(2) Find the number of derangements of $1,2,3,4$. Also list out all derangements.
(3) How many permutations of $1,2,3,4,5,6,7$ are not derangements?

NOTE: For PASSING MARKS, prepare Q.No. (I) and (II). For good marks, prepare (I) to (IV),(all) .

MODULE-5

I) DEFINITIONS with example for each:

Graph, Simple Graph, Complement, Isomorphism, Multi-Graph, Complete Graph, Induced Sub Graph, Regular Graph, Degree, Sub Graph, Path, Cycle, Circuit, Walk, Trail, Spanning Sub Graph, Tree, Forest, Rooted Tree, Spanning Tree, Binary Tree, Complete Binary Tree, Full Binary Tree, Prefix Code, Balanced Binary Tree, Order of a Graph $|\mathrm{V}|$, Connected Graph, Disconnected Graph, Pendant Vertex, Weight of a f A Tree, Optimal Tree Etc.,

II) Problems on TWO GRAPHS G AND H ARE ISOMORPHIC OR NOT:

Examples: (1) Define Isomorphism. Determine whether the following graphs are isomorphic.

(2) Verify the two graphs are isomorphic or not.

III) Problems on OPTIMAL PREFIX CODE: (Symbols with frequencies)

Examples:

(1) Construct an optimal prefix code for the symbols $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}, \mathrm{h}, \mathrm{I}, \mathrm{j}$ that occur with respective frequencies $78,16,30,35,125,31,20,50,80,3$.
(2) Construct an optimal prefix code for the symbols a, o, q, u, y, z that occur with frequencies $20,28,4,17,12,7$ respectively.

IV) Problems on OPTIMAL PREFIX CODE: (For a given message)

Examples:

(1) Obtain the optimal prefix code for the message ROAD IS GOOD. Indicate the code.
(2)Obtain an optimal prefix code for the message LETTER RECEIVED. Indicate the code.
(3) Obtain the prefix code for the message MISSION SUCCESSFUL. Indicate the code.

V) Problems on OPTIMAL TREE (OR) HUFFMAN TREE:

Example: Define optimal tree and construct an optimal tree for a given set of weights $\{4,15,25,8,16\}$. Hence find the weight of the optimal tree.

VI) PROBLEMS ON SORTING (MERGE SORT):

Example:

(1) Apply the merge sort to the following given list of elements. $\{-1,0,2,-2,3,6,-3,5,1,4\}$
(2) Apply the merge sort the following list. Draw the splitting and merging trees for each application of the procedure. merge sort to the list $\{6,2,7,3,4,9,5,1,8\}$
VII) Problems on DEGREE OF VERTEX and HANDSHAKING THEOREM:

Example:

(1) Determine the order $|\mathrm{V}|$ of the graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ in the following cases.
(i) G is regular graph with 15 edges . (ii) G has 10 edges with 2 vertices of degree 4 and all other of degree3. (iii) G has 20 edges with 4 vertices of degree 3,2 vertices of degree 4 and remaining vertices of degree (iv) G is cubic graph with 9 edges.
(2) A tree has four vertices of degree 2 , one vertex of degree 3 , two vertices of degree 4 , and one vertex of degree 5, how many pendant vertices (degree one) does it have? (3) If a tree T has four vertices of degree 2 , one vertex of degree 3 , two vertices of degree 4 , and one vertex of degree 5 , find the number of leaves (degree one)in T ?
(4) Show that there exist no simple graphs corresponding to the following degree sequences:
i) $0,2,2,3,4$
ii) $1,1,2,3$
iii) $2,3,3,4,5,6$
iv) $2,2,4,6$

VIII) Problems on CYCLE, CIRCUIT, WALK, PATH, LENGTH OF A CYCLE:

Example: In the graph shown below, determine the following:
i) Walk from b to d that is not a trail.
ii) b-d trail that is not a path
iii) path from b to d
iv) closed walk from b to b that is not a circuit v) a circuit from b to b that is not a cycle vi) a cycle from b to b. vii) Cycle from e to e with length 5.

IX) Problems on PREORDER, POSTORDER AND INORDER TRAVERSAL:

Example: For the tree shown below, list the vertices according to a preorder, inorder and postorder traversal.

(X) Important THEOREMS:

(1) Show that a tree with n vertices has $n-1$ edge. [or] Show that, in a tree $|E|=|v|-1$ [or] Prove that, in a tree, $|\mathrm{V}|=|\mathrm{E}|+1$
(2) Prove that in a graph, the number of vertices of odd degree is even.
(3) State and prove Handshaking theorem. [or] Prove that in a graph, the sum of the degrees of all the vertices is an even number.

NOTE: For PASSING MARKS, prepare Q.No. (II), (III), (IV), (VII) and (X). For good marks, prepare (I) to (X),(all) .
 For any further queries/doubts, please let me know.

