Name :	
Roll No. :	Construction and California

Invigilator's Signature :

CS/B.TECH(NEW)APM/TT/AUE/CHE/ME/ PE/CE/SEM-4/M-402/2012

2012 MATHEMATICS-III

Time Allotted : 3 Hours

Full Marks : 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

GROUP – A

(Short Answer Type Questions)

Answer any *ten* questions : $10 \times 2 = 20$

- 1. a) If $f(x) = x + x^2$, $-\pi \le x \le \pi$ be represented in a Fourier series as $a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$, then find the value of a_0 .
 - b) State Fourier Integral theorem.
 - c) If F(s) is the Fourier transform of f(x), then find the Fourier transform of f(ax).
 - d) Find the residue of $f(z) = \frac{2 + 3 \sin \pi z}{z(z-1)^2}$ at z = 1.
 - e) Find the value of $\int_{C} \frac{z}{z-1} dz$ where *C* is the curve defined by $|z| = \frac{1}{2}$.

f) Find the poles of the function $f(z) = z^2 / \left\{ (z-1)^2 (z+2) \right\}$.

[Turn over

4152

- g) If a Poisson variate X is such that P(X = 1) = PFind P(X = 4).
- h) For any two events *A* and *B* (may not be mutually exclusive), prove that P(A+B) = P(A) + P(B) - P(AB).
- i) Find the value of *p* so that the function $(2x x^2 + py^2)$ is harmonic.
- j) Find the value of $J_1(x)$.
- k) Prove that $(2n + 1)x P_n = (n + 1)P_{n+1} + nP_{n-1}$
- 1) Find the ordinary and singular points of the differential equation $x^2(1+x)^2 \frac{d^2y}{dx^2} + (x^2-1)\frac{dy}{dx} + 2xy = 0$.

on
$$x^{2}(1+x)^{2} \frac{d^{2}y}{dx^{2}} + (x^{2}-1) \frac{dy}{dx} + 2xy = 0$$

- m) Find the bilinear transformation which maps $z = 0, 1, \infty$ onto $\omega = -1, -i, 1$ respectively.
- n) Find the value of $\int_{-1}^{1} P_0(x) dx$ where $P_n(x)$ is a Legendre's
 - polynomial of degree *n*.
- o) Write down the Bessel's equation of order 2.

GROUP – B

Answer any *five* questions taking at least *one* question from each Modules. : $5 \times 10 = 50$

Module I : Fourier Series and Fourier Transform

- 2. a) Expand f(x) = x, $-\pi \le x \le \pi$ in Fourier series. Hence deduce that $\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \dots$ 4 + 1
 - b) Find the Fourier sine transform of f(x), where

$$f(x) = \begin{cases} 1, & 0 < x \le \pi \\ 0, & x > \pi \end{cases}$$

and hence evaluate the integral $\int_{0}^{\infty} \left(\frac{1-\cos p\pi}{p}\right) \sin px \, dp$. 3 + 2

4152

$$CS/B.TECH(NEW)APM/TT/AUCCHE/ME/PE/CE/SEM-4/M-402/2012$$
3. a) Find the Fourier series of $f(x) = x^2$, $-\pi \le x = x^2$.
Hence prove that $1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots = \frac{\pi^2}{12}$. $4 + 1$
b) Find the function whose Fourier cosine transform is $\frac{\sin \alpha_S}{s}$. 5
Module II : Calculus of Complex variable
4. a) Using Cauchy's Residue theorem, prove that
$$\int_{0}^{2\pi} \frac{d\theta}{2 + \cos \theta} = \frac{2\pi}{\sqrt{3}}.$$
5. b) Evaluate $\oint_{c} \frac{e^{2z}}{(z+1)^4} dz$
where C is the circle $|z| = 3$. 5
5. a) If $u = x^2 - y^2$ and $v = -\frac{y}{x^2 + y^2}$, then prove that both u and v are harmonic. 5
b) Find the zeros and their orders of the function
 $f(z) = \frac{z^5 - 1}{z^2 + 5}.$
6. a) Expand $f(z) = \frac{z}{(z-1)(z-2)}$ in Laurent's series for $1 < |z| < 2.$
b) Show that the function $f(z) = \sqrt{|xy|}$ is not analytic at the origin, although the Cauchy-Riemann conditions are satisfied at that point. 5
b) True urge contour recovering the function z by the origin, although the Cauchy-Riemann conditions are satisfied at that point.

7. a) Two urns contain respectively 5 white, 7 black balls and 4 while, 2 black balls. One of the urns is selected by the toss of a fair coin and then 2 balls are drawn without replacement from the selected urn. If both balls are white, what is the probability that the first urn is selected? 5

[Turn over

Find the mean value of *x* and the distribution function. 3 + 2

- 8. a) An integer is chosen at random from the first 200 positive integers. What is the probability that the integer chosen is divisible by 6 or by 8 ? 5
 - b) A random variable *X* has the following probability function :

	X	0	1	2	3	4	5	6	7	
	<i>P</i> (<i>x</i>)	0	Κ	2K	2K	3K	K ²	$2K^2$	$7K^2 + K$	
Obtain the value of K and estimate P ($X < 6$) and										
P(0 < X < 5).										

Module IV : PDE and Series solution of ODE.

9. Use Laplace transform to solve the one dimensional wave equation
$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$
 ($x > 0, t > 0$)
where $u(x, 0) = 0, \quad \frac{\partial u}{\partial t}(x, 0) = 0, x > 0$
and $u(0, t) = F(t), u(\infty, t) = 0, t \ge 0$. 10

10. Solve the one dimensional heat equation $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$ by the method of separation of variables.

11. a) Find the series solution of *ODE*

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + x\frac{\mathrm{d}y}{\mathrm{d}x} + x^2 y = 0 \quad \text{about } x = 0.$$
 5

b) Show that $\int_{-1}^{1} x^2 p_{n-1}(x) p_{n+1}(x) dx = \frac{2n(n+1)}{(2n-1)(2n+1)(2n+3)}$

4152