HVS-843

(Contd.)

FACULTY OF INFORMATICS

B.E. 3/4 (IT) I-Semester (Supplementary) Examination, June/July 2011 THEORY OF AUTOMATA

Time: Three Hours [Maximum Marks: 75 Answer ALL questions from Part-A. Answer any FIVE questions from Part-B. PART—A (Marks: 25) 1. Distinguish between DFA and NFA. 3 Define regular expression and give two examples. 2. 3 3. Define Epsilon-closure of a state. 2 What is Chomsky normal form? Give one example. 4. 3 State the pumping lemma for content free languages. 5. 3 6. Define push down Automata. 2 7. List various types of Turing machine. 2 8. What is linear bounded automata? 2 Define LR(K) grammars. 9. 2 10. What is post corresponds problem? Give one example. 3 PART-B (Marks: 5×10=50) 11. (a) Construct a DFA equivalent to the following NFA: $M = (\{q_0, q_1, q_2, q_3\}, \{0, 1\}, \delta, q_0, \{q_3\})$ where δ is given by : b q_0 $[q_0 \ q_1]$ q_0 q_1 \mathbf{q}_2 q_1 q_2 q_3 q_3 q_3 q_2 5 (b) Construct an ∈-NFA for the regular expression 01* + 1.5

		*		# 12°	* ** **			
				. 100			4. (A)	
12.	Find the minimum	state automat	a for the					10
)					
	\rightarrow q_0	q_1	3	1				
	$\mathbf{q}_{\mathbf{i}}$	\mathbf{q}_{2}	4					
	$\mathbf{q}_{\mathbf{z}}$	q_1	14					
	\mathbf{q}_3	q_2	l_4					
	* Q4	q_4	ĺ ₄					
13.	(a) Show that the	following gra	ımmar is	ambiguous	6		× .	
	,	SS ∈.		40,00				5
	(b) Construct a P	DA equivalen	to the fo	ollowing gr	ammar :			
	$S \to AA$	/a				V6		
	$A \to SA$	/b.						5
14.	Convert the follow	ing grammar	into Grei	bach norma	d form :			
	$S \to AA$	/a						
	$A \rightarrow SS/$	b.						10
15.	(a) Show that the	following lar	iguage is	not a CFL	© commonts contain			
	${0^{i}1^{j} / j} =$	= i ² }.						5
	(b) Design a Turi	ng machine to	accept t	he language	*			
	$L = \{a^nb^n\}$	$n / n \ge 1$.						5
16.	Consider the CFG	0 6						
	$S \to A_1 A_2$	$A_2 \mid A_2 A_3$						
	$A_1 \rightarrow A_2$	*						
	$A_2 \rightarrow A_3$	-						
	$A_3 \to A_1$	·	-4 10010			<i>e</i>		10
	and using the CYI	-	St 10010	is a memo	er or not.			10
17.								
	(a) Recursively e		guages					
	(b) Halting problem	em						10

2

10

600

(c) Restricted Turing machines.

HVS-843