Name :	
Roll No. :	And Annual of Conception

Invigilator's Signature :

CS/B.Tech(ECE-NEW,PWE-NEW)/SEM-4/PH-401/2012 2012 PHYSICS-II

Time Allotted : 3 Hours

Full Marks: 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

GROUP – **A**

(Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any *ten* of the following : $10 \times 1 = 10$
 - i) The dimension of $\mu_0 t_0$ is
 - a) $L^{-2}T^{-2}$ b) $L^{-2}T^{2}$
 - c) $L T^{-1}$ d) $L^{-1} T^{-1}$.

ii) The displacement current arises due to

- a) positive charge only
- b) negative charge only
- c) time varying electric field
- d) magnetic monopole.

[Turn over

- iii) If the Fermi energy of metal (in 3d) at thermal equilibrium is 15 eV, then the average energy of the electron is
 - a) 9 eV b) 10 eV
 - c) 15 eV d) 12 eV.
- iv) Which of the following functions are eigen functions of the operator $\frac{d^2}{dx^2}$?
 - a) $\psi c \log x$ b) ψcx^2 c) $\psi \frac{c}{x}$ d) ψce^{-mx}

(where *c* and *m* are arbitrary constants).

- v) BE statistics is applicable for
 - a) ideal gas b) electron
 - c) proton d) photon.
- vi) The degrees of freedom for a system of *N* particles with*K* constraint relation is given by
 - a) N-K b) N-3K
 - c) 3N K d) 3(N K).

CS/B.Tech(ECE-NEW,PWE-NEW)/SEM-4/PH-401/2012 vii) The number of ways in which 4 identical bosons can be distributed in 3 different energy states is

- a) 15 b) 6
- c) 144 d) 24.

viii) The equation of continuity essentially represents

- a) conservation of mass
- b) conservation of charge
- c) conservation of potential
- d) conservation of force.
- ix) The ignorable co-ordinate corresponding to the motion of a particle under central force is given by

c)
$$\dot{r}$$
 d) $\dot{\theta}$.

x) An electric field in a certain region has the components $E_x = ax - bz$, $E_y = -ay + bz$ and $E_z = b$ (y - x). Then which of the following statements is correct ?

(*a, b* are positive constants)

- a) \vec{E} is an electrostatic field
- b) There is free charge in space
- c) \vec{E} is irrotational
- d) \vec{E} is solenoidal.

- xi) The vector potential \overrightarrow{A} corresponding to a constant magnetic field \overrightarrow{B} along *z*-axis can be represented by
 - a) $Bz \hat{k}$
 - b) $\frac{B}{2}\left(\hat{i}x-\hat{j}y\right)$
 - c) $B\left(\hat{j}x-\hat{i}y\right)$
 - d) $\frac{B}{2}\left(\hat{j}x-\hat{i}y\right)$.
- xii) Skin depth for a conductor in reference to electromagnetic wave varies
 - a) inversely as frequency
 - b) directly as frequency
 - c) inversely as square root of frequency
 - d) directly as square root of frequency.
- xiii) The expectation value of the position of a particle in a one-dimensional potential box of length

L (V(x) = 0; 0 < x < L, V(x) = ∞ at x = \neq L) is a) L b) $\frac{L}{2}$ c) $\frac{L}{3}$ d) $\frac{L}{4}$.

- a) velocity of the particle
- b) strength of the field
- c) charge of the particle
- d) mass of the particle.

xv) The electronic polarizability (α_e) of an atom is related to its radius (*R*) as

- a) $\alpha_e \propto R^3$ b) $\alpha_e \propto R^2$
- c) $\alpha_e \propto R$ d) $\alpha_e \propto R^0$.

GROUP – B

(Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$

- 2. Write down the Maxwell's equations of an electromagnetic field. Hence, obtain the wave equation for electric filed in free space. 3 + 2
- 3. State Stokes theorem in vector calculus. Find the unit vectors perpendicular to $x^2 + y^2 z^2 = 100$ at the point (1, 2, 3). 2+3

5

[Turn over

- 4. State the Amperei's law of mangnetostatics. Obtain its differential form from the integral one. Apply Ampere's law of magnetostatics to deduce an expression of magnetic field *B* due to a straight conductor of infinite length carrying current *I*. 1 + 2 + 2
- a) Four distinguishable particles each of which can be in one of the energy states ∈, 2∈, 4∈ and 6∈ having total energy 6∈. Find all possible number of distributions of all the particles in the energy states. Write the number of microstates possible and the number of microstates corresponding to each macrostate.
 - b) Sketch the nature of Fermi-Dirac distribution function at T = 0 and T > 0 K in the same graph. 3 + 2
- 6. Show that if the Lagrangian does not depend on time, then the Hamiltonian is a constant of motion. Write down the Hamiltonian and obtain the equation of motion for a simple harmonic oscillator. 3 + 1 + 1
- 7. a) Find the value of $\begin{bmatrix} \hat{L}_{x}, \hat{z} \end{bmatrix}$.
 - b) Show that the eigenvalues of a Hermitian operation are real. Give an example of a Hermitian operator in quantum mechanics. 2+2+1

- 8. a) Distinguish between holonomic and non-holonomic constraints. 2
 - b) Write down the equation of constant, specify the nature of constant and calculate the degrees of freedom in each case :
 - A particle constrained to move on the surface of a sphere
 - ii) A simple pendulum with a fixed suppert. 3 + 3
 - c) Show that if a generalized coordinate is cyclic in Lagrangian, then the corresponding generalized momentum will be conserved.
 3
 - d) Find the equation of motion using Hamilton's canonical equation for a system comprising masses m_1 and m_2 connected by a massless string of length *L* through a frictionless pulley such that $m_1 > m_2$.

4157 7 [Turn over

- 9. a) What do you mean by μ and Γ -phase space ? Find the area in the phase space of a one-dimensional harmonic oscillator of mass *m* whose total energy is *E*. 2 + 2
 - b) Derive Planck's radiation law from *BE* statistics. State clearly the assumptions made in the theory. 3 + 2
 - c) What is Fermi energy ? Calculate the degeneracy function g(E) as a function of energy E for an ideal Fermi gas. 1 + 3
 - d) Evaluate the temperature at which there is one per cent probability that a state with energy of 0.6 eV above the Fermi energy will be occupied by an electron. 2
- 10. a) Give the physical interpretation of the wave of function $\psi(x)$.
 - b) Show that for a stationary state given by the wave $-\frac{i_{Ent}}{h}$ function $\psi(x, t) = \psi(x) e^{-h}$, the expectation value of energy is equal to the energy eigenvalue. 3
- 4157

CS/B.Tech(ECE-NEW,PWE-NEW)/SEM-4/PH-401/2012
c) A particle is in a cubic box with infinitely hard walls whose edges are *L* units long. The wave function is given by

$$\psi(x, y, z) = A \sin\left(\frac{n\pi x}{L}\right) \sin\left(\frac{n\pi y}{L}\right) \sin\left(\frac{n\pi z}{L}\right).$$

Find the value of A. Find the ground state and first excited energy eigenvalues. Are they non-degenerate ? Explain. 2 + 2 + 2

d) Show that the function $\psi(x) = Cx e^{-\frac{x^2}{2}}$ is an eigenfunction of the operator $\left(x^2 - \frac{d^2}{dx^2}\right)$. Find the corresponding eigenvalue. 3 + 1

- 11. a) If \hat{a} and \hat{b} are unit vectors and θ is the angle between them, show that $2 \sin \frac{\theta}{2} = |\hat{a} \hat{b}|$. 2
 - b) Show that the electric field is always perpendicular to the equipotential surface.
 - c) Show the

$$\vec{A} = (6xy + z^3)\hat{i} + (3x^2 - z)\hat{j} + (3xz^2 - y)\hat{k}$$
 is
irrotational. Find ϕ such that $\vec{A} = \vec{\Delta}\phi$. $2 + 3$

4157

[Turn over

- d) Calculate the work done in moving a particle in a force field given by $\vec{F} = 3xy\hat{i} - 4z\hat{j} + 8y\hat{k}$ along the curve $x = t^2 + 1$, $y = t^2$, $z = t^3$ from t = 0 to t = 1. 3
- e) Show that $\int_{S} \left(ax\hat{i} + by\hat{j} + cz\hat{k} \right) \cdot d\vec{S} = \frac{4\pi}{3} (a + b + c)$

where *S* is the surface of the sphere

$$x^2 + y^2 + z^2 = 1.$$
 2

12. a) A spherically symmetric charge distribution is given by $\rho(r) = \rho_0 \left(1 - \frac{r^2}{a^2}\right)$ for $0 \le r \le a$, ρ_0 is a constant.

$$= 0$$
 for $r > a$

Calculate the

- i) total charge
- ii) the electric field intensity \vec{E} and potential *V* both inside (r < a) and outside (r > a) regimes.

$$1 + 2 + 2$$

b) If ϕ is a scalar potential associated with the electric field \vec{E} and \vec{A} is the vector potential associated with the magnetic induction \vec{B} , show that they must satisfy the equation $\Delta^2 \phi + \frac{\partial}{\partial t} \left(\vec{\Delta} \cdot \vec{A} \right) = -\frac{\rho}{\in_0}$.

- c) The intensity of sunlight reaching the earth's surface is about 1300 W/m². Calculate the strength of the electric and magnetic fields of the incoming sunlight. 3
- N charged spherical water drops, each having a radius *r* and charge *q*, coalesce into a single big drop. What is the potential of the big spherical drop ?