Name :	
Roll No. :	A Annu (Y Kambilg Rel Under
Invigilator's Signature :	

CS/B.Sc. (H), BT/Genetics/MolBio/MicroBio/SEM-2/CH-201/2011 2011

CHEMISTRY

Time Allotted : 3 Hours

Full Marks : 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

GROUP – A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any *ten* of the following : $10 \times 1 = 10$

i) What is the oxidation state of iron in $K_3[Fe(CN)_6]$?

- a) + 2 b) + 3
- c) + 4 d) 4.

ii) An octahedral complex is formed when hybrid orbital of following type is involved

- a) sp^3 b) dsp^2
- c) sp^3d^2 d) sp^3d .

[Turn over

CS/B.Sc. (H), BT/Genetics/MolBio/MicroBio/SEM-2/CH2012011								
iii) The compressibility factor Z is given by								
	a)	$Z = PV/RT^2$	b)	Z = PV/2RT				
	c)	Z = PV/RT	d)	Z = 2PV/RT.				
iv)	The	e real gases show nearly ideal behaviour at						
	a)	a) low pressure and low temperature						
	b)	b) high pressure and low temperature						
	c)) high pressure and high temperature						
	d)	d) low pressure and high temperature.						
v)	Coet	coefficient of viscosity is expressed in						
	a)	dynes	b)	dynes sq				
	c)	dynes per sq. cm	d)	none of these.				
vi)	Whi	Which of the following compounds will show geometrical						
	isomerism ?							
	a)	Propene	b)	2-Butene				
	c)	Propyne	d)	2-Butyne.				
vii)	Mar	larkowinkoff's addition of HBr is not applicable in						
	a)	Propene	b)	1-Butene				
	c)	1-Pentene	d)	2-Butene.				
2708		2						

CS/B.Sc. (H), BT/Genetics/MolBio/MicroBio/SEM-2/CH-201/2011								
viii)	viii) Number of lone pairs in oxygen in $Pocl_3$ is							
	a)	1	b)	2				
	c)	3	d)	4.				
ix)	An example of radioactive inert gas is							
	a)	At	b)	Rn				
	c)	Ra	d)	Cf.				
X)	As c	charge remains same or	n the	cation with decrease in				
	size of the polarising power of the cation							
	a)	increases	b)	decreases				
	c)	remains same	d)	none of these.				
xi)	Wha	at is the limiting radius	ratio	for ZnS type crystals ?				
	a)	0.225 - 0.414	b)	0.414 - 0.732				
	c)	0.732 - 0.783	d)	none of these.				
xii)	Which one is a state function ?							
	a)	enthalpy	b)	work done				
	c)	heat change	d)	all of these.				

[Turn over

- 2. State VSEPR theory and in the light of the theory compare the bond angles in NH_3 and H_2O . 3+2
- Define and explain common ion effect. Using this effect how can Nacl be prepared from sea-water ?
 3 + 2
- 4. What is enthalpy ? How is it represented ? What are the adiabatic and isothermal processes ? $1+1+\left(1\frac{1}{2}\times 2\right)$
- 5. Write the Newmann projection of the following compounds having the specified conformation noted against each compound.
 - a) $CHCl_2 CHCl_2(+ac)$
 - b) $CH_3 CH NO_2 CH Cl NO_2(+sp)$
 - c) CH Cl Br CH (OH) $NH_2(+sc)$

What are conformers ? 3+2

- 6. Discuss Stoke's law with equation. 5
- 7. Discuss the structures of XeF₂ and XeOF₄. $2\frac{1}{2} \times 2$

- 8. a) What is Friedel Crafts alkylation reaction ? Explain the mechanism.
 - b) Write down the anti-Markownikoff's rule and explain it.
 - c) Illustrate polymerization with example.

(2+3)+(3+3)+4

9. Write short notes on any *three* of the following : 3×5

- a) Dipole-dipole interaction
- b) Hydrogen bonding
- c) Hybridisation
- d) $C_p C_v = R$.

2708

10. Define lattice energy and explain. Establish Barn-Haber cycle for the formation of sodium chloride crystal starting from metallic sodium and gaseous chlorine. What is radius ratio rule ? What are its limitations ? (2+2)+7+2+2

5 [Turn over

CS/B.Sc. (H), BT/Genetics/MolBio/MicroBio/SEM-2/CH201/2011 11. Draw Amagat's isotherms. How can van der Waal's equation be applied to explain the nature of these isotherms ? Establish the relation between critical constants and van der Waal's constants of a gas. Derive the equation of corresponding state. 3+3+6+3

- 12. Chelate effect is an entropy effect explain with example.Draw the structure and write hybridization state of the central atom in each of the following compounds :
 - i) Ni (CO)
 - $\text{ii)} \quad \Big[\text{CO}\big(\text{NH}_3\big)_4\text{Cl}_2\,\Big].$

Write the IUPAC names of the following compounds :

- i) $\left[\operatorname{CO}\,\operatorname{Cl}\left(\operatorname{NO}_{2}\right)\left(\operatorname{NH}_{3}\right)_{4}\right]\operatorname{Cl}$
- ii) $\left[\operatorname{Fe}(\operatorname{CO})_{5}\right]$.

What are stepwise and overall stability constants of equilibrium concept ? $5+3+\left(1\frac{1}{2}+1\frac{1}{2}\right)+4$

- CS/B.Sc. (H), BT/Genetics/MolBio/MicroBio/SEM-2/CH-201/2011 13. What is 'butane-gauche' interaction ? Calculate the percentage of anti and gauche forms of *n*-butane at 298° K ($\Delta H^\circ = -0.8$ kcal mol⁻¹ for anti-gauche equilibrium). Write down the preferred conformation for the following compounds :
 - i) $CH_3 CH_2 CH_2 CI$
 - ii) $CH_3 CH_2 CH = O.$

Write down the 'chair' and 'boat' conformations of cyclohexane and discuss their relative stability.

$$3+4+\left(1rac{1}{2}+1rac{1}{2}
ight)+\left(2+3
ight)$$

[Turn over