

CS/B.TECH(ME/PE/PWE)/SEM-5/ME-502/2011-12

2011

HEAT TRANSFER
Time Allotted : 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for the following :

$$
10 \times 1=10
$$

i)

The temperature distribution at a certain instant of time in a concrete slab during curing is given by $T=3 x^{2}+3 x+16$, where x is in cm and T is in K. The rate of change of temperature with time is given by (assuming thermal diffusivity to be $5 \times 10^{-4} \mathrm{~cm}^{2} / \mathrm{s}$)
a) $\quad+0.0009 \mathrm{k} / \mathrm{s}$
b) $0 \cdot 0045 \mathrm{k} / \mathrm{s}$
c) $\quad-0.0030 \mathrm{k} / \mathrm{s}$
d) $\quad-0.0018 \mathrm{k} / \mathrm{s}$.

CS/B.TECH(ME/PE/PWE)/SEM-5/ME-502/2011®2 ©
ii) For more effective heat transfer, fins should be
a) thick and small in number
b) thin and large in number
c) medium size and small in number
d) none of these.
iii) For a current carrying wire of 20 mm diameter exposed to air ($h=25 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$), maximum heat transfer occurs when the thickness of insulation ($K=0.5 \mathrm{~W} / \mathrm{m} \mathrm{K}$) is
a) 20 mm
b) 10 mm
c) 5 mm
d) 0 mm .
iv) Fourier number is defined as
a) non-dimensional time
b) non-dimensional temperature
c) non-dimensional internal energy
d) non-dimensional heat flux.
v) For flow of a heat transfer oil ($\operatorname{Pr}=20$) over a flat plate, the thermal boundary layer thickness for laminar forced convection is
a) thicker than the hydrodynamic boundary layer
b) equal to that of hydrodynamic boundary layer
c) thinner than the hydrodynamic boundary layer
d) constant along the plate.
CS / B.TECH(ME /PE /PWE) /SEM-5 / ME-502/(2011-12
Uresh
vi) Connective heat transfer coefficient in natural convection is a function of
a) $\quad \mathrm{Re}$ and Pr
b) Gr and Bi
c) $\quad \mathrm{Re}$ and Bi
d) Gr and Pr.
vii) For laminar fully developed flow through a pipe, the local heat transfer coefficient (h_{x})
a) increases with axial distance, x
b) remains constant
c) decreases with axial distance, x
d) first increases with x and then decreases.
viii) Air enters a counter flow heat exchanger at $70^{\circ} \mathrm{C}$ and leaves at $40^{\circ} \mathrm{C}$, while water enters at $30^{\circ} \mathrm{C}$ and leaves at $60^{\circ} \mathrm{C}$. The LMTD is
a) $10^{\circ} \mathrm{C}$
b) $20^{\circ} \mathrm{C}$
c) $30^{\circ} \mathrm{C}$
d) $40^{\circ} \mathrm{C}$.
ix) View factor of the inner surface of a hemispherical shell with respect itself is
a) 1
b) 0.75
c) 0.5
d) $0 \cdot 25$.
x) The total emissive power of a blackbody surface is related to its radiation intensity I as
a) $E=4 \pi I$
b) $E=\pi^{2} I$
c) $\quad E=2 \pi I$
d) $\quad E=\pi I$.

Answer any three of the following. $3 \times 5=15$
2. Derive the following equation for a small metal casting being quenched in a bath after removing it from a hot surface.

$$
T-T_{\infty}=\left(T_{0}-T_{\infty}\right) \exp (-h A t / \rho C V)
$$

where
T

Error!

3. For a hot solid cylinder of radius r

Error!

$$
\frac{T_{0}-T(r)}{T_{0}-T_{\alpha}-\left(q r_{0 / 2 h}\right)}=\left(r / r_{0}\right)^{2}
$$

where, $T(r)$ = temperature of the cylinder at a distance r from the axis.
and $T_{0}=$ axis temperature.
4. Write down the energy equation, for a 2 -dimensional incompressible laminar flow, in Cartesian coordinates. Do not neglect the volumetric heat generation and viscous dissipation terms. Explain the physical significance of each term.
5. Define the following non-dimensional numbers and explain their physical significance :
a) Nusselt Number
b) Biot Number .
6. For the radiation heat exchange between a plane composite surface area $A_{4}\left(\right.$ made up of plane surface areas $\left.A_{2} \& A_{3}\right)$ and a plane surface area A_{1}, show that $A_{4} F_{41}=A_{3} F_{31}+A_{2} \& F_{21}$.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15=45$
7. a) A furnace has a composite wall constructed of a refractory material for the inside layer and an insulating material on the outside. The total wall thickness is limited to 60 cm . The mean temperature of the gases within the furnace is $850^{\circ} \mathrm{C}$, the external air temperature is $30^{\circ} \mathrm{C}$ and the temperature at the interface of the two materials of the furnace wall is $500^{\circ} \mathrm{C}$. materials are 2 and $0.2 \mathrm{~W} / \mathrm{m} K$ respectively. The combined coefficient of heat transfer by convection and radiation between the gases and inside refractory surface is $200 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ and between outside surface and atmosphere is $40 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$. Find
i) The required thickness of each material.
ii) The temperature of the surface exposed to gases and that of the surface exposed to air.
iii) The rate of heat loss to atmosphere in $\mathrm{kW} / \mathrm{m}^{2}$.
b) The heat transfer coefficient for a gas flowing over a flat plate 3 m long and 0.3 m wide varies with distance from the leading edge according to $h_{0}(x)=10_{x}^{-1 / 4} \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ calculate :
i) The average heat transfer coefficient.
ii) The rate of heat transfer between the plate and the gas if the plate at $170^{\circ} \mathrm{C}$ and gas is at $30^{\circ} \mathrm{C}$.
iii) Local heat flux, 2 m from the leading edge. $9+6$
8. a) Derive the equation for heat dissipation by a fin with an insulated tip. Consider A as the cross-section area, P the perimeter and L the length of the fin, h as the average heat transfer coefficient of the fluid in which the fin is immersed and k as the thermal conductivity of the fin material. The fin base is at a temperature T_{0} and the surrounding temperature is T_{α}.

CS / B.TECH(ME /PE /PWE) /SEM-5 /ME-502/2011-12
b) A stainless steel turbine blade, 6 cm long, $4 \cdot 65 \mathrm{~cm}^{2}$ cross-sectional area, 12 cm perimeter $\mathrm{k}=23 \cdot 3 \mathrm{~W} / \mathrm{m} \mathrm{K}$) is exposed to a hot gas at $870^{\circ} \mathrm{C}$. The root of the blade is fixed at the base, which is at $500^{\circ} \mathrm{C}$. Heat transfer coefficient between the plate and hot gas is $440 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$. Assuming the tip of the blade to be installed, determine
i) the maximum temperature on the blade
ii) the rate of heat transfer at the root of the blade.

$$
8+7
$$

9. Two parallel plates are separated by a distance L, with the intermediate space filled by a liquid of viscosity μ, density ρ, thermal conductivity k and specific heat C

Error!

a) Find out the temperature distribution of the liquid as a function of height (above the lower plate) in terms of the fluid properties and U_{1}.
b) Find out the expression of maximum temperature $T_{\text {max }}$ in the liquid if $T_{1}>T_{0}$. Also determine the location at which the maximum temperature occurs. $9+6$
10. a) Two very large parallel planes with emissivitye 0.3 and 0.8 , respectively, exchange radioactive energy. Determine the percentage reduction in radiative energy transfer when a polished aluminum radiation shield ($\varepsilon=0.04$) is placed between them.
b) Lubricating oil at a temperature of $60^{\circ} \mathrm{C}$ enters a 1 cm diameter tube with a velocity of $3.5 \mathrm{~m} / \mathrm{s}$. The tube surface is maintained at $30^{\circ} \mathrm{C}$. Calculate the tube length required to cool the oil to $45^{\circ} \mathrm{C}$. Assume that the oil has the following properties : $\rho=865 \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{k}=0.14$ $\mathrm{W} / \mathrm{m} \mathrm{K}, C_{p}=1.78 \mathrm{KJ} / \mathrm{kg} K$ and $\gamma=9 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$. $8+7$
11. a) Show that for counter flow heat exchanger, the effectiveness is expressed as
$\varepsilon=\frac{1-\exp [-\mathrm{NTU}(1-R)]}{1-R^{*} \exp [-\mathrm{NTU}(1-R)]}$
$R=\frac{C_{\min }}{C_{\max }}$ with $C_{\text {min }}$ and $C_{\max }$ having their usual meanings.
b) A heat exchanger is to be designed to cool ethyl alcohol ($C_{p}=3840 \mathrm{~J} / \mathrm{kg} \mathrm{K}$) from $75^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$ with cooling water entering at $15^{\circ} \mathrm{C}$. The flow rates of ethyl alcohol and water are $8 \mathrm{~kg} / \mathrm{s}$ and $9 \cdot 6 \mathrm{~kg} / \mathrm{s}$, respectively.
If the overall heat transfer coefficient based on the outer tube surface is $500 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$, calculate the requisite heat exchanger length for
i) Parallel flow and
ii) Counter flow configurations.

Given, Tube outer dia $=30 \mathrm{~mm}$ and No. of tubes $=20$.

