B. Tech. Degree III Semester Examination November 2013

EC/EI 1305 SOLID STATE ELECTRONICS

(2012 Scheme)

Time: 3 Hours		rs Maximum Ma	rks : 100
		PART A (Answer ALL questions)	
		(8 >	< 5 = 40)
I.	(a)	Discuss the postulates of quantam mechanics	
	(b)	Explain the Fermi-Dirac distribution function applied to semiconductors	
	(c)	Discuss the different types of breakdown that occurs in the diode.	
	(d)	Briefly explain the different types of P-N junction diodes based on fabrication process.	
	(e)	Explain the operation of a JFET as a VVR device?	
	(f)	Explain the principle of operation of a mosfet device.	
	(g)	Write notes on base width modulation and punch through effect	
	(h)	Explain the function of transistor as a switch with suitable diagram.	
		PART B	
		(4 ×	(15 = 60)
II.	(a) (b)	Derive the expression for electron and hole concentration at equilibrium. A Ge sample is doped with $5x10^{13}$ arsenic atoms/cm ³ . Determine the carrier concentration and fermi level position at 300^{0} K (n:for Ge = $2.5x10^{13}$ cm ³ at 300^{0} K)	(10) (5)
		OR	(10)
III,	(a) (b)	Obtain the Schrodinger wave quation of a particle in potential well. An-type Si bar, 0.1cm long and $100 \mu m^2$ in cross sectional area has a major carrier concentration of $5 \times 10^{15} \mathrm{cm}^{-3}$ and electron mobility is $1300 \mathrm{cm}^2/\mathrm{V}$ at $300^0 \mathrm{K}$. What is the resistance of the bar?	(5)
IV.		Derive the ideal diode equation.	(15)
3.7	(-)	OR Derive an expression for depletion layer width of a P-N junction diode.	(10)
V.	(a) (b)	Plot the V-I characteristics of A Ge & Si diode. Explain.	(5)
VI.		What is a mos capacitor? Explain the C-V characteristics of an ideal mos system with suitable diagram. Obtain the expression for the threshold voltage also. OR	(15)
VII.	(a)	Explain the principle of operation of JFET.	(5)
	(b)	Derive the expression for IDSS.	(5)
	(c)	Discuss the V-I characteristics of a Mosfet.	(5)
VIII.	(a)	Explain the V-I characteristics of a transistor in CE configuration with suitable diagrams	(9)
	(b)	Explain the various current components of a PNP transistor with suitable diagrams. OR	(6)
IX.	(a)	Draw Ebers - Moll Model of PNP transistor and write the Ebers-Moll equations. Explain the terms involved.	(10)
	(b)	Write notes on Emitter crowding and Emitter injection efficiency	(5)