Reg. No.					

END SEMESTER EXAMINATIONS APRIL / MAY 2014

FOURH SEMETER

B. Tech. Information Technology

MA8451 Discrete Mathematics

Time : 3 Hours

Answer ALL Questions

Max. Mark : 100

Part – A $(10 \times 2 = 20 \text{ Marks})$

- 1. Without using truth table show that $(P \land Q) \rightarrow (P \lor Q)$ is a tautology.
- 2. Symbolize the statement, "Given any positive integer, there is a greater positive integer", without using the set of positive integers as the universe of discourse.
- 3. Using mathematical induction show that $2^n < n!$ for every positive integer *n* with $n \ge 4$.
- 4. Show that if 30 dictionaries in a library contains a total of 61327 pages, then one of the dictionaries must have at least 2045 pages.
- 5. For a simple graph *G*, show that $\delta(G) \leq \frac{2|E(G)|}{|V(G)|} \leq \Delta(G)$, where $\delta(G)$ is the minimum degree of *G* and $\Delta(G)$ is the maximum degree of *G*.
- 6. Is there any disconnected graph G with $\delta(G) \ge \left|\frac{V(G)}{2}\right|$ and $|V(G)| \ge 3$? Justify your answer.
- 7. Show that if f is a homomorphism from a group (G, *) into a group (H, Δ) , then $f(e_G) = e_H$ and $f(a^{-1}) = (f(a))^{-1}$, for $a \in G$.
- 8. Let (G,*) be a group and let S = {a ∈ G | a * x = x * a, ∀x ∈ G}. Then show that S is a subgroup of (G,*).

- 9. Obtain the Hasse diagram of $(D_{30}, |)$, where D_{30} denotes the set of positive divisors of 30 and | is the relation "division".
- 10. Check whether the pentagon lattice is a distributive and complemented. Justify your answer.

Figure Q10: Pentagon Lattice

Part – B $(5 \times 16 = 80 \text{ Marks})$

- 1 is (i) Solve the recurrence relation $2a_{n+2} 11a_{n+1} + 5a_n = 0$, where $n \ge 0, a_0 = 2$ and $a_1 = -8$. (8 Marks)
 - (ii) Determine the number of integers n, $1 \le n \le 1000$ that are not divisible by 2, 3

(8 Marks)

or 5.

4

12(a)(i) Obtain the PDNF and PCNF of the formula $(P \land \neg (Q \land R)) \lor (P \rightarrow Q)$. How do you infer this formula? (10 Marks)

(ii) Show that
$$(\exists x)(P(x) \land Q(x)) \Rightarrow (\exists x)P(x) \land (\exists x)Q(x)$$
. (6 Marks)

(OR)

12(b)(i) Show that the hypotheses, "If you send me an email message, then I will finish writing the programme", "If you do not send me an e-mail message, then I will go to sleep early", and "If I go to sleep early, then I will wake up feeling refreshed" lead to the conclusion "If I do not finish writing the programme, then I will wake up feeling refreshed". (10 Marks)

- (ii) Explain the method of proof, "Proof by Contradiction". Using the Contradiction method, prove that if n = ab, where a and b are positive integers then $a \le \sqrt{n}$ or $b \le \sqrt{n}$. (6 Marks)
- 13(a)(i) When do we say two simple graphs are isomorphic? Check whether the following two graphs *G* and *H* given in *Figure Q13a* are isomorphic. Justify your answer. (10 Marks)

Figure Q13a

(ii) Show that if *G* is bipartite graph then *G* does not contain any odd cycle. Also show that every bipartite graph is 2-colorable. (6 Marks)

(OR)

- 13(b)(i) If G is a simple graph with $|V(G)| \ge 3$ and $\delta(G) \ge \frac{|V(G)|}{2}$ then prove that G is Hamiltonian. Check whether this sufficient condition is necessary for a Hamiltonian graph. Justify your answer. (12 Marks)
 - (ii) Give two non-isomorphic connected graphs having equal number of vertices, equal number of edges and the same degree sequence. (4 Marks)
- 14(a) Prove that in a finite group (G, *), order of any subgroup divides the order of the group. Also show that if *G* is a finite group of order *n* then $a^n = e$, for any $a \in G$.

(16 Marks)

(OR)

14(b) Obtain all the elements of S_3 and construct its composition table with respect to the right composition of mapping \diamond . Show that (S_3, \diamond) is a group but it is not an abelian group. Check whether the subgroup $H = \{p_1, p_5, p_6\}$ is a normal subgroup of (S_3, \diamond) , where $p_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$, $p_5 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$ and $p_6 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$. Justify your answer. (16 Marks)

15(a)(i) Show that the following are true in a lattice L. For $a, b, c \in L$,

1. if $b \le c$ then $a \ast b \le a \ast c$ and $a \oplus b \le a \oplus c$,

٩.

- 2. $a*(b\oplus c) \ge (a*b)\oplus (a*c)$ and $a\oplus (b*c) \le (a\oplus b)*(a\oplus c)$. (10 Marks)
- (ii) Show that every totally ordered set with at least three elements is a distributive lattice but not complemented lattice. (6 Marks)

(OR)

- 15(b)(i) Let $(L, *, \oplus)$ and (M, \wedge, \vee) be two lattices. Then show that $(L \times M, \Delta, \nabla)$ is a lattice, where for $(a,b), (x, y) \in L \times M, (a,b)\Delta(x, y) = (a * x, b \wedge y)$ and $(a,b)\nabla(x, y) = (a \oplus x, b \vee y)$. (10 Marks)
 - (ii) Show that $(a * b)' = a' \oplus b'$ and $(a \oplus b)' = a' * b'$ hold in a complemented and distributive lattice. (6 Marks)
