
 Name :
 Roll No. :
 \qquad $\ldots \ldots$ viesh Invigilator's Signature :
 CS / B.TECH(NEW)APM / TT / AUE / CHE / ME / PE / CE /SEM-4 / M-402 / 2012 2012
 MATHEMATICS-III

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Short Answer Type Questions)

Answer any ten questions :
$10 \times 2=20$

1. a) If $f(x)=x+x^{2},-\pi \leq x \leq \pi$ be represented in a Fourier series as $a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)$, then find the value of a_{0}.
b) State Fourier Integral theorem.
c) If $F(\mathrm{~s})$ is the Fourier transform of $f(x)$, then find the Fourier transform of $f(a x)$.
d) Find the residue of $f(z)=\frac{2+3 \sin \pi z}{z(z-1)^{2}}$ at $z=1$.
e) Find the value of $\int_{c} \frac{z}{z-1} \mathrm{~d} z$ where C is the curve defined by $|z|=\frac{1}{2}$.
f) Find the poles of the function $f(z)=z^{2} /\left\{(z-1)^{2}(z+2)\right\}$.
g) If a Poisson variate X is such that $P(X=1)=P(X=2)$, Find $P(X=4)$.
h) For any two events A and B (may not be mutually exclusive), prove that
$P(A+B)=P(A)+P(B)-P(A B)$.
i) Find the value of p so that the function $\left(2 x-x^{2}+p y^{2}\right)$ is harmonic.
j) Find the value of $J_{\frac{1}{2}}(x)$.
k) Prove that $(2 n+1) x P_{n}=(n+1) P_{n+1}+n P_{n-1}$
l) Find the ordinary and singular points of the differential equation $x^{2}(1+x)^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+\left(x^{2}-1\right) \frac{\mathrm{d} y}{\mathrm{~d} x}+2 x y=0$.
m) Find the bilinear transformation which maps $z=0,1, \infty$ onto $\omega=-1,-i, 1$ respectively.
n) Find the value of $\int_{-1}^{1} P_{0}(x) \mathrm{d} x$ where $P_{n}(x)$ is a Legendre's polynomial of degree n.
o) Write down the Bessel's equation of order 2.

GROUP - B
Answer any five questions taking at least one
question from each Modules. : $5 \times 10=50$

Module I : Fourier Series and Fourier Transform

2. a) Expand $f(x)=x,-\pi \leq x \leq \pi$ in Fourier series. Hence deduce that $\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\ldots . .4+1$
b) Find the Fourier sine transform of $f(x)$, where
$f(x)= \begin{cases}1, & 0<x \leq \pi \\ 0, & x>\pi\end{cases}$
and hence evaluate the integral $\int_{0}^{\infty}\left(\frac{1-\cos p \pi}{p}\right) \sin p x \mathrm{~d} p$.

$$
3+2
$$

3. a) Find the Fourier series of $f(x)=x^{2},-\pi \leq x \leq \pi$. Hence prove that $1-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\ldots=\frac{\pi^{2}}{12} . \quad 4+1$
b) Find the function whose Fourier cosine transform is $\frac{\sin a s}{s}$
Module II : Calculus of Complex variable
4. a) Using Cauchy's Residue theorem, prove that

$$
\begin{equation*}
\int_{0}^{2 \pi} \frac{d \theta}{2+\cos \theta}=\frac{2 \pi}{\sqrt{3}} . \tag{5}
\end{equation*}
$$

b) Evaluate $\oint_{c} \frac{e^{2 z}}{(z+1)^{4}} \mathrm{~d} z$
where C is the circle $|z|=3$.
5. a) If $u=x^{2}-y^{2}$ and $v=-\frac{y}{x^{2}+y^{2}}$, then prove that both u and v are harmonic.
b) Find the zeros and their orders of the function $f(z)=\frac{z^{5}-1}{z^{2}+5}$.
6. a) Expand $f(z)=\frac{z}{(z-1)(z-2)}$ in Laurent's series for $1<|z|<2$.5
b) Show that the function $f(z)=\sqrt{|x y|}$ is not analytic at the origin, although the Cauchy-Riemann conditions are satisfied at that point.

Module III : Probability

7. a) Two urns contain respectively 5 white, 7 black balls and 4 while, 2 black balls. One of the urns is selected by the toss of a fair coin and then 2 balls are drawn without replacement from the selected urn. If both balls are white, what is the probability that the first urn is selected?
b) $\quad X$ is a continuous random variable having probability
dimity function $f(x)= \begin{cases}\frac{4 x}{5}, & 0<x \leq 1 \\ \frac{2(3-x)}{5}, & 1<x \leq 2 \\ 0, & \text { elsewhere }\end{cases}$
Find the mean value of x and the distribution function.
$3+2$
8. a) An integer is chosen at random from the first 200 positive integers. What is the probability that the integer chosen is divisible by 6 or by 8 ? 5
b) A random variable X has the following probability function :

X	0	1	2	3	4	5	6	7
$P(x)$	0	K	$2 K$	$2 K$	$3 K$	$\mathrm{~K}^{2}$	$2 K^{2}$	$7 K^{2}+K$

Obtain the value of K and estimate $P(X<6)$ and $P(0<X<5)$.
Module IV : PDE and Series solution of ODE.
9. Use Laplace transform to solve the one dimensional wave equation $\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}(x>0, t>0)$
where $u(x, 0)=0, \quad \frac{\partial u}{\partial t}(x, 0)=0, x>0$ and $u(0, t)=F(t), u(\infty, t)=0, t \geq 0$.
10. Solve the one dimensional heat equation $\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$ by the method of separation of variables.
11. a) Find the series solution of $O D E$

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+x \frac{\mathrm{~d} y}{\mathrm{~d} x}+x^{2} y=0 \quad \text { about } x=0 \tag{5}
\end{equation*}
$$

b) Show that $\int_{-1}^{1} x^{2} p_{n-1}(x) p_{n+1}(x) \mathrm{d} x=\frac{2 n(n+1)}{(2 n-1)(2 n+1)(2 n+3)}$

