1	E TO	K15F 023
enter was erdet ertige fill settle trans tilet ital 1881	131 4 121	ICIOI UZ

	3 5
Reg. No. :	
Name :	The CONTEN

VII Semester B.Tech. Degree (Reg./Sup./Imp.-Including Part Time) **Examination, November 2015** (2007 Admn. Onwards)

PT2K6/2K6 EC 703: INFORMATION THEORY AND CODING

Time: 3 Hours

Max. Marks: 100

Instruction: Answer all questions. Questions of Part A carries 5 marks and Part B carries 15 marks.

PART - A

- Define Entropy. List its properties.
 - State and explain Kraft's inequality.
 - Construct mod-5 multiplication table.
 - 4) Define irreducible polynomial. Give an example polynomial of degree 3.
 - 5) Describe the structural details of a cyclic code generator matrix.
 - 6) Explain the error detection and correction capabilities of linear block codes.
 - 7) Sketch a rate $\frac{1}{2}$, constraint length 4 convolution encoder for $g_1(x) = 1 + x^2 + x^3$ and $g_2(x) = 1 + x + x^2 + x^3$.
 - 8) What is interleaving? Explain. Mention any two methods.

 $(8 \times 5 = 40)$

PART-B

II. A) Find conditional probability, conditional entropy and joint entropy for the given system and verify the relationship between various entropies.

$$p(x, y) = \begin{cases} x \\ \frac{1}{8} & \frac{1}{16} & \frac{1}{16} & \frac{1}{4} \\ \frac{1}{16} & \frac{1}{8} & \frac{1}{16} & 0 \\ \frac{1}{32} & \frac{1}{32} & \frac{1}{16} & 0 \\ \frac{1}{32} & \frac{1}{32} & \frac{1}{16} & 0 \end{cases}$$

15

K15F 0231

			ı verile	5
	B)	i)	Explain algorithm of Huffman coding principle.	
		ii)	Make Shannon-Fano code for alphabets A to H with respective probabilities	
•			0.3, 0.2, 0.15, 0.12, 0.10, 0.07, 0.04 and 0.02.7 lies may redundancy.	10
Ш.	A)	C	onstruct an extended field GF(2^5), using a primitive polynomial $p(x) = 1 + x + x^5$.	15
			OR	•
	B)	i)	Find subspace and its null space of vector space V ₅ , with 2-dimensions.	8
		ii)	If ' β ' is the root of a polynomial over GF(2 ^m) with power 'm'. Then show	
19			that β^{2^l} , $l > 0$ are also roots of the same polynomial.	7
IV.	A)	i)	Give the general structure of a (7, 4) linear block code generator matrix	5
			and parity check matrix.	3
		II)	Sketch the block diagram of a (7, 4) linear block code generator and explain the coding principle.	10
			OR	
	B)	i)	With block diagram, explain the working of a cyclic decoder for systematic codes.	7
		ii)	Explain the method of syndrome generation and formation of decoding table.	8
٧.	A)	i)	Describe Viterbi decoding algorithm.	5
	,	•	Explain decoding of convolution codes using Viterbi algorithm, over a Trellis diagram.	10
			OR 1	
	B)	Br	iefly explain principle of turbo coding and decoding.	3+7)
			(4×15=	-
				/