
CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 1

P.R ENGINEERING COLLEGE

VALLAM-THANJAVUR

CS-2354 ADVANCED COMPUTER ARCHITECTURE

 Prepared by

 Ms.R..Arivumalar

 Asst.prof

 Dept of CSE

 P.R Engineering College

 Vallam-Thanjavur

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 2

 CS2354 ADVANCED COMPUTER ARCHITECTURE

UNIT I INSTRUCTION LEVEL PARALLELISM

ILP – Concepts and challenges – Hardware and software approaches – Dynamic scheduling – Speculation

- Compiler techniques for exposing ILP – Branch prediction.

UNIT II MULTIPLE ISSUE PROCESSORS

VLIW & EPIC – Advanced compiler support – Hardware support for exposing parallelism – Hardware

versus software speculation mechanisms – IA 64 and Itanium processors – Limits on ILP.

UNIT III MULTIPROCESSORS AND THREAD LEVEL PARALLELISM

Symmetric and distributed shared memory architectures – Performance issues – Synchronization – Models

of memory consistency – Introduction to Multithreading.

UNIT IV MEMORY AND I/O

Cache performance – Reducing cache miss penalty and miss rate – Reducing hit time – Main memory and

performance – Memory technology. Types of storage devices – Buses – RAID – Reliability, availability

and dependability – I/O performance measures – Designing an I/O system.

UNIT V MULTI-CORE ARCHITECTURES

Software and hardware multithreading – SMT and CMP architectures – Design issues – Case studies –

Intel Multi-core architecture – SUN CMP architecture - heterogeneous multi-core processors – case study:

IBM Cell Processor.

TEXT BOOKS:

1. John L. Hennessey and David A. Patterson, “ Computer architecture – A quantitative approach”,

Morgan Kaufmann / Elsevier Publishers, 4th. edition, 2007.

REFERENCES:

1. David E. Culler, Jaswinder Pal Singh, “Parallel computing architecture: A hardware/software approach”

, Morgan Kaufmann /Elsevier Publishers, 1999.

2. Kai Hwang and Zhi.Wei Xu, “Scalable Parallel Computing”, Tata McGraw Hill, New

Delhi, 2003.

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 3

Unit No: 1

UNIT I INSTRUCTION LEVEL PARALLELISM

ILP – Concepts and challenges – Hardware and software approaches – Dynamic scheduling – Speculation

- Compiler techniques for exposing ILP – Branch prediction.

Instruction Level Parallelism

Instruction-Level Parallelism: Concepts and Challenges:

 Instruction-level parallelism (ILP) is the potential overlap the execution of instructions using

Pipeline concept to improve performance of the system.

 The various techniques that are used to Increase amount of parallelism are reduces the impact of

data and control hazards and increases Processor ability to exploit parallelism

There are two approaches to exploiting ILP.

1. Static Technique – Software Dependent

2. Dynamic Technique – Hardware Dependent

Technique Reduces

Forwarding and bypassing Potential data hazard stalls

Delayed branches and simple branch

scheduling

Control hazard stalls

Basic dynamic scheduling (score

boarding)

Data hazard stalls from true

dependences

Dynamic scheduling with renaming Data hazard stalls and stalls from

anti dependences and output

dependences

Dynamic branch prediction Control stalls

Issuing multiple instructions per

cycle

Ideal CPI

Speculation Data hazard and control hazard

stalls

Dynamic memory disambiguation Data hazard stalls with memory

Loop unrolling Control hazard stalls

Basic compiler pipeline scheduling Data hazard stalls

Compiler dependence analysis Ideal CPI, data hazard stalls

Software pipelining, trace scheduling Ideal CPI, data hazard stalls

Compiler speculation Ideal CPI, data, control stalls

 The simplest and most common way to increase the amount of parallelism is loop-level

parallelism.

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 4

 Here is a simple example of a loop, which adds two 1000-element arrays, that is completely

parallel:

 for (i=1;i<=1000; i=i+1) x[i] = x[i] + y[i];

 CPI (Cycles per Instruction) for a pipelined processor is the sum of the base CPI and all

Contributions from stalls:

 Pipeline CPI = Ideal pipeline CPI + Structural stalls + Data hazard stalls + Control stalls

 The ideal pipeline CPI is a measure of the maximum performance attainable by the

implementation.

 By reducing each of the terms of the right-hand side, we minimize the overall pipeline CPI and

thus increase the IPC (Instructions per Clock).

Various types of Dependences in ILP.

Data Dependence and Hazards

 To exploit instruction-level parallelism, determine which instructions can be executed in parallel.

If two instructions are parallel, they can execute simultaneously in a pipeline without causing any

stalls.

 If two instructions are dependent they are not parallel and must be executed in order.

There are three different types of dependences:

 Data dependences (also called true data dependences), name dependences, and control

dependences.

Data Dependences

 An instruction j is data dependent on instruction i if either of the following holds:

• Instruction i produces a result that may be used by instruction j, or

• Instruction j is data dependent on instruction k, and instruction k is data dependent on

instruction i.

 The second condition simply states that one instruction is dependent on another if there exists a

chain of dependences of the first type between the two instructions.

 This dependence chain can be as long as the entire program.

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 5

 For example, consider the following code sequence that increments a vector of values in memory

(starting at 0(R1) and with the last element at 8(R2)) by a scalar in register F2:

 Loop: L.D F0,0(R1) ; F0=array element ADD.D F4,F0,F2 ; add scalar in

 F2 S.D F4,0(R1) ;store result DADDUI R1,R1,#-8 ;decrement

 pointer 8 bytes (/e BNE R1,R2,LOOP ; branch R1!=zero

 The dependence implies that there would be a chain of one or more data hazards between the two

instructions.

 Executing the instructions simultaneously will cause a processor with pipeline interlocks to detect

a hazard and stall, thereby reducing or eliminating the overlap. Dependences are a property of

programs.

 The presence of the dependence indicates the potential for a hazard, but the actual hazard and the

length of any stall is a property of the pipeline. The importance of the data dependences is that a

dependence

 indicates the possibility of a hazard,

 Determines the order in which results must be calculated, and

 Sets an upper bound on how much parallelism can possibly be exploited.

Name Dependences

 The name dependence occurs when two instructions use the same register or memory location,

called a name, but there is no flow of data between the instructions associated with that name.

 There are two types of name dependences between an instruction i that precedes instruction j in

program order:

o An antidependence between instruction i and instruction j occurs when instruction j writes

a register or memory location that instruction i reads. The original ordering must be

preserved to ensure that i read the correct value.

o An output dependence occurs when instruction i and instruction j write the same register or

memory location. The ordering between the instructions must be preserved to ensure that

the value finally written corresponds to instruction j.

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 6

 Both anti-dependences and output dependences are name dependences, as opposed to true data

dependences, since there is no value being transmitted between the instructions.

 Since a name dependence is not a true dependence, instructions involved in a name dependence

can execute simultaneously or be reordered, if the name (register number or memory location)

used in the instructions is changed so the instructions do not conflict.

 This renaming can be more easily done for register operands, where it is called register renaming.

Register renaming can be done either statically by a compiler or dynamically by the hardware.

Before describing dependences arising from branches, let’s examine the relationship between

dependences and pipeline data hazards.

Control Dependences

 A control dependence determines the ordering of an instruction, i, with respect to a branch

instruction so that the instruction i is executed in correct program order.

 Every instruction, except for those in the first basic block of the program, is control dependent on

some set of branches, and, in general, these control dependences must be preserved to preserve

program order.

 One of the simplest examples of a control dependence is the dependence of the statements in the

“then” part of an if statement on the branch. For example, in the code segment:

if p1 { S1;

};

if p2 { S2;

}

 S1 is control dependent on p1, and S2is control dependent on p2 but not on p1. In general, there

are two constraints imposed by control dependences:

 An instruction that is control dependent on a branch cannot be moved before the branch so that its

execution is no longer controlled by the branch. For example, we cannot take an instruction from

the then-portion of an if-statement and move it before the if- statement.

 An instruction that is not control dependent on a branch cannot be moved after the branch so that

its execution is controlled by the branch. For example, we cannot take a statement before the if-

statement and move it into the then-portion.

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 7

 Control dependence is preserved by two properties in a simple pipeline, First, instructions execute

in program order.

 This ordering ensures that an instruction that occurs before a branch is executed before the branch.

Second, the detection of control or branch hazards ensures that an instruction that is control

dependent on a branch is not executed until the branch direction is known.

Data Hazard and various hazards in ILP.

Data Hazards

 A hazard is created whenever there is a dependence between instructions, and they are close

enough that the overlap caused by pipelining, or other reordering of instructions, would change the

order of access to the operand involved in the dependence.

 Because of the dependence, preserve order that the instructions would execute in, if executed

sequentially one at a time as determined by the original source program.

 The goal of both our software and hardware techniques is to exploit parallelism by preserving

program order only where it affects the outcome of the program.

 Detecting and avoiding hazards ensures that necessary program order is preserved.

 Data hazards may be classified as one of three types, depending on the order of read and write

accesses in the instructions.

 Consider two instructions i and j, with i occurring before j in program order. The possible data

hazards are RAW (read after write) — j tries to read a source before i writes it, so j incorrectly gets

the old value. This hazard is the most common type and corresponds to a true data dependence.

 Program order must be preserved to ensure that j receives the value from i. In the simple common

five-stage static pipeline a load instruction followed by an integer ALU instruction that directly

uses the load result will lead to a RAW hazard.

 WAW (write after write) — j tries to write an operand before it is written by i. The writes end up

being performed in the wrong order, leaving the value written by i rather than the value written by

j in the destination. This hazard corresponds to output dependence.

 WAW hazards are present only in pipelines that write in more than one pipe stage or allow an

instruction to proceed even when a previous instruction is stalled.

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 8

 The classic five-stage integer pipeline writes a register only in the WB stage and avoids this class

of hazards.

 WAR (write after read) — j tries to write a destination before it is read by i, so i incorrectly gets

the new value. This hazard arises from an antidependence.

 WAR hazards cannot occur in most static issue pipelines even deeper pipelines or floating point

pipelines because all reads are early (in ID) and all writes are late (in WB).

 A WAR hazard occurs either when there are some instructions that write results early in the

instruction pipeline, and other instructions that read a source late in the pipeline or when

instructions are reordered.

Dynamic Scheduling

Overcoming Data Hazards with Dynamic Scheduling

 The Dynamic Scheduling is used handle some cases when dependences are unknown at a compile

time.

 In which the hardware rearranges the instruction execution to reduce the stalls while maintaining

data flow and exception behavior.

 It also allows code that was compiled with one pipeline in mind to run efficiently on a different

pipeline. Although a dynamically scheduled processor cannot change the data flow, it tries to avoid

stalling when dependences, which could generate hazards, are present.

Dynamic Scheduling

 A major limitation of the simple pipelining techniques is that they all use in-order instruction issue

and execution: Instructions are issued in program order and if an instruction is stalled in the

pipeline, no later instructions can proceed.

 Thus, if there is dependence between two closely spaced instructions in the pipeline, this will lead

to a hazard and a stall. If there are multiple functional units, these units could lie idle.

 If instruction j depends on a long-running instruction i, currently in execution in the pipeline, then

all instructions after j must be stalled until i is finished and j can execute. For example, consider

this code:

DIV.D F0, F2,F4 ADD.D F10,F0,F8 SUB.D F12,F8,F14

 Out-of-order execution introduces the possibility of WAR and WAW hazards, which do not exist

in the five-stage integer pipeline and its logical extension to an in-order floating-point pipeline.

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 9

 Out-of-order completion also creates major complications in handling exceptions. Dynamic

scheduling with out-of-order completion must preserve exception behavior in the sense that

exactly those exceptions that would arise if the program were executed in strict program order

actually do arise.

 Imprecise exceptions can occur because of two possibilities:

 The pipeline may have already completed instructions that are later in program order than the

instruction causing the exception, and

 2. The pipeline may have not yet completed some instructions that are earlier in program order

than the instruction causing the exception.

 To allow out-of-order execution, we essentially split the ID pipe stage of our simple five-stage

pipeline into two stages:

 1 Issue—Decode instructions, check for structural hazards.

 2 Read operands—Wait until no data hazards, and then read operands.

 In a dynamically scheduled pipeline, all instructions pass through the issue stage in order (in- order

issue); however, they can be stalled or bypass each other in the second stage (read operands) and

thus enter execution out of order.

 Score-boarding is a technique for allowing instructions to execute out-of-order when there are

sufficient resources and no data dependences; it is named after the CDC 6600 scoreboard, which

developed this capability.

 We focus on a more sophisticated technique, called Tomasulo’s algorithm that has several major

enhancements over score boarding.

Tomasulo’s Approach

Dynamic Scheduling Using Tomasulo’s Approach

This scheme was invented by RobertTomasulo, and was first used in the IBM 360/91. it uses register

renaming to eliminate output and anti-dependencies, i.e. WAW and WAR hazards.

Output and anti-dependencies are just name dependencies; there is no actual data dependence.

Tomasulo's algorithm implements register renaming through the use of what are called reservation

stations.

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 10

 Reservation stations are buffers which fetch and store instruction operands as soon as they are

available In addition; pending instructions designate the reservation station that will provide their

input.

 Finally, when successive writes to a register overlap in execution, only the last one is actually used

to update the register.

 As instructions are issued, the register specifies for pending operands are renamed to the names of

the reservation station, which provides register renaming.

 The basic structure of a Tomasulo-based MIPS processor, including both the floating-point unit

and the load/store unit.

 Instructions are sent from the instruction unit into the instruction queue from which they are issued

in FIFO order.

 The reservation stations include the operation and the actual operands, as well as information used

for detecting and resolving hazards.

 Load buffers have three functions: hold the components of the effective address until it is

computed, track outstanding loads that are waiting on the memory, and hold the results of

completed loads that are waiting for the CDB.

 Similarly, store buffers have three functions: hold the components of the effective address until it

is computed, hold the destination memory addresses of outstanding stores that are waiting for the

data value to store, and hold the address and value to store until the memory unit is available.

 All results from either the FP units or the load unit are put on the CDB, which goes to the FP

register file as well as to the reservation stations and store buffers.

 The FP adders implement addition and subtraction, and the FP multipliers do multiplication and

division.

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 11

There are only three steps in Tomasulo’s Approach:

 Issue—Get the next instruction from the head of the instruction queue.

 If there is a matching reservation station that is empty, issue the instruction to the station with the

operand values (renames registers)

 Execute (EX)— When all the operands are available, place into the corresponding reservation

stations for execution. If operands are not yet available, monitor the common data bus (CDB)

while waiting for it to be computed.

 Write result (WB)—When the result is available, write it on the CDB and from there into the

registers and into any reservation stations (including store buffers) waiting for this result. Stores

also write data to memory during this step: When both the address and data value are available,

they are sent to the memory unit and the store completes.

 Each reservation station has six fields:

• Op—The operation to perform on source operands S1 and S2.

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 12

 Qj, Qk—The reservation stations that will produce the corresponding source operand; a value of

zero indicates that the source operand is already available in Vj or Vk, or is unnecessary.

• Vj, Vk—The value of the source operands. Note that only one of the V field or the Q field

is valid for each operand. For loads, the Vk field is used to the offset from the instruction.

• A–used to hold information for the memory address calculation for a load or store.

• Busy—Indicates that this reservation station and its accompanying functional unit are

occupied.

Reduce Branch Costs with Dynamic Hardware Prediction

 Basic Branch Prediction and Branch-Prediction Buffers

 The simplest dynamic branch-prediction scheme is a branch-prediction buffer or branch history

table.

 A branch-prediction buffer is a small memory indexed by the lower portion of the address of the

branch instruction.

 The memory contains a bit that says whether the branch was recently taken or not. if the

prediction is correct—it may have been put there by another branch that has the same low-order

address bits.

 The prediction is a hint that is assumed to be correct, and fetching begins in the predicted direction.

If the hint turns out to be wrong, the prediction bit is inverted and stored back.

 The performance of the buffer depends on both how often the prediction is for the branch of

interest and how accurate the prediction is when it matches.

 This simple one-bit prediction scheme has a performance shortcoming: Even if a branch is almost

always taken, we will likely predict incorrectly twice, rather than once, when it is not taken.

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 13

 The two bits are used to encode the four states in the system. In a counter implementation, the

counters are incremented when a branch is taken and decremented when it is not taken; the

counters saturate at 00 or 11.

 One complication of the two-bit scheme is that it updates the prediction bits more often than a

one-bit predictor, which only updates the prediction bit on a mispredict.

 Since we typically read the prediction bits on every cycle, a two-bit predictor will typically need

both a read and a write access port.

 The two-bit scheme is actually a specialization of a more general scheme that has an n-bit

saturating counter for each entry in the prediction buffer. With an n-bit counter, the counter can

take on values between 0 and 2 maximum value (2 To exploit more ILP, the accuracy of our

branch prediction becomes critical, this problem in two ways: by increasing the size of the buffer

and by increasing the accuracy of the scheme we use for each prediction.

Correlating Branch Predictors:

 These two-bit predictor schemes use only the recent behavior of a single branch to predict the

future behavior of that branch.

 It may be possible to improve the prediction accuracy if we also n – 1: when the counter is greater

than or equal to one half of its n–1), the branch is predicted as taken; otherwise, it is predicted

untaken.

 Look at the recent behavior of other branches rather than just the branch we are trying to predict.

 Consider a small code fragment from the SPEC92 benchmark

if (aa==2)

aa=0;

if (bb==2)

bb=0;

if (aa!=bb) {

 Here is the MIPS code that we would typically generate for this code fragment assuming that

aa and bb are assigned to registers R1 and R2:

DSUBUI R3,R1,#2

BNEZ R3,L1 ;branch b1 (aa!=2)

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 14

DADD R1,R0,R0 ;aa=0

L1: DSUBUI R3,R2,#2

BNEZ R3,L2 ;branch b2(bb!=2)

DADD R2,R0,R0 ; bb=0 L2: DSUBU R3,R1,R2 ;R3=aa-bb

BEQZ R3,L3 ;branch b3 (aa==bb)

 Let’s label these branches b1, b2, and b3. The key observation is that the behavior of branch b3 is

correlated with the behavior of branches b1 and b2.

 Clearly, if branches b1 and b2 are both not taken (i.e., the if conditions both evaluate to true and

aa and bb are both assigned 0), then b3 will be taken, since aa and bb are clearly equal.

 A predictor that uses only the behavior of a single branch to predict the outcome of that branch can

never capture this behavior.

 Branch predictors that use the behavior of other branches to make a prediction are called

correlating predictors or two-level predictors. Tournament Predictors: Adaptively Combining

Local and Global Predictors

 The primary motivation for correlating branch predictors came from the observation that the

standard 2-bit predictor using only local information failed on some important branches and that

by adding global information, the performance could be improved.

 Tournament predictors take this insight to the next level, by using multiple predictors, usually one

based on global information and one based on local information, and combining them with a

selector.

Hardware speculation

 Hardware-based speculation combines three key ideas: dynamic branch prediction to choose

which instructions to execute, speculation to allow the execution of instructions before the control

dependences are resolved and dynamic scheduling to deal with the scheduling of different

combinations of basic blocks.

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 15

 Hardware-based speculation follows the predicted flow of data values to choose when to execute

instructions. This method of executing programs is essentially a data-flow execution: operations

execute as soon as their operands are available.

 The approach is implemented in a number of processors (PowerPC 603/604/G3/G4, MIPS

R10000/R12000, Intel Pentium II/III/ 4, Alpha 21264, and AMD K5/K6/Athlon), is to implement

speculative execution based on Tomasulo’s algorithm.

 The key idea behind implementing speculation is to allow instructions to execute out of order but

to force them to commit in order and to prevent any irrevocable action until an instruction

commits.

 In the simple single-issue five-stage pipeline we could ensure that instructions committed

in order, and only after any exceptions for that instruction had been detected, simply by

moving writes to the end of the pipeline.

Limitations of ILP

The Hardware Model

 An ideal processor is one where all artificial constraints on ILP are removed. The only limits on

ILP in such a processor are those imposed by the actual data flows either through registers or

memory.

 The assumptions made for an ideal or perfect processor are as follows:

T

T

T

T

NT

NT

NT

NT

Predict Taken

Predict Not

Taken

Predict Taken

Predict Not

Taken

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 16

 Register renaming—There are an infinite number of virtual registers available and hence all

WAW and WAR hazards are avoided and an unbounded number of instructions can begin

execution simultaneously.

 Branch prediction—Branch prediction is perfect. All conditional branches are predicted exactly.

 Jump prediction—All jumps (including jump register used for return and computed jumps) are

perfectly predicted. When combined with perfect branch prediction, this is equivalent to having a

processor with perfect speculation and an unbounded buffer of instructions available for

execution.

 Memory-address alias analysis—All memory addresses are known exactly

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 17

UNIT II

MULTIPLE ISSUE PROCESSORS

VLIW & EPIC – Advanced compiler support – Hardware support for exposing parallelism – Hardware

versus software speculation mechanisms – IA 64 and Itanium processors – Limits on ILP.

The VLIW Architecture

 A typical VLIW (very long instruction word) machine has instruction words hundreds of

bits in length.

 Multiple functional units are used concurrently in a VLIW processor.

 All functional units share the use of a common large register file.

Comparison: CISC, RISC, VLIW

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 18

Advantages of VLIW

 C compiler prepares fixed packets of multiple operations that give the full "plan of execution"

o dependencies are determined by compiler and used to schedule according to function unit

latencies

o function units are assigned by compiler and correspond to the position within the

instruction packet ("slotting")

o compiler produces fully-scheduled, hazard-free code => hardware doesn't have to

"rediscover" dependencies or schedule

Disadvantages of VLIW

 Compatibility across implementations is a major problem

 VLIW code won't run properly with different number of function units or different latencies

 unscheduled events (e.g., cache miss) stall entire processor

 Code density is another problem

 low slot utilization (mostly nops)

 reduce nops by compression ("flexible VLIW", "variable-length VLIW")

EPIC an Introduction

 EPIC

 –Explicitly Parallel Instruction Computing

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 19

 –instruction Level Parallelism (ILP) is identified to hardware by

 the compiler.

 Particular EPIC architecture we cover today: IA64

 EPIC – Overview

 –Builds on VLIW

 –Redefines instruction format

 –Instruction coding tells CPU how to process data

 –Very compiler dependent

 –Predicated execution

 EPIC pros and cons

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 20

I
 Itanium2 Specs

 •6 Integer ALU's

 •6 multimedia ALU's

 •2 Extended Precision FP Units

 •2 Single Precision FP units

 •2 Load and Store Units

 •3 Branch Units

 •8 Stage 6 Wide Pipeline

 •32k L1 Cache

 •256K L2 Cache

 •3MB L3 Cache(on die)þ

 •1Ghz Clock initially

 –Up to 1.66 GHz on Montvale

 Itanium Improvements

 •Initially a 180nm process

 Increased to 130nm in 2003

 Further increased to 90nm in 2007

 •Improved Thermal Management

 •Clock Speed increased to 1.0Ghz

 •Bus Speed Increase from 266Mhz to 400Mhz

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 21

Compiler Support For ILP

 Produce good scheduling of code.

 Determine which loops might contain parallelism.

 Eliminate name dependencies.

 Compilers must be REALLY smart to figure out aliases -- pointers in C are a real problem.

Techniques lead to

 Symbolic Loop Unrolling

 Critical Path Scheduling

Software Pipelining

 Observation: if iterations from loops are independent, then can get ILP by taking

instructions from different iterations

 Software pipelining: reorganizes loops so that each iteration is made from instructions

chosen from different iterations of the original loop (Tomasulo in SW)

SW Pipelining Example

Before: Unrolled 3 times

 1 LD F0,0(R1)

 2 ADDD F4,F0,F2

 3 SD 0(R1),F4

 4 LD F6,-8(R1)

 5 ADDD F8,F6,F2

 6 SD -8(R1),F8

 7 LD F10,-16(R1)

Iteration
0 Iteration

1 Iteration
2 Iteration

3 Iteration
4

Software-
pipelined
iteration

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 22

 8 ADDD F12,F10,F2

 9 SD -16(R1),F12

 10 SUBI R1,R1,#24

 11 BNEZ R1,LOOP

Hardware Support for Exposing Parallelism

 Techniques such as loop unrolling, software pipelining, and trace scheduling can be used to

increase the amount of parallelism available when the behavior of branches is fairly predictable at

compile time.

 When the behavior of branches is not well known, compiler techniques alone may not be able to

uncover much ILP.

 In such cases, the control dependences may severely limit the amount of parallelism that can be

exploited. To overcome these problems, an architect can extend the instruction set to include

conditional or predicated instructions.

 Such instructions can be used to eliminate branches, converting control dependence into a data

dependence and potentially improving performance.

 Such approaches are useful with either the hardware-intensive schemes in or the software-intensive

approaches discussed in this appendix, since in both cases predication can be used to eliminate

branches.

 The concept behind conditional instructions is quite simple: An instruction refers to a condition,

which is evaluated as part of the instruction execution.

 If the condition is true, the instruction is executed normally; if the condition is false, the execution

continues as if the instruction were a no-op. Much newer architecture include some form of

conditional instructions.

 The most common example of such an instruction is conditional move, which moves a value from

one register to another if the condition is true.

 Such an instruction can be used to completely eliminate a branch in simple code sequences.

Example

Consider the following code:

 Assuming that registers R1, R2, and R3 hold the values of A, S, and T, respectively, show the code

for this statement with the branch and with the conditional move.

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 23

Answer

 The straightforward code using a branch for this statement is (remember that we are assuming

normal rather than delayed branches)

 Using a conditional move that performs the move only if the third operand is equal to zero, we can

implement this statement in one instruction:

 The conditional instruction allows us to convert the control dependence present in the branch-

based code sequence to a data dependence. (This transformation is also used for vector computers,

where it is called if conversion.)

 For a pipelined processor, this moves the place where the dependence must be resolved from near

the front of the pipeline, where it is resolved for branches, to the end of the pipeline, where the

register write occurs.

 One obvious use for conditional move is to implement the absolute value function: A = abs (B),

which is implemented as if (B<0) {A=−B;} else {A=B;}.

 This if statement can be implemented as a pair of conditional moves, or as one unconditional move

(A=B) and one conditional move (A=−B).

 In the example above or in the compilation of absolute value, conditional moves are used to

change a control dependence into a data dependence.

 This enables us to eliminate the branch and possibly improve the pipeline behavior. As issue rates

increase, designers are faced with one of two choices: execute multiple branches per clock cycle or

find a method to eliminate branches to avoid this requirement.

 Handling multiple branches per clock is complex, since one branch must be control dependent on

the other.

 The difficulty of accurately predicting two branch outcomes, updating the prediction tables, and

executing the correct sequence has so far caused most designers to avoid processors that execute

multiple branches per clock.

 Conditional moves and predicated instructions provide a way of reducing the branch pressure. In

addition, a conditional move can often eliminate a branch that is hard to predict, increasing the

potential gain.

 Conditional moves are the simplest form of conditional or predicated instructions and, although

useful for short sequences, have limitations.

 In particular, using conditional move to eliminate branches that guard the execution of large blocks

of code can be inefficient, since many conditional moves may need to be introduced.

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 24

 To remedy the inefficiency of using conditional moves, some architectures support full

predication, whereby the execution of all instructions is controlled by a predicate.

 When the predicate is false, the instruction becomes a no-op. Full predication allows us to simply

convert large blocks of code that are branch dependent.

 For example, an if-then-else statement within a loop can be entirely converted to predicated

execution, so that the code in the then case executes only if the value of the condition is true and

the code in the else case executes only if the value of the condition is false.

 Predication is particularly valuable with global code scheduling, since it can eliminate nonloop

branches, which significantly complicate instruction scheduling.

 Predicated instructions can also be used to speculatively move an instruction that is time critical,

but may cause an exception if moved before a guarding branch. Although it is possible to do this

with conditional move, it is more costly.

Example

 Here is a code sequence for a two-issue superscalar that can issue a combination of one memory

reference and one ALU operation, or a branch by itself, every cycle:

 This sequence wastes a memory operation slot in the second cycle and will incur a data

dependence stall if the branch is not taken, since the second LW after the branch depends on the

prior load. Show how the code can be improved using a predicated form of LW.

Answer

 Call the predicated version load word LWC and assume the load occurs unless the third operand is

0. The LW immediately following the branch can be converted to an LWC and moved up to the

second issue slot:

 This improves the execution time by several cycles since it eliminates one instruction issue slot

and reduces the pipeline stall for the last instruction in the sequence. Of course, if the compiler

mispredicted the branch, the predicated instruction will have no effect and will not improve the

running time. This is why the transformation is speculative.

 If the sequence following the branch were short, the entire block of code might be converted to

predicated execution and the branch eliminated.

 When we convert an entire code segment to predicated execution or speculatively move an

instruction and make it predicted, we remove a control dependence. Correct code generation and

the conditional execution of predicated instructions ensure that we maintain the data flow enforced

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 25

by the branch. To ensure that the exception behavior is also maintained, a predicated instruction

must not generate an exception if the predicate is false.

 The property of not causing exceptions is quite critical, as the previous example shows: If register

R10 contains zero, the instruction LW R8,0(R10) executed unconditionally is likely to cause a

protection exception, and this exception should not occur. Of course, if the condition is satisfied

(i.e., R10 is not zero), the LW may still cause a legal and resumable exception (e.g., a page fault),

and the hardware must take the exception when it knows that the controlling condition is true.

 The major complication in implementing predicated instructions is deciding when to annul an

instruction. Predicated instructions may either be annulled during instruction issue or later in the

pipeline before they commit any results or raise an exception. Each choice has a disadvantage.

 If predicated instructions are annulled early in the pipeline, the value of the controlling condition

must be known early to prevent a stall for a data hazard. Since data-dependent branch conditions,

which tend to be less predictable, are candidates for conversion to predicated execution, this choice

can lead to more pipeline stalls.

 Because of this potential for data hazard stalls, no design with predicated execution (or conditional

move) annuls instructions early. Instead, all existing processors annul instructions later in the

pipeline, which means that annulled instructions will consume functional unit resources and

potentially have a negative impact on performance.

 A variety of other pipeline implementation techniques, such as forwarding, interact with predicated

instructions, further complicating the implementation.

Hardware Support for Compiler Speculation

Compiler needs to move instructions before branch, possibly before condition

 Requirements:

 Instructions that can be moved without disrupting data flow

 Exceptions that can be ignored until outcome is known

 Ability to speculatively access memory with potential address conflicts

 Four methods:

 Hardware and OS cooperate to ignore exceptions for speculative instructions

 Speculative instructions never raise exceptions; explicit checks must be made

 Poison bits used to mark registers with invalid results; use causes exception

 Speculative results are buffered until certain

Hardware versus software speculation mechanisms

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 26

A number of trade-offs and limitations

 Disambiguating memory references is hard for a compiler

 Hardware branch prediction is usually better

 Precise exceptions easier in hardware

 Hardware does not require “housekeeping” code

 Compilers can “look” further

 Hardware techniques are more portable

 Major disadvantage of hardware: complexity!

 Some architectures combine hardware and software approaches.

IA 64 and Itanium processors

 IA-64

 RISC-style

 Register-register

 Emphasis on software-based optimizations

Features

 128 × 65-bit integer registers

 128 × 82-bit FP registers

 64 predicate registers; 8 branch registers

Integer registers

 Use windowing mechanism

 0–31 always visible

 Remainder arranged in overlapping windows

 Local and out areas (variable size)

 Hardware for over-/underflow

 Int and FP registers support register rotation

 Supports software pipelining

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 27

Instruction Format and VLIW

 Compiler schedules parallel instructions; flags dependences

 Instruction group

o Sequence of (register) independent instructions

o Compiler marks boundaries between groups (stop)

 Bundle

o 128-bits: 5-bit template + 3 × 41-bit instructions

Instruction Bundle

 Template specifies stops and execution unit

 I-unit (int + special — multimedia, etc.)

 M-unit (int + memory access)

 F-unit (FP)

 B-unit (branches)

 L+X (extended instructions)

Example

for (int k = 0; k < 1000; k++)

 { x[k] = x[k] + s;

 }

Unrolled seven times

Optimized for size:

9 bundles; 15% nops

21 cycles (3 per calculation)

Optimized for performance:

11 bundles; 30% nops

12 cycles (1.7 per calculation)

Instructions
 41-bits long

 4-bit opcode (+ template bits)

 6-bit predicate register specifier

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 28

 Predication

 Almost all instructions can be predicated

• Branch is jump with predicate check!

 Complex comparisons set two predicate registers

 Speculation

 Exceptions can be deferred

 Uses poison bits (65-bit registers)

 Nonspeculative and chk instructions raise exception

 Speculative loads

 Called advanced load (ld.a)

 Stores check addresses

Itanium

 First implementation of IA-64

 Issues up to six instructions per cycle (two bundles)

 Nine functional units

 2 × I, 2 × M, 3 × B, 2 × F

 10-stage pipeline

 Multilevel dynamic branch predictor

 Complex hardware with many features of dynamically scheduled pipelines!

 Branch prediction

 Register renaming

 Scoreboarding

 Deep pipeline etc.

Limits to ILP

 Initial HW Model here; MIPS compilers.

 Assumptions for ideal/perfect machine to start:

 Register renaming – infinite virtual registers

 all register WAW & WAR hazards are avoided

 Branch prediction – perfect; no mispredictions

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 29

 Jump prediction – all jumps perfectly predicted (returns, case statements) no control

dependencies; perfect speculation & an unbounded buffer of instructions available

 4. Memory-address alias analysis – addresses known & a load can be moved before a store

provided addresses not equal; 1&4 eliminates all but RAW

Also: perfect caches; 1 cycle latency for all instructions (FP *,/); unlimited instructions issued/clock cycle;

Limits to ILP HW Model comparison

 Model Power 5

Instructions Issued per

clock

Infinite 4

Instruction Window

Size

Infinite 200

Renaming Registers Infinite 88 integer +

88 Fl. Pt.

Branch Prediction Perfect 2% to 6%

misprediction

(Tournament Branch

Predictor)

Cache Perfect 64KI, 32KD, 1.92MB

L2, 36 MB L3

Memory Alias Analysis Perfect ??

 Doubling issue rates above today’s 3-6 instructions per clock, say to 6 to 12 instructions,

probably requires a processor to

 issue 3 or 4 data memory accesses per cycle,

 resolve 2 or 3 branches per cycle,

 rename and access more than 20 registers per cycle, and

 Fetch 12 to 24 instructions per cycle.

 The complexities of implementing these capabilities is likely to mean sacrifices in the

maximum clock rate

 E.g., widest issue processor is the Itanium 2, but it also has the slowest clock rate, despite

the fact that it consumes the most power!

 Most techniques for increasing performance increase power consumption

 Multiple issue processors techniques all are energy inefficient:

 Issuing multiple instructions incurs some overhead in logic that grows faster than the issue

rate grows

 Growing gap between peak issue rates and sustained performance

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 30

Number of transistors switching = f(peak issue rate), and performance = f(sustained rate),

growing gap between peak and sustained performance

 increasing energy per unit of performance

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 31

UNIT III

UNIT III MULTIPROCESSORS AND THREAD LEVEL PARALLELISM

Symmetric and distributed shared memory architectures – Performance issues – Synchronization – Models

of memory consistency – Introduction to Multithreading.

Symmetric Shared Memory Architectures

 The Symmetric Shared Memory Architecture consists of several processors with a single physical

memory shared by all processors through a shared bus which is shown below.

 Small-scale shared-memory machines usually support the caching of both shared and private data.

Private data is used by a single processor, while shared data is used by multiple processors;

essentially providing communication among the processors through reads and writes of the shared

data.

 When a private item is cached, its location is migrated to the cache, reducing the average access

time as well as the memory bandwidth required.

 Since no other processor uses the data, the program behavior is identical to that in a uniprocessor.

Cache Coherence in Multiprocessors
 Introduction of caches caused a coherence problem for I/O operations;

 The same problem exists in the case of multiprocessors, because the view of memory held

by two different processors is through their individual caches.

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 32

 The problem and shows how two different processors can have two different values for

the same location. This difficulty s generally referred to as the cache- coherence problem.

Cache Cache Memory

contents for contents for contents for

Time Event CPU A CPU B location X

0 1

1 CPU A reads X 1 1

2 CPU B reads X 1 1 1

3 CPU A stores 0 into X 0 1 0

FIGURE 6.7 The cache-coherence problem for a single memory location (X), read and written by two

processors (A and B).

 We initially assume that neither cache contains the variable and that X has the value 1. We also

assume a write-through cache; a write-back cache adds some additional but similar complications.

 After the value of X has been written by A, A's cache and the memory both contain the new value,

but B's cache does not, and if B reads the value of X, it will receive 1!

 Informally, we could say that a memory system is coherent if any read of a data item returns the

most recently written value of that data item.

 This simple definition contains two different aspects of memory system behavior, both of which

are critical to writing correct shared-memory programs.

 The first aspect, called coherence, defines what values can be returned by a read. The second

aspect, called consistency, determines when a written value will be returned by a read. Let's look at

coherence first.

A memory system is coherent if

 A read by a processor, P, to a location X that follows a write by P to X, with no writes of X by

another processor occurring between the write and the read by P, always returns the value written
by P.

 A read by a processor to location X that follows a write by another processor to X returns the

written value if the read and write are sufficiently separated in time and no other writes to X occur
between the two accesses.

 Writes to the same location are serialized: that is, two writes to the same location by any two

processors are seen in the same order by all processors.

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 33

 For example, if the values 1 and then 2 are written to a location, processors can never read the

value of the location as 2 and then later read it as 1.

 Coherence and consistency are complementary: Coherence defines the behavior of reads and writes

to the same memory location, while consistency defines the behavior of reads and writes with

respect to accesses to other memory locations.

 Basic Schemes for Enforcing Coherence

 Coherent caches provide migration, since a data item can be moved to a local cache and used there

in a transparent fashion.

 This migration reduces both the latency to access a shared data item that is allocated remotely and

the bandwidth demand on the shared memory.

 Coherent caches also provide replication for shared data that is being simultaneously read, since

the caches make a copy of the data item in the local cache. Replication reduces both latency of
access and contention for a read shared data item.

 The protocols to maintain coherence for multiple processors are called cache- coherence

protocols. There are two classes of protocols, which use different techniques to track the sharing

status, in use:

 Directory based—The sharing status of a block of physical memory is kept in just one location,

called the directory; we focus on this approach in section 6.5, when we discuss scalable shared-

memory architecture.

 Snooping—Every cache that has a copy of the data from a block of physical memory also has a

copy of the sharing status of the block, and no centralized state is kept.

 The caches are usually on a shared-memory us, and all cache controllers monitor or snoop on the

bus to determine whether or not they have a copy of a block that is requested on the bus.

Snooping Protocols

 The method which ensure that a processor has exclusive access to a data item before it writes that

item. this style of protocol is called a write invalidate protocol because it invalidates other copies

on a write.

 It is by far the most common protocol, both for snooping and for directory schemes. Exclusive

access ensures that no other readable or writable copies of an item exist when the write occurs: all

other cached copies of the item are invalidated.

 Since the write requires exclusive access, any copy held by the reading processor must be

invalidated hence the protocol name). Thus, when the read occurs, it misses in the cache and is

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 34

forced to fetch a new copy of the data.

 For a write, we require that the writing processor have exclusive access, preventing any other

processor from being able to write simultaneously.

 If two processor attempt to write the same data simultaneously, one of them wins the race, causing

the other processor's copy to be invalidated. For the other processor to complete its write, it must

obtain a new copy of the data, which must now contain the updated value. Therefore, this protocol

enforces write serialization.

Contents of
Contents of Contents of

memory

Processor Bus activity CPU A's CPU B's location X

activity cache cache

0

CPU A reads X Cache miss for X 0 0CPU B reads X Cache miss for X

 0 0 0

CPU A writes a 1 Invalidation for X 1 0

to X

CPU B reads X Cache miss for X 1 1 1

An example of an invalidation protocol working on a snooping bus for a single cache block (X) with write-

back caches.

 The alternative to an invalidate protocol is to update all the cached copies of a data item when that

item is written.

 This type of protocol is called a write update or write broadcast protocol. Figure shows an example

of a write update protocol in operation.

 In the decade since these protocols were developed, invalidate has emerged as the winner for the

vast majority of designs.

Contents of
Contents of Contents of

memory

Processor Bus activity CPU A's CPU B's location X

activity cache cache

0

CPU A reads X Cache miss for X 0 0CPU B reads X Cache miss for X

 0 0 0

CPU A writes a 1 Write broadcast
1 1 1

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 35

to X of X

CPU B reads X 1 1 1

FIGURE 6.9 An example of a write update or broadcast protocol working on a snooping bus for a

single cache block (X) with write-back caches.

 The performance differences between write update and write invalidate protocols arise from

three characteristics:

 Multiple writes to the same word with no intervening reads require multiple write broadcasts in an

update protocol, but only one initial invalidation in a write invalidate protocol.

 With multiword cache blocks, each word written in a cache block requires a write broadcast in an

update protocol, although only the first write to any word in the block needs to generate an

invalidate in an invalidation protocol.

 An invalidation protocol works on cache blocks, while an update protocol must work on individual

words (or bytes, when bytes are written).

 It is possible to try to merge writes in a write broadcast scheme.

 The delay between writing a word in one processor and reading the written value in another

processor is usually less in a write update scheme, since the written data are immediately updated in

the reader's cache

Basic Implementation Techniques

 The serialization of access enforced by the bus also forces serialization of writes, since when two

processors compete to write to the same location, one must obtain bus access before the other.

 The first processor to obtain bus access will cause the e other processor's copy to be invalidated,

causing writes to be strictly serialized.

 One implication of this scheme is that a write to a shared data item cannot complete until it

obtains bus access.

 For a write-back cache, however, the problem of finding the most recent data value is harder,

since the most recent value of a data item can be in a cache rather than in memory.

 write-back caches can use the same snooping scheme both for caches misses and for writes:

Each processor snoops every address placed on the bus.

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 36

 If a processor finds that it has a dirty copy of the requested cache block, it provides that cache

block in response to the read request and causes the memory access to be aborted.

 Since Write-back caches generate lower requirements for memory bandwidth, they are greatly

preferable in a multiprocessor, despite the slight increase in complexity. Therefore, we focus on

implementation with write-back caches.

 The normal cache tags can be used to implement the process of snooping, and the valid bit for

each block makes invalidation easy to implement.

 Read misses, whether generated by invalidation or by some other event, are also straightforward

since they simply rely on the snooping capability.

 For writes we'd like to know whether any other copies of the block are cached, because, if there

are no other cached copies, then the write need not be placed on the bus in a write-back cache.

Not sending the write reduces both the time taken by the write and the required bandwidth.

Distributed Shared-Memory Architectures.

There are several disadvantages in Symmetric Shared Memory architectures.

 First, compiler mechanisms for transparent software cache coherence are very limited.

 Second, without cache coherence, the multiprocessor loses the advantage of being able to fetch and

use multiple words in a single cache block for close to the cost of fetching one word.

 Third, mechanisms for tolerating latency such as prefetch are more useful when they can fetch

multiple words, such as a cache block, and where the fetched data remain coherent; we will

examine this advantage in more detail later.

 These disadvantages are magnified by the large latency of access to remote memory versus a local

cache. For these reasons, cache coherence is an accepted requirement in small-scale

multiprocessors.

 For larger-scale architectures, there are new challenges to extending the cache- coherent shared-

memory model.

 Although the bus can certainly be replaced with a more scalable interconnection network and we

could certainly distribute the memory so that the memory bandwidth could also be scaled, the lack

of scalability of the snooping coherence scheme needs to be addressed is known as Distributed

Shared Memory architecture.

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 37

 The first coherence protocol is known as a directory protocol. A directory keeps the state of every

block that may be cached. Information in the directory includes which caches have copies of the

block, whether it is dirty, and so on.

 To prevent the directory from becoming the bottleneck, directory entries can be distributed along

with the memory, so that different directory accesses can go to different locations, just as different

memory requests go to different memories.

 A distributed directory retains the characteristic that the sharing status of a block is always in a

single known location. This property is what allows the coherence protocol to avoid broadcast.

Figure 6.27 shows how our distributed-memory multiprocessor looks with the directories added to

each node.

A directory is added to each node to implement cache coherence in a distributed-memory

multiprocessor.

Directory-Based Cache-Coherence Protocols: The Basics

There are two primary operations that a directory protocol must implement:

 Handling a read miss and handling a write to a shared, clean cache block. (Handling a write

miss to a shared block is a simple combination of these two.)

 To implement these operations, a directory must track the state of each cache block. In a

simple protocol, these states could be the following:

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 38

 Shared—One or more processors have the block cached, and the value in memory is up to

date (as well as in all the caches)

 Uncached—No processor has a copy of the cache block

 Exclusive—Exactly one processor has a copy of the cache block and it has written the block,

so the memory copy is out of date. The processor is called the owner of the block.

 In addition to tracking the state of each cache block, we must track the processors that have

copies of the block when it is shared, since they will need to be invalidated on a write.

 The simplest way to do this is to keep a bit vector for each memory block. When the block is

shared, each bit of the vector indicates whether the corresponding processor has a copy of that

block.

 We can also use the bit vector to keep track of the owner of the block when the block is in the

exclusive state. For efficiency reasons, we also track the state of each cache block at the

individual caches.

 A catalog of the message types that may be sent between the processors and the directories.

Figure shows the type of messages sent among nodes. The local node is the node where a

request originates.

 The home node is the node where the memory location and the directory entry of an address

reside. The physical address space is statically distributed, so the node that contains the

memory and directory for a given physical address is known.

 For example, the high-order bits may provide the node number, while the low-order bits

provide the offset within the memory on that node.

 The local node may also be the home node. The directory must be accessed when the home

node is the local node, since copies may exist in yet a third node, called a remote node.

 A remote node is the node that has a copy of a cache block, whether exclusive (in which case

it is the only copy) or shared.

 A remote node may be the same as either the local node or the home node. In such cases, the

basic protocol does not change, but interprocessor messages may be replaced with

intraprocessor messages.

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 39

Message Message

type Source Destination contents Function of this message

Read miss Local cache P, A Processor P has a read miss at

Home

address A; request data and make

directory

P a read sharer.

Write miss Local cache P, A Processor P has a write miss at

Home

address A; — request data and

directory

make P the exclusive owner.

Invalidate Home Remote A Invalidate a shared copy of data

directory cache at address A.

Fetch Home Remote A Fetch the block at address A and

directory cache send it to its home directory;

change the state of A in the remote cache to

shared.

Fetch/invali Home Remote A Fetch the block at address A and

date directory cache send it to its home directory;

invalidate the block in the cache.

Data value Home Local cache D Return a data value from the

reply directory home memory.

Data write Remote Home A, D Write back a data value for

back cache directory address A.

Synchronization and various Hardware Primitives

Synchronization

 Synchronization mechanisms are typically built with user-level software routines that rely

on hardware-supplied synchronization instructions.

 The efficient spin locks can be built using a simple hardware synchronization instruction

and the coherence mechanism.

Basic Hardware Primitives

 The key ability we require to implement synchronization in a multiprocessor is a set of hardware

primitives with the ability to atomically read and modify a memory location.

 Without such a capability, the cost of building basic synchronization primitives will be too high

and will increase as the processor count increases.

 There are a number of alternative formulations of the basic hardware primitives, all of which

provide the ability to atomically read and modify a location, together with some way to tell if

the read and write were performed atomically.

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 40

 These hardware primitives are the basic building blocks that are used to build a wide variety of

user-level synchronization operations, including things such as locks and barriers.

 One typical operation for building synchronization operations is the atomic exchange, which

interchanges a value in a register for a value in memory.

 Use this to build a basic synchronization operation, assume that we want to build a simple lock

where the value 0 is used to indicate that the lock is free and a 1 is used to indicate that the lock

is unavailable.

 A processor tries to set the lock by doing an exchange of 1, which is in a register, with the

memory address corresponding to the lock.

 The value returned from the exchange instruction is 1 if some other processor had already

claimed access and 0 otherwise. In the latter case, the value is also changed to be 1, preventing

any competing exchange from also retrieving a 0.

 There are a number of other atomic primitives that can be used to implement synchronization.

They all have the key property that they read and update a memory value in such a manner that

we can tell whether or not the two operations executed atomically.

 One operation, present in many older multiprocessors, is test-and-set, which tests a value and

sets it if the value passes the test. For example, we could define an operation that tested for 0 and

set the value to 1, which can be used in a fashion similar to how we used atomic exchange.

 Another atomic synchronization primitive is fetch-and-increment: it returns the value of a

memory location and atomically increments it.

 By using the value 0 to indicate that the synchronization variable is unclaimed, we can use

fetch-and-increment, just as we used exchange. There are other uses of operations like fetch-and-

increment.

Implementing Locks Using Coherence

 We can use the coherence mechanisms of a multiprocessor to implement spin locks: locks that a

processor continuously tries to acquire, spinning around a loop until it succeeds.

 Spin locks are used when a programmer expects the lock to be held for a very short amount of

time and when she wants the process of locking to be low latency when the lock is available.

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 41

 Because spin locks tie up the processor, waiting in a loop for the lock to become free, they are

inappropriate in some circumstances.

 The simplest implementation, which we would use if there were no cache coherence, would keep

the lock variables in memory.

 A processor could continually try to acquire the lock using an atomic operation, say exchange, and

test whether the exchange returned the lock as free.

 To release the lock, the processor simply stores the value 0 to the lock. Here is the code sequence

to lock a spin lock whose address is in R1 using an atomic exchange:

DADDUI R2,R0,#1

 lockit: EXCH R2,0(R1) ; atomic exchange

BNEZ R2,lockit ; already locked?

 If our multiprocessor supports cache coherence, we can cache the locks using the coherence

mechanism to maintain the lock value coherently.

Caching locks has two advantages.

 First, it allows an implementation where the process of "spinning" (trying to test and acquire the

lock in a tight loop) could be done on a local cached copy rather than requiring a global memory

access on each attempt to acquire the lock.

 The second advantage comes from the observation that there is often locality in lock accesses:

that is, the processor that used the lock last will use it again in the near future. In such cases, the

lock value may reside in the cache of that processor, greatly reducing the time to acquire the lock.

Synchronization Performance Challenges

Barrier Synchronization

 One additional common synchronization operation in programs with parallel loops is a

barrier. A barrier forces all processes to wait until all the processes reach the barrier and

then releases all of the processes.

 A typical implementation of a barrier can be done with two spin locks: one used to protect a

counter that tallies the processes arriving at the barrier and one used to hold the processes

until the last process arrives at the barrier.

Synchronization Mechanisms for Larger-Scale Multiprocessors

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 42

Software Implementations

 The major difficulty with our spin-lock implementation is the delay due to contention

when many processes are spinning on the lock.

 One solution is to artificially delay processes when they fail to acquire the lock.

 The best performance is obtained by increasing the delay exponentially whenever the

attempt to acquire the lock fails.

 Figure shows how a spin lock with exponential back-off is implemented. Exponential back-

off is a common technique for reducing contention in shared resources, including access to

shared networks and buses.

 This implementation still attempts to preserve low latency when contention is small by not

delaying the initial spin loop.

 The result is that if many processes are waiting, the back-off does not affect the processes

on their first attempt to acquire the lock. We could also delay that process, but the result

would be poorer performance when the lock was in use by only two processes and the first

one happened to find it locked.

 ADDUI R3,R0,#1 ;R3 = initial delay

 lockit: LL R2,0(R1) ;load linked

BNEZ R2,lockit ;not available-spin

DADDUI R2,R2,#1 ;get locked value

SC R2,0(R1) ;store conditional

BNEZ R2,gotit ;branch if store succeeds

DSLL R3,R3,#1 ;increase delay by factor of 2

PAUSE R3 ;delays by value in R3

J lockit

 gotit: use data protected by lock

A spin lock with exponential back-off.

 Another technique for implementing locks is to use queuing locks. Queuing locks work by

constructing a queue of waiting processors; whenever a processor frees up the lock, it causes the

next processor in the queue to attempt access.

 This eliminates contention for a lock when it is freed. We show how queuing locks operate in the

next section using a hardware implementation, but software implementations using arrays can

achieve most of the same benefits Before we look at hardware primitives,

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 43

Hardware Primitives

 In this section we look at two hardware synchronization primitives.

 The first primitive deals with locks, while the second is useful for barriers and a number of

other user-level operations that require counting or supplying distinct indices.

 In both cases we can create hardware primitive where latency is essentially identical to our

earlier version, but with much less serialization, leading to better scaling when there is

contention.

 The major problem with our original lock implementation is that it introduces a large amount of

unneeded contention.

 For example, when the lock is released all processors generate both a read and a write miss,

although at most one processor can successfully get the lock in the unlocked state. This

sequence happens on each of the 20 lock/unlock sequences.

 It can improve this situation by explicitly handing the lock from one waiting processor

to the next. Rather than simply allowing all processors to compete every time the lock is

released, we keep a list of the waiting processors and hand the lock to one explicitly,

when its turn comes.

 This sort of mechanism has been called a queuing lock. Queuing locks can be

implemented either in hardware, or in software using an array to keep track of the waiting

processes.

Multithreading: Exploiting Thread-Level Parallelism within a Processor

Multithreading allows multiple threads to share the functional units of a single processor in an

overlapping fashion.

To permit this sharing, the processor must duplicate the independent state of each thread. For example, a

separate copy of the register file, a separate PC, and a separate page table are required for each thread.

There are two main approaches to multithreading.

 Fine-grained multithreading switches between threads on each instruction, causing the

execution of multiples threads to be interleaved. This interleaving is often done in a round-robin

fashion, skipping any threads that are stalled at that time.

 Switches between threads on each instruction, causing the execution of multiples threads to be

 interleaved

 Usually done in a round-robin fashion, skipping any stalled threads• CPU must be able to switch

threads every clock

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 44

 Advantage is it can hide both short and long stalls, since instructions from other threads executed

when one thread stalls

 Disadvantage is it slows down execution of individual

 since a thread ready to execute without stalls will be delayed by instructions from other

 threads

 Used on Sun’s Niagara

 Coarse-grained multithreading was invented as an alternative to fine-grained multithreading.

Coarse-grained multithreading switches threads only on costly stalls, such as level two caches

misses.

 This change relieves the need to have thread-switching be essentially free and is much less likely

to slow the processor down, since instructions from other threads will only be issued, when a thread

encounters a costly stall.

 Switches threads only on costly stalls, such as L2 cache misses Used in IBM AS/400

 Advantages Relieves need to have very fast thread-switching

 Doesn’t slow down thread, since instructions from other threads issued only when the thread

encounters

 a costly stall

 Disadvantage is hard to overcome throughput losses from shorter stalls, due to pipeline start-up

costs

 Since CPU issues instructions from 1 thread,.

 when a stall occurs, the pipeline must be emptied or frozen

 New thread must fill pipeline before instructions can complete Because of start-up overhead,

coarse-grained multithreading better at reducing penalty of high cost stalls, where pipeline refill

<< stall time

Simultaneous Multithreading: Converting Thread-Level Parallelism into Instruction- Level Parallelism:

Simultaneous multithreading (SMT) is a variation on multithreading that uses the resources of a multiple

issue, dynamically-scheduled processor to exploit TLP at the same time it exploits ILP.

 The key insight that motivates SMT is that modern multiple- issue processors often have more

functional unit parallelism available than a single thread can effectively use. Furthermore, with

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 45

register renaming and dynamic scheduling, multiple instructions from independent threads can be

issued without regard to the dependences among them; the resolution of the dependences can be

handled by the dynamic scheduling capability.

 Figure conceptually illustrates the differences in a processor's ability to exploit the resources of a

superscalar for the following processor configurations:

 n a superscalar with no multithreading support,

 n a superscalar with coarse-grained multithreading,

 n a superscalar with fine-grained multithreading, and n a

superscalar with simultaneous multithreading.

Superscalar without multithreading support, the use of issue slots is limited by a lack of ILP.

 In the coarse-grained multithreaded superscalar, the long stalls are partially hidden by switching to

another thread that uses the resources of the processor.

 In the fine-grained case, the interleaving of threads eliminates fully empty slots. Because only one

thread issues instructions in a given clock cycle.

 In the SMT case, thread-level parallelism (TLP) and instruction-level parallelism (ILP) are exploited

simultaneously; with multiple threads using the issue slots in a single clock cycle.

 Figure greatly simplifies the real operation of these processors it does illustrate the potential

performance advantages of multithreading in general and SMT in particular.

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 46

Design Challenges in processors

There are a variety of design challenges for an SMT processor, including:

 Dealing with a larger register file needed to hold multiple contexts,

 Maintaining low overhead on the clock cycle, particularly in critical steps such as instruction issue,

where more candidate instructions need to be considered, and in instruction completion, where

choosing what instructions to commit may be challenging, and

 Ensuring that the cache conflicts generated by the simultaneous execution of multiple threads do

not cause significant performance degradation.

In viewing these problems, two observations are important. In many cases, the potential performance

overhead due to multithreading is small, and simple choices work well enough. Second, the efficiency of

current super-scalars is low enough that there is room for significant improvement, even at the cost of some

overhead.

Design Challenges in SMT

 Since SMT makes sense only with fine-grained implementation, impact of fine-grained scheduling

on

 single thread performance

 A preferred thread approach sacrifices neither throughput nor single-thread performance.

 Unfortunately, with a preferred thread, the processor is likely to sacrifice some throughput,

 when preferred thread stalls

 Larger register file needed to hold multiple contexts

 Not affecting clock cycle time, especially in – Instruction issue - more candidate instructions

 need to be considered

 Instruction completion - choosing which instructions to commit may be challenging

 Ensuring that cache and TLB conflicts generated by SMT do not degrade performance

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 47

UNIT IV

MEMORY AND I/O

Cache performance – Reducing cache miss penalty and miss rate – Reducing hit time – Main memory and

performance – Memory technology. Types of storage devices – Buses – RAID – Reliability, availability

and dependability – I/O performance measures – Designing an I/O system.

Cache Performance And various cache optimization categories.

 The average memory access time is calculated as follows

 Average memory access time = hit time + Miss rate x Miss Penalty.

 Where Hit Time is the time to deliver a block in the cache to the processor (includes time to

determine whether the block is in the cache), Miss Rate is the fraction of memory references not

found in cache (misses/references) and Miss Penalty is the additional time required because of a

miss.

 The average memory access time due to cache misses predicts processor performance.

 First, there are other reasons for stalls, such as contention due to I/O devices using memory and

due to cache misses

 Second, The CPU stalls during misses, and the memory stall time is strongly correlated to average

memory access time. CPU time = (CPU execution clock cycles + Memory stall clock cycles) ×

Clock cycle time

 There are 17 cache optimizations into four categories:

 Reducing the miss penalty: multilevel caches, critical word first, read miss before write miss,

merging write buffers, victim caches;

 Reducing the miss rate larger block size, larger cache size, higher associativity,pseudo-

ssociativity, and compiler optimizations;

 Reducing the miss penalty or miss rate via parallelism: nonblocking caches, hardware prefetching,

and compiler prefetching;

 4 Reducing the time to hit in the cache: small and simple caches, avoiding address

Various techniques for Reducing Cache Miss Penalty

 The First Miss Penalty Reduction Technique follows the Adding another level of cache between

the original cache and memory.

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 48

 The first-level cache can be small enough to match the clock cycle time of the fast CPU and the

second-level cache can be large enough to capture many accesses that would go to main memory,

thereby the effective miss penalty.

 The definition of average memory access time for a two-level cache. Using the subscripts L1 and

L2 to refer, respectively, to a first-level and a second-level cache, the formula is

 Average memory access time = Hit timeL1 + Miss rateL1 × Miss penaltyL1 and Miss penaltyL1 =

Hit timeL2 + Miss rateL2 × Miss penaltyL2 so Average memory access time = Hit timeL1 + Miss

rateL1× (Hit timeL2 + Miss rateL2 ×Miss penaltyL2)

 Local miss rate—This rate is simply the number of misses in a cache divided by the total

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 49

Cache Performance

 Average memory access time

o Timetotal mem access = NhitThit + NmissTmiss

 =Nmem access Thit + Nmiss Tmiss penalty

o AMAT = Thit+ miss rate Tmiss penalty

 Miss penalty: time to replace a block from lower level, including time to replace in CPU

o Access time: time to lower level(latency)

o Transfer time: time to transfer block(bandwidth)

 Execution time: eventual optimization goal

o CPU time = (busy cycles + memory stall cycles) Tcycle

 = IC (CPIexec+Nmiss per instr. Cyclemiss penalty) Tcycle

 = IC (CPIexec+miss rate.(memory accesses / instruction) Cyclemiss penalty) Tcycle

Performance Example

 Two data caches (assume one clock cycle for hit)

o I: 8KB, 44% miss rate, 1ns hit time

o II: 64KB, 37% miss rate, 2ns hit time

o Miss penalty: 60ns, 30% memory accesses

o CPIexec= 1.4

o AMATI = 1ns + 44%60ns = 27.4ns

o AMATII = 2ns + 37%60ns = 24.2ns

o CPU timeI = IC(CPIexec+30%44%(60/1))1ns = 9.32IC

o CPU timeII = IC(CPIexec+30%37%(60/2))2ns = 9.46IC

o Larger cache smaller miss rate but longer Thitreduced AMAT but not CPU time

Miss Penalty in OOO Environment

 In processors with out-of-order execution

Memory accesses can overlap with other computation

Latency of memory accesses is not always fully exposed

E.g. 8KB cache, 44% miss rate, 1ns hit time, miss penalty: 60ns, only 70% exposed on

average

AMAT= 1ns + 44%(60ns70%) = 19.5ns

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 50

Cache Performance Optimizations

 Performance formulas

 AMAT = Thit+ miss rate Tmiss penalty

 CPU time = IC (CPIexec+miss rate.(memory accesses / instruction) Cyclemiss penalty)

Tcycle

 Reducing miss rate

 Change cache configurations, compiler optimizations

 Reducing hit time

 Simple cache, fast access and address translation

 Reducing miss penalty

 Multilevel caches, read and write policies

 Taking advantage of parallelism

 Cache serving multiple requests simultaneously

 Perfecting

Classification of Cache Misses

Compulsory

 The first access to a block is never in the cache. Also called cold start misses or first reference

misses (Misses in even an Infinite Cache)

Capacity

 If the cache cannot contain all the blocks needed during execution of a program, blocks must be

discarded and later retrieved. (Misses in Fully Associative Size X Cache)

Conflict

 If block-placement strategy is set associative or direct mapped, blocks may be discarded and later

retrieved if too many blocks map to its set. Also called collision misses or interference misses

(Misses in N-way Associative, Size X Cache)

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 51

Cache Miss Rate

Three C’s

Compulsory misses (cold misses)

The first access to a block: miss regardless of cache size

Capacity misses

Cache too small to hold all data needed

Conflict misses

More blocks mapped to a set than the associativity

Reducing miss rate

Larger block size (compulsory)

Larger cache size (capacity, conflict)

Higher associativity (conflict)

Compiler optimizations (all three)

Reducing Cache Miss Rate

Larger blocks: compulsory misses reduced, but may increase conflict misses or even capacity misses if

the cache is small; may also increase miss penalty

 Larger cache

 Less capacity misses

 Less conflict misses

 Implies higher associativity: less competition to the same set

 Has to balance hit time, energy consumption, and cost

 Higher associativity

 Less conflict misses

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 52

 Miss rate (2-way, X) Miss rate(direct-map, 2X)

 Similarly, need to balance hit time, energy consumption: diminishing return on reducing conflict

misses

Main memory and performance

Performance of Main Memory:

 Latency: Cache Miss Penalty

 Access Time(AT): time between request and word arrives

 Cycle Time(CT): time between requests

o Bandwidth: I/O & Large Block Miss Penalty (L2)

 Main Memory, a 2D matrix, is DRAM:

o Dynamic since needs to be refreshed periodically (8 ms)

 Difference in AT and CT, AT<CT

o Addresses divided into 2 halves, multiplexing them to memory:

 RAS or Row Access Strobe

 CAS or Column Access Strobe

 Cache uses SRAM:

o No refresh (6 transistors/bit vs. 1 transistor/bit)

 No difference in AT and CT, AT=CT

o Address not divided

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 53

Typical SRAM Organization: 16-word x 4-bit

SRAM

Cell

SRAM

Cell

SRAM

Cell

SRAM

Cell

SRAM

Cell

SRAM

Cell

SRAM

Cell

SRAM

Cell

SRAM

Cell

SRAM

Cell

SRAM

Cell

SRAM

Cell

- + Sense Amp - + Sense Amp - + Sense Amp

: : : :

Word 0

Word 1

Word 15

Dout 0 Dout 1 Dout 2 Dout 3

- +

Wr Driver &

Precharger - +

Wr Driver &

Precharger - +

Wr Driver &
Precharger

Address Decoder

WrEn

Precharge

Din 0 Din 1 Din 2 Din 3

A0

A1

A2

A3

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 54

Main Memory Performance

DRAM (Read/Write) Cycle Time >> DRAM (Read/Write) Access Time 2:1;

 DRAM (Read/Write) Cycle Time:

o Analogy: A little kid can only ask his father for money on Saturday

 DRAM (Read/Write) Access Time:

o Analogy: As soon as he asks, his father will give him the money

 DRAM Bandwidth Limitation analogy:

 Timing model

o 1 cycle to send address,

o 6 cycles to access data + 1 cycle to send data

o Cache Block is 4 words

 Simple Mem. = 4 x (1+6+1) = 32

 Wide Mem. = 1 + 6 + 1 = 8

 Interleaved Mem. = 1 + 6 + 4x1 = 11

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 55

Static RAM (SRAM)
 Six transistors in cross connected fashion

 Provides regular AND inverted outputs

 Implemented in CMOS process

Dynamic RAM
 SRAM cells exhibit high speed/poor density

 DRAM: simple transistor/capacitor pairs in high density form

DRAM Operations

 Write

 Charge bitline HIGH or LOW and set wordline HIGH

 Read

 Bit line is precharged to a voltage halfway

between HIGH and LOW, and then the

word line is set HIGH.

 Depending on the charge in the cap, the

precharged bitline is pulled slightly higher

or lower.

 Sense Amp Detects change

 Need to sufficiently drive bitline

 Increase density => increase parasitic capacitance

DRAM logical organization (4 Mbit)

Start Access for

CPU Memory

Start Access for D2

D1 available

Access Bank 0

Access Bank 1

Access Bank 2

Access Bank 3

We can Access Bank 0 again

CPU

Memory

Bank 1

Memory

Bank 0

Memory

Bank 3

Memory

Bank 2

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 56

RAMBUS (RDRAM)

 Protocol based RAM w/ narrow (16-bit) bus

 High clock rate (400 Mhz), but long latency

 Pipelined operation

 Multiple arrays w/ data transferred on both edges of clock

Read-only memory (ROM)

 Programmed at time of manufacture

 Can not be written by the computer

 It is not erased by loss of power

 Some of them can be erased and rewritten by special hardware (EEPROM)

 One transistor / bit.

 Used in:

 BIOS of desktop computers

 Embedded devices (also serves as a code protection device)

FLASH Memory

o Floating gate transistor

o Presence of charge => “0”

o Erase Electrically or UV (EPROM)

o Performance

o Reads like DRAM (~ns)

o Writes like DISK (~ms). Write is a complex operation

Column Decoder

Sense Amps & I/O

Memory Array

(2,048 x 2,048)
A0…A1 0

…

1 1

D

Q

W ord Line
Storage
Cell

Row Decoder

…

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 57

Types of storage devices

 Primary storage: is the storage provided by memory in a computer system e.g. ROM/RAM.

 Secondary storage: is storage provided by peripheral devices other than memory

Secondary storage is required in a computer system for three reasons

 The content of memory is usually volatile, which means that if power is disconnected the data is

lost.

 The capacity in megabytes of memory is limited.

 3. Memory is more expensive than secondary storage.

Several types of disks may be used for Secondary storage.

• Floppy disks

• Hard disks

• Optical disks (including CD-ROM, writeable CD, DVD

• Backup Storage Devices e.g. tape

Floppy Disk

 A floppy disk is a low capacity disk which may be removed from the computer.

 There are two types:

 Those holding a small amount of data (typically 1.44 Mb)

 And ‘Super floppies’ known as ZIP disks (typically 100 Mb)

 Data may be written to and read from a floppy. A small notch can be used to make the disk

read-only

 They are small lightweight and easy to transport.

 Ideal for backups of small amounts of data or for transfer of data from one machine to

another.

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 58

 Floppy Drives are common to most if not all computers.

 On the down side, they may be easily misplaced, damaged or stolen.

There is a risk of transferring VIRUSES

Hard Disk

 A hard disk is a higher capacity medium, with up to hundreds of gigabytes.

 They are usually non-removable, but removable hard disks are becoming more common.

 They can be both read from and written to, and are the standard medium for storage on computer

systems today.

 Hard disks are manufactured in metal and coated with a magnetisable recording medium, similar to

the material used in a floppy disk or audio tape. Depending on the storage capacity of the unit, it

may comprise a number of disks each having its own

 read/write head.

 Hard disks are much faster than floppy disks and can store much larger amounts of data.

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 59

 You can see from the previous diagram a hard disk is made up of Sectors, Tracks and Cylinders.

The specification of a hard disk depends not only on its capacity but also:

Optical disks

 CD ROM = Compact Disk Read Only Memory, is an ideal device for storing large quantities of

data and information such as large software packages.

 The CD drive uses laser technology to read the disk contents and therefore both access and transfer

are extremely fast. With a typical capacity of 600 Mb they are used for software supply, reference

material such as Encyclopaedias and games.

 DVD or Digital Versatile Disk is a higher capa city version of a CD and DVD drives have a higher

transfer rate. DVD disks provide high quality playback of films and audio and are increasingly

found as standard on the home PC. DVDs may be read only or read/write.

 They are sometimes known as DVD-ROM and DVD-RAM. DVD disks are double sided so data is

stored on both sides of the disk. DVD technology uses a very shortwave laser beam to read pits

from the spinning disk DVD disks typically holds 4.7 Gbytes of data Rewritable disks can be re-

used thousands of times

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 60

Backup Storage Devices

 It is vital that all files stored in a computer system are backed up regularly.

 There are several high capacity devices.

 Cartridge tape back-up drives, which can hold up to

 10 Gigabytes on a single tape.

 Zip disk drives, which hold 100 Megabytes.

 Jaz disk drives, which holds 1 or 2 Gigabytes

 Super floppy disk drives which can hold up to 120 Mb

CD writers, which hold 680 Megabytes

Buses

Buses-Definition

 A communication pathway connecting two or more devices

 Usually broadcast

 Often grouped

 A number of channels in one bus

 e.g. 32 bit data bus is 32 separate single bit channels

 Power lines may not be shown

 There are a number of possible interconnection systems

 Single and multiple BUS structures are most common

 e.g. Control/Address/Data bus (PC)

 e.g. Unibus (DEC-PDP)

Data Bus

 Carries data

o Remember that there is no difference between “data” and “instruction” at this level Width

is a key determinant of performance 8, 16, 32, 64 bit

Address bus

 Identify the source or destination of data e.g. CPU needs to read an instruction

(data) from a given location in memory

 Bus width determines maximum memory capacity of system e.g. 8080 has 16 bit

address bus giving 64k address space

Control Bus

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 61

 Control and timing information

1. Memory read/write signal

2. Interrupt request

3. Clock signals

Bus Interconnection Scheme

Bus Types

 Dedicated

Separate data & address lines

 Multiplexed

 Shared lines

 Address valid or data valid control line

 Advantage - fewer lines

 Disadvantages

 More complex control

 Ultimate performance

 Bus Arbitration

 More than one module controlling the bus

 e.g. CPU and DMA controller

 Only one module may control bus at one time

 Arbitration may be centralised or distributed.

Centralised or Distributed Arbitration

Centralised

o Single hardware device controlling bus access

 Bus Controller

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 62

 Arbiter

o May be part of CPU or separate

Distributed

 Each module may claim the bus

 Control logic on all modules

RAIDs: Disk Arrays

Redundant Array of Inexpensive Disks

 Arrays of small and inexpensive disks

 Increase potential throughput by having many disk drives

 Data is spread over multiple disk

 Multiple accesses are made to several disks at a time

 Reliability is lower than a single disk

 But availability can be improved by adding redundant disks (RAID)

 Lost information can be reconstructed from redundant information

 MTTR: mean time to repair is in the order of hours

 MTTF: mean time to failure of disks is tens of years

RAID: Level 0 (No Redundancy; Striping)

Multiple smaller disks as opposed to one big disk

 Spreading the blocks over multiple disks – striping – means that multiple blocks can be

accessed in parallel increasing the performance A 4 disk system gives four times the

throughput of a 1 disk system

 Same cost as one big disk – assuming 4 small disks cost the same as one big disk

 Failure of one or more disks is more likely as the number of disks in the system

increases.

blk
1

blk3 blk2 blk4

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 63

RAID: Level 1 (Redundancy via Mirroring)

Uses twice as many disks as RAID 0 (e.g., 8 smaller disks with second set of 4 duplicating the first

set) so there are always two copies of the data

 Redundant disks = # of data disks so twice the cost of one big disk writes have to be

made to both sets of disks, so writes would be only 1/2 the performance of RAID 0. If a

disk fails, the system just goes to the “mirror” for the data

RAID: Level 2 (Redundancy via ECC)

ECC disks 4 and 2 point to either data disk 6 or 7 , but ECC disk 1 says disk 7 is okay, so disk 6 must be

in error

 ECC disks contain the parity of data on a set of distinct overlapping disks Redundant disks =

log (total # of data disks).

 so almost twice the cost of one big disk writes require computing parity to write to the ECC

disks reads require reading ECC disk and confirming parity Can tolerate limited disk failure,

since the data can be reconstructed

RAID: Level 3 (Bit-Interleaved Parity)

blk1.1 blk1.3 blk1.2 blk1.4 blk1.1 blk1.2 blk1.3 blk1.4

Redundant (check) data

blk1,b0 blk1,b2 blk1,b1 blk1,b3

1 0 0 1

(odd)
bit parity disk

disk fails

1

blk1,b0 blk1,b2 blk1,b1 blk1,b3

3 5 6 7 4 2 1

1 0 0 0 1 1

ECC disks

0

1

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 64

D1 D2 D3 D4 P

D1 D2 D3 D4 P

3 reads and
2 write

involving all
the disks

New D1
data

D
1

D
2

D
3

D
4

P

D
1

D
2

D
3

D
4

P

2 reads and
2 write

involving just
two disks

Cost of higher availability is reduced to 1/N where N is the number of disks in a protection group

 # Redundant disks = 1 × # of protection groups

 Writes require writing the new data to the data disk as well as computing the parity, meaning

reading the other disks, so that the parity disk can be updated

 Can tolerate limited disk failure, since the data can be reconstructed

Reads require reading all the operational data disks as well as the parity disk to

calculate the missing data that was stored on the failed disk

RAID: Level 4 (Block-Interleaved Parity)

Cost of higher availability still only 1/N but the parity is stored as blocks associated with sets of data

blocks

 Four times the throughput (striping)

 # redundant disks = 1 × # of protection groups

 Supports “small reads” and “small writes” (reads and writes that go to just one (or a

few) data disk in a protection group)

 by watching which bits change when writing new information, need only to change

the corresponding bits on the parity disk

 the parity disk must be updated on every write, so it is a bottleneck for back-to-back

writes

 Can tolerate limited disk failure, since the data can be reconstructed

RAID 3 small writes

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 65

RAID: Level 5 (Distributed Block-Interleaved Parity)

 One of these assigned as the block parity disk

 Cost of higher availability still only 1/N but the parity block can be located on any of the disks so

there is no single bottleneck for writes

 Still four times the throughput (striping)

 # redundant disks = 1 × # of protection groups

 Supports “small reads” and “small writes” (reads and writes that go to just one (or a few) data disk

in a protection group)

 Allows multiple simultaneous writes as long as the accompanying parity blocks are not located on

the same disk

 Can tolerate limited disk failure, since the data can be reconstructed

Distributing Parity Blocks

Reliability, availability and dependability

 Reliability – measured by the mean time to failure (MTTF). Service interruption is measured by

mean time to repair (MTTR)

 Availability – a measure of service accomplishment

 Availability = MTTF/(MTTF + MTTR)

By distributing parity blocks to all disks, some small writes can be performed in parallel

1 2 3 4 P0

5 6 7 8 P1

9 10 11 12 P2

13 14 15 16 P3

1 2 3 4 P0

5 6 7 P1 8

9 10 P2 11 12

13 P3 14 15 16

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 66

 To increase MTTF, either improve the quality of the components or design the system to continue

operating in the presence of faulty components

 Fault avoidance: preventing fault occurrence by construction

 Fault tolerance: using redundancy to correct or bypass faulty components (hardware)

 Fault detection versus fault correction

 Permanent faults versus transient faults

Input and Output Devices

 I/O devices are incredibly diverse with respect to

o Behavior – input, output or storage

o Partner – human or machine

o Data rate – the peak rate at which data can be transferred between the I/O device and the

main memory or processor

Device Behavior Partner Data rate (Mb/s)

Keyboard input human 0.0001

Mouse input human 0.0038

Laser printer output human 3.2000

Graphics display output human 800.0000-8000.0000

Network/LAN input or

output

machine 100.0000-1000.0000

Magnetic disk storage machine 240.0000-2560.0000

I/O Performance Measures

 I/O bandwidth (throughput) – amount of information that can be input (output) and communicated

across an interconnect (e.g., a bus) to the processor/memory (I/O device) per unit time

 How much data can we move through the system in a certain time?

 How many I/O operations can we do per unit time?

 I/O response time (latency) – the total elapsed time to accomplish an input or output operation

 An especially important performance metric in real-time systems

 Many applications require both high throughput and short response times

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 67

A Typical I/O System

 Designing an I/O system to meet a set of bandwidth and/or latency constraints means

 Finding the weakest link in the I/O system – the component that constrains the design

o The processor and memory system?

o The underlying interconnection (e.g., bus) ?

o The I/O controllers?

o The I/O devices themselves?

 (Re)configuring the weakest link to meet the bandwidth and/or latency requirements

 Determining requirements for the rest of the components and (re)configuring them to support this

latency and/or bandwidth

I/O System Performance Example

 A disk workload consisting of 64KB reads and writes where the user program executes 200,000

instructions per disk I/O operation and a processor that sustains 3 billion instr/s and averages

100,000 OS instructions to handle a disk I/O operation

 The maximum disk I/O rate (# I/O’s/sec) of the processor is a memory-I/O bus that sustains a

transfer rate of 1000 MB/s.

 Each disk I/O reads/writes 64 KB so the maximum I/O rate of the bus is SCSI disk I/O controllers

with a DMA transfer rate of 320 MB/s that can accommodate up to 7 disks per controller disk

drives with a read/write bandwidth of 75 MB/s and an average seek plus rotational latency of 6 ms.

Processor

Cache

Memory - I/O Bus

Main
Memory

I/O
Controller

Disk

I/O
Controller

I/O
Controller

Graphics Network

Interrupts

Disk

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 68

 A disk workload consisting of 64KB reads and writes where the user program executes 200,000

instructions per disk I/O operation and a processor that sustains 3 billion instr/s and averages

100,000 OS instructions to handle a disk I/O operation

 The maximum disk I/O rate (# I/O’s/s) of the processor is

 A memory-I/O bus that sustains a transfer rate of 1000 MB/s

 Each disk I/O reads/writes 64 KB so the maximum I/O rate of the bus is

 Bus bandwidth 1000 x 106

 Bytes per I/O 64 x 103

 SCSI disk I/O controllers with a DMA transfer rate of 320 MB/s that can accommodate

up to 7 disks per controller

 Disk drives with a read/write bandwidth of 75 MB/s and an average seek plus rotational

latency of 6 ms

Design principles

 Take advantage of parallelism

 Principle of locality

 Focus on the common case

 Amdahl’s Law

 Generalized processor performance

1. Take advantage of parallelism

 Increasing throughput of server computer via multiple processors or multiple disks

 Detailed HW design

 Carry lookahead adders uses parallelism to speed up computing sums from linear to

logarithmic in number of bits per operand

 Multiple memory banks searched in parallel in set-associative caches

 Pipelining: overlap instruction execution to reduce the total time to complete an

instruction sequence.

 Not every instruction depends on immediate predecessor executing instructions

completely/partially in parallel possible

-------------------------- = ------------------------ = 10,000 I/O’s/s
Instr per I/O (200 + 100) x 103

Instr execution rate 3 x 109

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 69

 Classic 5-stage pipeline:

1) Instruction Fetch (I fetch),

2) Register Read (Reg),

3) Execute (ALU),

4) Data Memory Access (Dmem),

5) Register Write (Reg)

2.Principle of locality

 The Principle of Locality:

 Program access a relatively small portion of the address space at any instant of time.

 Two Different Types of Locality:

 Temporal Locality (Locality in Time): If an item is referenced, it will tend to be

referenced again soon (e.g., loops, reuse)

 Spatial Locality (Locality in Space): If an item is referenced, items whose addresses are

close by tend to be referenced soon

(e.g., straight-line code, array access)

 Last 30 years, HW relied on locality for memory perf.

 Guiding principle behind caches

 To some degree, guides instruction execution, too (90/10 rule)

3.Focus on the common case

 In making a design trade-off, favor the frequent case over the infrequent case

o E.g., Instruction fetch and decode unit used more frequently than multiplier, so optimize it

1st

o E.g., If database server has 50 disks / processor, storage dependability dominates system

dependability, so optimize it 1st

 Frequent case is often simpler and can be done faster than the infrequent case

P MEM $

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 70

o E.g., overflow is rare when adding 2 numbers, so improve performance by optimizing more

common case of no overflow

o May slow down overflow, but overall performance improved by optimizing for the normal

case

 What is frequent case and how much performance improved by making case faster => Amdahl’s

Law

 4. Amdahl’s Law

5.Processor performance

CPU time = Seconds = Instructions x Cycles x Seconds
 Program Program Instruction Cycle

enhanced

enhanced
enhancedoldnew Speedup

Fraction
Fraction ExTime ExTime 1

enhanced

enhanced
enhanced

new

old
overall

Speedup

Fraction
 Fraction

1

ExTime

ExTime
 Speedup

1

 enhanced
maximum Fraction - 1

1
 Speedup

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 71

UNIT V

UNIT V MULTI-CORE ARCHITECTURES

Software and hardware multithreading – SMT and CMP architectures – Design issues – Case studies –

Intel Multi-core architecture – SUN CMP architecture - heterogeneous multi-core processors – case study:

IBM Cell Processor.

Software and hardware multithreading

 The ability of an operating system to execute different parts of a program, called threads,

simultaneously.

 The programmer must carefully design the program in such a way that all the threads can run at the

same time without interfering with each other

Two levels of thread

 User level (for user thread)

 Kernel level(for kernel thread)

User threads

 User threads are supported above the kernel and are implemented by a thread library at the user

level. The library provides support for thread creation, scheduling, and management with no

support from the kernel.

 Because the kernel is unaware of user-level threads, all thread creation and scheduling are done in

user space without the need for kernel intervention.

 User-level threads are generally fast to create and manage User-thread libraries include POSIX

Pthreads, Mach C-threads,and Solaris 2 UI-threads.

Kernel level

 Kernel threads are supported directly by the operating system: The kernel performs thread

creation, scheduling, and management in kernel space.

 Because thread management is done by the operating system, kernel threads are generally

slower to create and manage than are user threads.

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 72

 Most operating systems-including Windows NT, Windows 2000, Solaris 2, BeOS, and Tru64

UNIX (formerly Digital UN1X)-support kernel threads.

Multi threading Models

There are three models for thread libraries, each with its own trade-offs

 Many threads on one LWP (many-to-one)

 One thread per LWP (one-to-one)

 Many threads on many LWPs (many-to-many)

Many-to-one

The many-to-one model maps many user-level threads to one kernel thread. Advantages: Totally

portable More efficient Disadvantages: cannot take advantage of parallelism The entire process is

block if a thread makes a blocking system call Mainly used in language systems, portable libraries like

solaris 2

 One-to-one

The one-to-one model maps each user thread to a kernel thread. Advantages: allows parallelism Provide

more concurrency Disadvantages: Each user thread requires corresponding kernel thread limiting the

number of total threads Used in Linux Threads and other systems like Windows 2000, Windows NT

Many-to-many

The many-to-many model multiplexes many user-level threads to a smaller or equal number of kernel

threads. Advantages: Can create as many user thread as necessary Allows parallelism Disadvantages:

kernel thread can the burden the performance Used in the Solaris implementation of Pthreads

SMT and CMP architectures

 Simultaneous multithreading (SMT) is one of the two main implementations of multithreading, the

other form being temporal multithreading.

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 73

 In temporal multithreading, only one thread of instructions can execute in any given pipeline stage

at a time. In simultaneous multithreading, instructions from more than one thread can be executing

in any given pipeline stage at a time.

 This is done without great changes to the basic processor architecture: the main additions needed

are the ability to fetch instructions from multiple threads in a cycle, and a larger register file to

hold data from multiple threads.

 The number of concurrent threads can be decided by the chip designers, but practical restrictions

on chip complexity have limited the number to two for most SMT implementations.

 Because the technique is really an efficiency solution and there is inevitable increased conflict on

shared resources, measuring or agreeing on the effectiveness of the solution can be difficult.

 However, measured energy efficiency of SMT with parallel native and managed workloads on

historical 130 nm to 32 nm Intel SMT (Hyper-Threading) implementations found that in 45 nm

and 32 nm implementations, SMT is extremely energy efficient, even with inorder Atom

processors [ASPLOS'11]. In modern systems, SMT effectively exploits concurrency with very

little additional dynamic power.

 That is, even when performance gains are minimal the power consumption savings can be

considerable.

 Some researchers have shown that the extra threads can be used to proactively seed a shared

resource like a cache, to improve the performance of another single thread, and claim this shows

that SMT is not just an efficiency solution. Others use SMT to provide redundant computation, for

some level of error detection and recovery.

 However, in most current cases, SMT is about hiding memory latency, increasing efficiency, and

increasing throughput of computations per amount of hardware used.

CMP Architectures

 Superscalar means executing multiple instructions at the same time while chip-level multithreading

(CMT) executes instructions from multiple threads within one processor chip at the same time.

There are many ways to support more than one thread within a chip, namely:

 Interleaved multithreading: Interleaved issue of multiple instructions from different threads, also

referred to as temporal multithreading.

 It can be further divided into fine-grain multithreading or coarse-grain multithreading depending

on the frequency of interleaved issues. Fine-grain multithreading—such as in a barrel processor—

issues instructions for different threads after every cycle, while coarse-grain multithreading only

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 74

switches to issue instructions from another thread when the current executing thread causes some

long latency events (like page fault etc.).

 Coarse-grain multithreading is more common for less context switch between threads. For

example, Intel's Montecito processor uses coarse-grain multithreading, while Sun's UltraSPARC

T1 uses fine-grain multithreading. For those processors that have only one pipeline per core,

interleaved multithreading is the only possible way, because it can issue at most one instruction per

cycle.

 Simultaneous multithreading (SMT): Issue multiple instructions from multiple threads in one

cycle. The processor must be superscalar to do so.

 Chip-level multiprocessing (CMP or multicore): integrates two or more processors into one chip,

each executing threads independently.

 Any combination of multithreaded/SMT/CMP.

 The key factor to distinguish them is to look at how many instructions the processor can issue in

one cycle and how many threads from which the instructions come.

 For example, Sun Microsystems' UltraSPARC T1 (known as "Niagara" until its November 14,

2005 release) is a multicore processor combined with fine-grain multithreading technique instead

of simultaneous multithreading because each core can only issue one instruction at a time

 Single-core microprocessor performance increases are beginning to slow [1] due to:

o Increasing power consumption (>100 W)

o Increasing heat dissipation

o Diminishing performance gains from ILP & TLP

 As a result manufactures are turning to a multi-core microprocessor approach

▫ Multiple smaller energy efficient processing cores are integrated onto a single chip

▫ Improves overall performance by performing more work concurrently

▫ The latencies associated with chip-to-chip communication disappear, Shared data structures

are much less of a problem.

CMP Architectures

• Two general types of multi-core or chip multiprocessor (CMP) architectures

▫ Homogeneous CMPs – all processing elements (PEs) are the same

▫ Heterogeneous CMPs – comprised of different PEs

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 75

• Homogenous dual-core processors for PCs are now available from all major manufactures

• Heterogeneous CMPs are available in the form of multiprocessor systems-on-chips (MPSoCs)

Single chip Multiprocessor architecture

CMP Advantages

 CMPs have several advantages over single processor solutions

o Energy and silicon area efficiency

 By Incorporating smaller less complex cores onto a single chip

 Dynamically switching between cores and powering down unused cores [5]

o Increased throughput performance by exploiting parallelism

 Multiple computing resources can take better advantage of instruction, thread, and

process level parallelism

Design Issues

 Superscalar technique: which tries to increase Instruction level parallelism

(ILP) by executing multiple instructions at the same time (termed:

simultaneously); by "simultaneously" dispatching instructions (termed:

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 76

instruction dispatching) to multiple redundant execution units built inside

the processor.

 Chip-level multithreading (CMT) technique: using Thread level

parallelism (TLP) in order to executes instructions from multiple threads

within one processor chip at the same time.

 There are many ways to support more than one thread inside a chip, namely:

 Interleaved multithreading (IMT) : Interleaved issue of multiple

instructions from different threads, also referred to as Temporal

multithreading. It can be further divided into fine-grain multithreading or

coarse-grain multithreading depending on the frequency of interleaved

issues. Fine-grain multithreading issues instructions for different threads

after every cycle, while coarse-grain multithreading only switches to issue

instructions from another thread when the current executing thread causes

some long latency events (like page fault etc.). Coarse-grain multithreading

is more common for less context switch between threads. For processors

with one pipeline per core, interleaved multithreading is the only possible

way, because it can only issue up to one instruction per cycle.

 Simultaneous multithreading (SMT): Issue multiple instructions from

multiple threads in one cycle. The processor must be superscalar to do so.

 Chip-level multiprocessing (CMP or Multi-core processor): integrates

two or more superscalar processors into one chip, each executes threads

independently.

Intel Multi-core architecture

 The Intel Core microarchitecture (previously known as the Next-Generation Micro-

Architecture) is a multi-core processor microarchitecture unveiled by Intel in Q1 2006.]

 It is based on the Yonah processor design and can be considered an iteration of the P6

microarchitecture, introduced in 1995 with Pentium Pro.

 The high power consumption and heat intensity, the resulting inability to effectively increase clock

speed, and other shortcomings such as the inefficient pipeline were the primary reasons for which

Intel abandoned the NetBurst microarchitecture and switched to completely different architectural

design, delivering high efficiency through a small pipeline rather than high clock speeds. It is

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 77

worth noting that the Core microarchitecture never reached the clock speeds of the Netburst

microarchitecture, even after moving to the 45 nm lithography.

 The first processors that used this architecture were code-named Merom, Conroe, and

Woodcrest; Merom is for mobile computing, Conroe is for desktop systems, and Woodcrest is for

servers and workstations.

 While architecturally identical, the three processor lines differ in the socket used, bus speed, and

power consumption. Mainstream Core-based processors are branded Pentium Dual-Core or

Pentium and low end branded Celeron; server and workstation Core-based processors are branded

Xeon, while desktop and mobile Core-based processors are branded as Core 2.

 Despite their names, processors sold as Core Solo/Core Duo and Core i3/i5/i7 do not actually use

the Core microarchitecture and are based on the Enhanced Pentium M and newer Nehalem/Sandy

Bridge/Haswell microarchitectures, respectively.

Heterogeneous multi-core processors

 A multi-core processor is a single computing component with two or more independent actual

central processing units (called "cores"), which are the units that read and execute program

instructions.

 The instructions are ordinary CPU instructions such as add, move data, and branch, but the

multiple cores can run multiple instructions at the same time, increasing overall speed for

programs amenable to parallel computing.

 Manufacturers typically integrate the cores onto a single integrated circuit die (known as a chip

multiprocessor or CMP), or onto multiple dies in a single chip package.

 Processors were originally developed with only one core. A dual-core processor has two cores (e.g.

AMD Phenom II X2, Intel Core Duo), a quad-core processor contains four cores (e.g. AMD

Phenom II X4, Intel's quad-core processors, see i5, and i7 at Intel Core), a 6-core processor

contains six cores (e.g. AMD Phenom II X6, Intel Core i7 Extreme Edition 980X), an 8-core

processor contains eight cores (e.g. Intel Xeon E7-2820, AMD FX-8350), a 10-core processor

contains ten cores (e.g. Intel Xeon E7-2850), a 12-core processor contains twelve cores.

 A multi-core processor implements multiprocessing in a single physical package. Designers may

couple cores in a multi-core device tightly or loosely.

 For example, cores may or may not share caches, and they may implement message passing or

shared memory inter-core communication methods.

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 78

 Common network topologies to interconnect cores include bus, ring, two-dimensional mesh, and

crossbar.

Homogeneous multi-core systems

 Homogeneous multi-core systems include only identical cores, heterogeneous multi-core systems

have cores that are not identical.

 Just as with single-processor systems, cores in multi-core systems may implement architectures

such as superscalar, VLIW, vector processing, SIMD, or multithreading.

 Multi-core processors are widely used across many application domains including general-

purpose, embedded, network, digital signal processing (DSP), and graphics.

 The improvement in performance gained by the use of a multi-core processor depends very much

on the software algorithms used and their implementation.

 In particular, possible gains are limited by the fraction of the software that can be run in parallel

simultaneously on multiple cores; this effect is described by Amdahl's law.

 In the best case, so-called embarrassingly parallel problems may realize speedup factors near the

number of cores, or even more if the problem is split up enough to fit within each core's cache(s),

avoiding use of much slower main system memory.

 Most applications, however, are not accelerated so much unless programmers invest a prohibitive

amount of effort in re-factoring the whole problem.
[3]

 The parallelization of software is a

significant ongoing topic of research.

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 79

IBM Cell Processor

 The IBM microprocessor is a chip made by IBM for their zEnterprise 196 mainframe computers,

announced on July 22, 2010.

 The processor was developed over a three year time span by IBM engineers from Poughkeepsie,

New York; Austin, Texas; and Böblingen, Germany at a cost of US$1.5 billion. Manufactured at

IBM's Fishkill, New York fabrication plant, the processor began shipping on September 10, 2010.

IBM stated that it was the world's fastest microprocessor at the time.

 The chip measures 512.3 mm
2
 and consists of 1.4 billion transistors fabricated in IBM's 45 nm

CMOS silicon on insulator fabrication process, supporting speeds of 5.2 GHz: at the time, the

highest clock speed CPU ever produced for commercial sale.

 The processor implements the CISC z/Architecture with a new superscalar, out-of-order pipeline

and 100 new instructions. The instruction pipeline has 15 to 17 stages; the instruction queue can

hold 40 instructions; and up to 72 instructions can be "in flight". It has four cores, each with a

private 64 KB L1 instruction cache, a private 128 KB L1 data cache and a private 1.5 MB L2

cache.

 In addition, there is a 24 MB shared L3 cache implemented in eDRAM and controlled by two on-

chip L3 cache controllers. There's also an additional shared L1 cache used for compression and

cryptography operations.

 Each core has six RISC-like execution units, including two integer units, two load-store units, one

binary floating point unit and one decimal floating point unit.

 The z196 chip can decode three instructions and execute five operations in a single clock cycle.

 The z196 chip has on board DDR3 RAM memory controller supporting a RAID like configuration

to recover from memory faults.

 The z196 also includes a GX bus controller for accessing host channel adapters and peripherals.

Additionally, each chip includes co-processors for cryptographic and compression functionality.

CS 2354 ADVANCED COMPUTER ARCHITECTURE

III CSE VII SEM Page 80

Shared Cache

 Even though the z196 processor has on-die facilities for symmetric multiprocessing (SMP), there

are 2 dedicated companion chips called the Shared Cache (SC) that each adds 96 MB off-die L4

cache for a total of 192 MB L4 cache.

 L4 cache is shared by all processors in the book. The SC chip consists of 1.5 billion transistors and

measures 478.8 mm
2
, manufactured with the same 45 nm process as the z196 chip.

 Each chip also has 24 MB L3 cache shared by the 4 cores on the chip.

Multi-chip module

 The zEnterprise System z196 uses multi-chip modules (MCMs) which allows for six z196 chips to

be on a single module.

 Each MCM has two shared cache chips allowing processors on the MCM to be connected with 40

GB/s links.

 The different models of the zEnterprise System have a different number of active cores. To

accomplish this, some processors in each MCM may have its fourth core

