82 : 1st half-12-(j)JP

SEM-III (R) ETRX - ENARS GN-9320

Con. 4773-12.

(3 Hours) [Total Marks: 100

N.B.: (1) Question No. 1 is **compulsory** and solve any **four** questions out of remaining six.

- (2) Assume suitable data if necessary and mention that assumption while solving that questions.
- (3) Figures to the right indicate full marks.

1. Any five :--

20

(a) Following is a tree of graph (shown with firm lines) shown in linear graph of a network obtain fundamental cutset matrix.

- (b) What are the conditions for a rational function F(s) with real coefficients to be "positive real function?"
- (c) Find the Z-parameters for the circuit shown.

(d) Draw the dual network of the following circuit and prove that it is a dual one.

Con. 4773-GN-9320-12.

2

- (e) For the network shown find :-
 - (i) Power from voltage source
 - (ii) Voltage across A-B.

(f) The circuit is operating under steady state condition when switch is at position 'a' of at t = 0, the switch is moved to position 'b'. Determine current I(s) and i(t).

2. (a) Find V_a , V_b and V_c using Nodal Analysis.

(b) Find the Norton's equivalent circuit across terminals a-b of given circuit and hence 10 the power discipated in 10Ω resistor.

10

Con. 4773-GN-9320-12. - 3

3. (a) State giving appropriate reasons whether the following functions are "positive 10 real functions."

(i)
$$F(s) = \frac{2s^3 + 2s^2 + 3s + 2}{s^2 + 1}$$

(ii)
$$Y_2(s) = \frac{s^3 + 5s}{s^4 + 2s^2 + 1}$$

(b) Realise :—

(i)
$$Y(s) = \frac{s^4 + 6s^2 + 4}{2s^3 + 4s}$$
 in Cauer II form.

(ii)
$$Z(s) = \frac{4(s^2 + 1)(s^2 + 16)}{s(s^2 + 4)}$$
 in Foster I form.

 (a) For the network shown find branch currents and branch voltages using loop current 10 analysis. This is to be solved by graph theory.

(b) Graph of a given network is to be drawn. Also find Aa, A, B and Q matrices for 10 the same. How many trees are possible in the above graph?

Con. 4773-GN-9320-12.

1

(a) Using Laplace transform find i(t) if the switch is closed at t = 0. Assume initial 10 conditions to be zero.

(b) A triangular voltage pulse of duration T and peak value unity is switched in to a 10 series RL circuit which is initially relaxed. Determine i(t).

6. (a) Two identical sections of this network are in parallel. Obtain Y-parameters for 10 connected network.

(b) Define ABCD parameters and relate them to other parameters as indicated.

10

- (i) A and C in terms of Z
- (ii) B in terms of Y
- (iii) D in terms of H.

Con. 4773-GN-9320-12.

- 5
- 7. (a) A series R-L circuit with R = 10Ω and L = 1H is applied with constant 20V voltage 10 at t = 0. Find the time at which $V_R = V_L$.
 - (b) Find i, $\frac{di}{dt}$, $\frac{d^2i}{dt}$ at $t = 0^+$ in the following network when the switch is changed 10 from position 1 to 2 at t = 0. Steady state condition reached before switching.

