Reg No.										

B. E.IB.Tech (Full Time) DEGREE END SEMESTER EXAMINATIONS, April 2014 CIVIL Engineering
 (Common to Geo-inf. Engg., Agri \& Irr. Engg., E\&I Engg., Rubber and Plastic Tech., Chemical Engg., Textile Tech., and Leather Tech.)
 FOURTH SEMESTER

MA 8353 NUMERICAL METHODS.

 (REGULATION 2012)Time: 3 Hours.
Answer All questions
Max. Mark: 100

PART-A

(10 X $2=20$)

1. Solve the system of equations $3 x+2 y=9, \quad 5 x-y=2$ by Gaussian elimination method.
2. Find all eigenvectors of the matrix $\left[\begin{array}{cc}2 & -3 \\ -3 & 2\end{array}\right]$, by Jacobi's method.
3. Form the Newton's divided difference table for the following data:

$$
\begin{array}{cccccc}
x: & 0 & 1 & 2 & 4 & 5 \\
y: & 1 & 14 & 15 & 5 & 6
\end{array} .
$$

4. Fit a polynomial from the following data using Newton's backward difference interpolation formula:

$$
\begin{array}{ccccc}
x: & 1 & 3 & 5 & 7 \\
y: & 5 & 9 & 21 & 41
\end{array} .
$$

5. Write down the formula to get $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ using Newton's forward difference at $x=x_{0}$.
6. State the order of error in the trapezoidal rule and Simpson's one third rule.
7. Given $y^{\prime}=x^{2}+y, y(0)=1$, by using Euler's method find $y(0.1)$ and $y(0.2)$.
8. State Adam-Bashforth predictor-corrector formulae.
9. State implicit Crank-Nicolson's finite difference scheme for $\frac{\partial u}{\partial t}=a^{2} \frac{\partial^{2} u}{\partial x^{2}}$.
10. Solve $\nabla^{2} U=0$ numerically for the following square mesh with boundary values as shown in figure.

(i) Solve, by finite difference method, the boundary value problem $\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+4 y=e^{3 x}$, where $y(0)=0$ and $y(1)=-2$, taking $h=0.25$. (Correct to 4 decimal places).
(ii) Solve $16 u_{x x}-u_{t t}=0$ for u at the pivotal points, given $u(0, t)=u(4, t)=0, u_{t}(x, 0)=0$ and $u(x, 0)=x(4-x)$ for half of the period of vibration. (taking $h=0.5$ and $k=0.125$).
12.a)(i) Find a real root of the equation $\cos x=3 x-1$ correct to 3 decimal places by fixed point iteration method.
(ii) Solve the given system of equations by Gauss-Seidel method

$$
\begin{align*}
x+6 y-2 z & =-1 \\
5 x-2 y+z & =-4 \tag{8}\\
3 x+y+5 z & =13
\end{align*}
$$

OR

b)(i) Find, by Newton-Raphson method, the real root of $e^{x}-2 x-1=0$ correct to 4 decimal places.
(ii) Using Gauss-Jordan method, find the inverse of the matrix

$$
\left[\begin{array}{ccc}
2 & 4 & 3 \tag{8}\\
0 & 1 & 1 \\
2 & 2 & -1
\end{array}\right]
$$

13.a)(i) Find the interpolating polynomial for the following data, using Lagrange's formula:

$$
\begin{array}{lccccc}
x & : & 1 & 3 & 4 & 6 \tag{8}\\
f(x): & 0 & 22 & 57 & 205
\end{array} \text {. Hence find } f(5)
$$

(ii) Fit a curve $y=a x^{b}$ to the following data; by the method of least squares, and estimate the value of y when $x=3.5$

$$
\begin{array}{cccccc}
x: & 1 & 2 & 3 & 4 & 5 \\
y: & 0.5 & 2 & 4.5 & 8 & 12.5 \tag{8}
\end{array} .
$$

b) Obtain the cubic spline approximation for the function $y=f(x)$ from the following data, given that $y_{0}{ }^{\prime \prime}=y_{3}{ }^{\prime \prime}=0$,

$$
\begin{array}{ccccc}
x: & -1 & 0 & 1 & 2 \\
y: & -1 & 1 & 3 & 35 \tag{16}
\end{array} .
$$

Hence find $f(0.5)$ and $f(1.5)$.
14.a)(i) Find the values of $f^{\prime}(8)$ and $f^{\prime \prime}(9)$ from the following table, using divided difference interpolation formula:

$$
\begin{array}{lcccccc}
x & : & 4 & 5 & 7 & 10 & 11 \\
f(x): & 48 & 100 & 294 & 900 & 1210 \tag{8}
\end{array} .
$$

(ii) Find the approximate value, correct to 4 decimal places, of $I=\int_{0}^{1} \frac{d x}{1+x}$ using Trapezoidal rule with $h=\frac{1}{2}, \frac{1}{4}, \frac{1}{8}$ and then Romberg's method.
OR
b)(i) Using three point Gaussian quadrature formula, evaluate $I=\int_{1}^{2} \frac{d x}{1+x^{2}}$.
(ii) Numerically evaluate $\int_{0}^{1} \int_{0}^{1} \frac{d x d y}{3-x^{2}-y^{2}}$ by taking $\Delta x=\Delta y=0.25$, using Simpson's $1 / 3$ rule, give the value correct to 4 decimal places.
15.a)(i) Using Taylor's series method, compute $y(0.2)$ correct to 4 decimal places given $\frac{d y}{d x}=1-x y$ and $y(0)=0$, taking $h=0.1$.
(ii) Using fourth order Runge-Kutta method, solve $\frac{d^{2} y}{d x^{2}}-x\left(\frac{d y}{d x}\right)^{2}+y^{2}=0$ for $x=0.2$ correct to 4 decimal places with initial conditions $y(0)=1, \quad y^{\prime}(0)=0$, taking $h=0.2$.
b) Find $y(0.2)$ by Euler's modified method and $y(0.3)$ by fourth order Runge-kutta method, given that $\frac{d y}{d x}=x y+y^{2}, y(0)=1, y(0.1)=1.1169$ and then find the value of $y(0.4)$ by using Milne predictor-corrector method, correct to 4 decimal places.

\&\&\&\&\&\&\&

