Module 1

ARTIFICIAL INTELLIGENCE
What is Artificial Intelligence?

It is a branch of Computer Science that pursues creating the computers or machines as intelligent
as human beings.

It is the science and engineering of making intelligent machines, especially intelligent computer
programs.

It is related to the similar task of using computers to understand human intelligence, but Al does
not have to confine itself to methods that are biologically observable

Definition: Artificial Intelligence is the study of how to make computers do things, which, at the
moment, people do better.

According to the father of Artificial Intelligence, John McCarthy, it is “The science and
engineering of making intelligent machines, especially intelligent computer programs”.

Artificial Intelligence is a way of making a computer, a computer-controlled robot, or a
software think intelligently, in the similar manner the intelligent humans think.

Al is accomplished by studying how human brain thinks and how humans learn, decide, and

W nd,th ing the, outcomes,of this,stu asis of
ly due, art, ig) oP the "Tcred in Spee , Size and
variety of data businesses are now collecting. Al can perform tasks such as identifying patterns

in the data more efficiently than humans, enabling businesses to gain more insight out of
their data.

From a business perspective Al is a set of very powerful tools, and methodologies for using
those tools to solve business problems.

From a programming perspective, Al includes the study of symbolic programming, problem
solving, and search.

Al Vocabulary

Intelligence relates to tasks involving higher mental processes, e.g. creativity, solving problems,
pattern recognition, classification, learning, induction, deduction, building analogies,
optimization, language processing, knowledge and many more. Intelligence is the computational
part of the ability to achieve goals.

Intelligent behaviour is depicted by perceiving one’s environment, acting in complex
environments, learning and understanding from experience, reasoning to solve problems and
discover hidden knowledge, applying knowledge successfully in new situations, thinking
abstractly, using analogies, communicating with others and more.

3

http://www.PDFWatermarkRemover.com/buy.htm

Science based goals of Al pertain to developing concepts, mechanisms and understanding
biological intelligent behaviour. The emphasis is on understanding intelligent behaviour.

Engineering based goals of Al relate to developing concepts, theory and practice of building
intelligent machines. The emphasis is on system building.

Al Techniques depict how we represent, manipulate and reason with knowledge in order to
solve problems. Knowledge is a collection of ‘facts’. To manipulate these facts by a program, a
suitable representation is required. A good representation facilitates problem solving.

Learning means that programs learn from what facts or behaviour can represent. Learning
denotes changes in the systems that are adaptive in other words, it enables the system to do the
same task(s) more efficiently next time.

Applications of Al refers to problem solving, search and control strategies, speech recognition,

natural language understanding, computer vision, expert systems, etc.

Problems of Al:

Intelligence does not imply perfect understanding; every intelligent being has limited perception,
memory and computation. Many points on the spectrum of intelligence versus cost are viable,

fromyinsec S. to understand the computations required from intelligent
behavigur uce €o stefhs [th hi tellig ts igence
studie Al inglude(perception, omwat ngir@nan I{guag@smning,
learning*and memory e

The following questions are to be considered before we can step forward:
1. What are the underlying assumptions about intelligence?

2. What kinds of techniques will be useful for solving Al problems?

3. At what level human intelligence can be modelled?

4. When will it be realized when an intelligent program has been built?

Branches of Al:

A list of branches of Al is given below. However some branches are surely missing, because no
one has identified them yet. Some of these may be regarded as concepts or topics rather than full
branches.

Logical Al — In general the facts of the specific situation in which it must act, and its goals are
all represented by sentences of some mathematical logical language. The program decides what
to do by inferring that certain actions are appropriate for achieving its goals.

http://www.PDFWatermarkRemover.com/buy.htm

Search — Artificial Intelligence programs often examine large numbers of possibilities — for
example, moves in a chess game and inferences by a theorem proving program. Discoveries are
frequently made about how to do this more efficiently in various domains.

Pattern Recognition — When a program makes observations of some kind, it is often planned
to compare what it sees with a pattern. For example, a vision program may try to match a pattern
of eyes and a nose in a scene in order to find a face. More complex patterns are like a natural
language text, a chess position or in the history of some event. These more complex patterns
require quite different methods than do the simple patterns that have been studied the most.

Representation — Usually languages of mathematical logic are used to represent the facts about
the world.

Inference — Others can be inferred from some facts. Mathematical logical deduction is
sufficient for some purposes, but new methods of non-monotonic inference have been added to
the logic since the 1970s. The simplest kind of non-monotonic reasoning is default reasoning in
which a conclusion is to be inferred by default. But the conclusion can be withdrawn if there is
evidence to the divergent. For example, when we hear of a bird, we infer that it can fly, but this
conclusion can be reversed when we hear that it is a penguin. It is the possibility that a
conclusion may have to be withdrawn that constitutes the non-monotonic character of the
reasoning. Normal logical reasoning is monotonic, in that the set of conclusions can be drawn
from a set of premises, i.e. monotonic increasing function of the premises. Circumscription is
another form of non-monotonic reasoning.

Commen Sensefknowledgeia senin Sis ea iInfWhichFAL 1§ f m the
human \evel, in Spite @f thg'fact that ifihasbegn an e reseqrc area $ the 1950s. While
there has been considerable progress in developing systems of non-monotonic reasoning and
theories of action, yet more new ideas are needed.

Learning from experience — There are some rules expressed in logic for learning. Programs
can only learn what facts or behaviour their formalisms can represent, and unfortunately learning
systems are almost all based on very limited abilities to represent information.

Planning — Planning starts with general facts about the world (especially facts about the effects
of actions), facts about the particular situation and a statement of a goal. From these, planning
programs generate a strategy for achieving the goal. In the most common cases, the strategy is
just a sequence of actions.

Epistemology — This is a study of the kinds of knowledge that are required for solving
problems in the world.

Ontology — Ontology is the study of the kinds of things that exist. In Al the programs and
sentences deal with various kinds of objects and we study what these kinds are and what their
basic properties are. Ontology assumed importance from the 1990s.

http://www.PDFWatermarkRemover.com/buy.htm

Heuristics — A heuristic is a way of trying to discover something or an idea embedded in a
program. The term is used variously in Al. Heuristic functions are used in some approaches to
search or to measure how far a node in a search tree seems to be from a goal. Heuristic
predicates that compare two nodes in a search tree to see if one is better than the other, i.e.
constitutes an advance toward the goal, and may be more useful.

Genetic programming — Genetic programming is an automated method for creating a working
computer program from a high-level problem statement of a problem. Genetic programming
starts from a high-level statement of ‘what needs to be done’ and automatically creates a
computer program to solve the problem.

Applications of Al

Al has applications in all fields of human study, such as finance and economics, environmental
engineering, chemistry, computer science, and so on. Some of the applications of Al are listed
below:
e Perception
m Machine vision
m Speech understanding
m Touch (tactile or haptic) sensation
e Robotics
e Natural Language Processing
utal Lagguage Understan

VEERUlse.com

Planning

Expert Systems
Machine Learning
Theorem Proving
Symbolic Mathematics
Game Playing

Al Technique:

Artificial Intelligence research during the last three decades has concluded that Intelligence
requires knowledge. To compensate overwhelming quality, knowledge possesses less desirable
properties.

A. Itis huge.

B. It is difficult to characterize correctly.

C. Itis constantly varying.

D. It differs from data by being organized in a way that corresponds to its application.

E. It is complicated.

http://www.PDFWatermarkRemover.com/buy.htm

An Al technique is a method that exploits knowledge that is represented so that:

e The knowledge captures generalizations that share properties, are grouped
together, rather than being allowed separate representation.

e |t can be understood by people who must provide it—even though for many
programs bulk of the data comes automatically from readings.

e In many Al domains, how the people understand the same people must supply the
knowledge to a program.

e |t can be easily modified to correct errors and reflect changes in real conditions.
e |t can be widely used even if it is incomplete or inaccurate.

e It can be used to help overcome its own sheer bulk by helping to narrow the range
of possibilities that must be usually considered.

In order to characterize an Al technique let us consider initially OXO or tic-tac-toe and use a
series of different approaches to play the game.

The programs increase in complexity, their use of generalizations, the clarity of their
knowledge and the extensibility of their approach. In this way they move towards being
representations of Al techniques.

“¥TtiPulse.com

The Tic-Tac-Toe game consists of a nine element vector called BOARD; it represents the
numbers 1 to 9 in three rows.

11213
41516
71819

An element contains the value 0 for blank, 1 for X and 2 for O. A MOVETABLE vector consists
of 19,683 elements (3% and is needed where each element is a nine element vector. The contents
of the vector are especially chosen to help the algorithm.
The algorithm makes moves by pursuing the following:

1. View the vector as a ternary number. Convert it to a decimal number.

2. Use the decimal number as an index in MOVETABLE and access the vector.

3. Set BOARD to this vector indicating how the board looks after the move. This approach is

capable in time but it has several disadvantages. It takes more space and requires stunning

http://www.PDFWatermarkRemover.com/buy.htm

effort to calculate the decimal numbers. This method is specific to this game and cannot be
completed.

1.2 The second approach

The structure of the data is as before but we use 2 for a blank, 3 for an X and 5 for an O.
A variable called TURN indicates 1 for the first move and 9 for the last. The algorithm consists
of three actions:

MAKEZ2 which returns 5 if the centre square is blank; otherwise it returns any blank non-
corner square, i.e. 2, 4, 6 or 8. POSSWIN (p) returns 0 if player p cannot win on the next move
and otherwise returns the number of the square that gives a winning move.

It checks each line using products 3*3*2 = 18 gives a win for X, 5*5*2=50 gives a win
for O, and the winning move is the holder of the blank. GO (n) makes a move to square n setting
BOARD[n] to 3 or 5.

This algorithm is more involved and takes longer but it is more efficient in storage which
compensates for its longer time. It depends on the programmer’s skill.

1.3 The final approach

The structure of the data consists of BOARD which contains a nine element vector, a list of
board positions that could result from the next move and a number representing an estimation of how
the board position leads to an ultimate win for the player to move.

ThIS algorithm looks ahead to make a decision on the next move by deciding which the most

it ove at anygstage would be and selects the same.
i 0 pligs that gF&epr can U s for
HErse:eom-
int short

Actually this is most difficult to program by a good limit but it is as far that the technique can
be extended to in any game. This method makes relatively fewer loads on the programmer in terms
of the game technique but the overall game strategy must be known to the adviser.

Example-2: Question Answering

Let us consider Question Answering systems that accept input in English and provide
answers also in English. This problem is harder than the previous one as it is more difficult to
specify the problem properly. Another area of difficulty concerns deciding whether the answer
obtained is correct, or not, and further what is meant by ‘correct’. For example, consider the
following situation:

2.1 Text

Rani went shopping for a new Coat. She found a red one she really liked.
When she got home, she found that it went perfectly with her favourite dress.

2.2 Question

1. What did Rani go shopping for?

http://www.PDFWatermarkRemover.com/buy.htm

2. What did Rani find that she liked?
3. Did Rani buy anything?

Method 1
2.3 Data Structures

A set of templates that match common questions and produce patterns used to match
against inputs. Templates and patterns are used so that a template that matches a given question
is associated with the corresponding pattern to find the answer in the input text. For example, the
template who did x y generates x y z if a match occurs and z is the answer to the question. The
given text and the question are both stored as strings.
2.4 Algorithm

Answering a question requires the following four steps to be followed:

e Compare the template against the questions and store all successful matches to produce a
set of text patterns.

e Pass these text patterns through a substitution process to change the person or voice and
produce an expanded set of text patterns.

e W Apply eagh of these |pat 0 the textico al answe d pri
ngwers. ‘
[
2.5 Example

In question 1 we use the template WHAT DID X Y which generates Rani go shopping for z and
after substitution we get Rani goes shopping for z and Rani went shopping for z giving z
[equivalence] a new coat

In question 2 we need a very large number of templates and also a scheme to allow the insertion
of ‘find’ before ‘that she liked’; the insertion of ‘really’ in the text; and the substitution of ‘she’
for ‘Rani’ gives the answer ‘a red one’.
Question 3 cannot be answered.
2.6 Comments

This is a very primitive approach basically not matching the criteria we set for

intelligence and worse than that, used in the game. Surprisingly this type of technique was
actually used in ELIZA which will be considered later in the course.

http://www.PDFWatermarkRemover.com/buy.htm

Method 2
2.7 Data Structures

A structure called English consists of a dictionary, grammar and some semantics about
the vocabulary we are likely to come across. This data structure provides the knowledge to
convert English text into a storable internal form and also to convert the response back into
English. The structured representation of the text is a processed form and defines the context of
the input text by making explicit all references such as pronouns. There are three types of such
knowledge representation systems: production rules of the form ‘if x then y’, slot and filler
systems and statements in mathematical logic. The system used here will be the slot and filler
system.

Take, for example sentence:
‘She found a red one she really liked’.

Event2 Event2

instance: finding instance: liking

tense: past tense: past

agent: Rani modifier: much

object: Thingl object: Thingl

Thingl

instance: coat

colou ed

The M is Ioredln twl measu a is @form‘ O I I l
[

2.8 Algorithm

e Convert the question to a structured form using English know how, then use a marker to
indicate the substring (like ‘who’ or ‘what”) of the structure, that should be returned as an
answer. If a slot and filler system is used a special marker can be placed in more than one
slot.

e The answer appears by matching this structured form against the structured text.

e The structured form is matched against the text and the requested segments of the
question are returned.

2.9 Examples

Both questions 1 and 2 generate answers via a new coat and a red coat respectively.
Question 3 cannot be answered, because there is no direct response.

2.10 Comments

This approach is more meaningful than the previous one and so is more effective. The
extra power given must be paid for by additional search time in the knowledge bases. A warning

10

http://www.PDFWatermarkRemover.com/buy.htm

must be given here: that is — to generate unambiguous English knowledge base is a complex task
and must be left until later in the course. The problems of handling pronouns are difficult.

For example:
Rani walked up to the salesperson: she asked where the toy department was.
Rani walked up to the salesperson: she asked her if she needed any help.

Whereas in the original text the linkage of ‘she’ to ‘Rani’ is easy, linkage of ‘she’ in each of the
above sentences to Rani and to the salesperson requires additional knowledge about the context
via the people in a shop.

Method 3
2.11 Data Structures

World model contains knowledge about objects, actions and situations that are described
in the input text. This structure is used to create integrated text from input text. The diagram
shows how the system’s knowledge of shopping might be represented and stored. This
information is known as a script and in this case is a shopping script. (See figure 1.1 next page)
1.8.2.12 Algorithm

Convert the gquestion to a structured form using both the knowledge contained in Method
ra \ven more gossible structures, since even more knowledge is
a oduced tosprédne th ible r
, tAe scheme followe nvert thefguest a Structured form

del to ve any amb ieftha ay occur. The structured

form is matched against the text and the requested segments of the question are returned.

2.13 Example

Both questions 1 and 2 generate answers, as in the previous program. Question 3 can now
be answered. The shopping script is instantiated and from the last sentence the path through step
14 is the one used to form the representation. ‘M’ is bound to the red coat-got home. ‘Rani buys
a red coat’ comes from step 10 and the integrated text generates that she bought a red coat.

2.14 Comments

This program is more powerful than both the previous programs because it has more
knowledge. Thus, like the last game program it is exploiting Al techniques. However, we are not
yet in a position to handle any English question. The major omission is that of a general
reasoning mechanism known as inference to be used when the required answer is not explicitly
given in the input text. But this approach can handle, with some modifications, questions of the
following form with the answer—Saturday morning Rani went shopping. Her brother tried to
call her but she did not answer.

Question: Why couldn’t Rani’s brother reach her?

11

http://www.PDFWatermarkRemover.com/buy.htm

Answer: Because she was not in.

This answer is derived because we have supplied an additional fact that a person cannot
be in two places at once. This patch is not sufficiently general so as to work in all cases and does
not provide the type of solution we are really looking for.

Shopping Script: C - Customer, S - Salesperson

Props: M - Merchandize, D - Money-dollars, Location: L - a Store.

C contacts to 5
C (Customer) (Salesperson) to know
selects the products product’s details and
to purchase P payment scheme
[3
&

Materials to be
delivered by § after v
clearing payment

Admin Dept contains M (Merchandize). D (Money-
Diollars and L (Store Details) to control the whole
shopping transaction

Refer and mstructto gl Marketing Dept keeps C details,
3 < such as Name, Address. Phone

mimber and Email

This box represents C's, 5's and Marketing
Activities

—_— A — Arrow represents control of Shopping Flow

A — This box represents Admin Dept Activities

Fig. 1.1 Diagrammatic Representation of Shopping Script

12

http://www.PDFWatermarkRemover.com/buy.htm

LEVEL OF THE Al MODEL

‘What is our goal in trying to produce programs that do the intelligent things that people do?’

Are we trying to produce programs that do the tasks the same way that people do?
OR
Are we trying to produce programs that simply do the tasks the easiest way that is
possible?

Programs in the first class attempt to solve problems that a computer can easily solve and
do not usually use Al techniques. Al techniques usually include a search, as no direct method is
available, the use of knowledge about the objects involved in the problem area and abstraction on
which allows an element of pruning to occur, and to enable a solution to be found in real time;
otherwise, the data could explode in size. Examples of these trivial problems in the first class,
which are now of interest only to psychologists are EPAM (Elementary Perceiver and
Memorizer) which memorized garbage syllables.

The second class of problems attempts to solve problems that are non-trivial for a computer and
use Al techniques. We wish to model human performance on these:

1. Totest psychologlcal theories of human performance. Ex. PARRY [Colby, 1975] — a
late the €0 versatlonal ehaV|or of a paranoid person

: — for e g
sp pe a tlng ma
nd rstand ut r Iu angito accept

computer results unless they understand the mechamsms mvolved in arriving at the
results.

4. To exploit the knowledge gained by people who are best at gathering information. This
persuaded the earlier workers to simulate human behavior in the SB part of AISB
simulated behavior. Examples of this type of approach led to GPS (General Problem
Solver).

Questions for Practice:

=

What is intelligence? How do we measure it? Are these measurements useful?

2. When the temperature falls and the thermostat turns the heater on, does it act because it
believes the room to be too cold? Does it feel cold? What sorts of things can have beliefs
or feelings? Is this related to the idea of consciousness?

3. Some people believe that the relationship between your mind (a non-physical thing) and
your brain (the physical thing inside your skull) is exactly like the relationship between a
computational process (a non-physical thing) and a physical computer. Do you agree?

4. How good are machines at playing chess? If a machine can consistently beat all the best
human chess players, does this prove that the machine is intelligent?

5. What is Al Technique? Explain Tic-Tac-Toe Problem using Al Technique.

13

http://www.PDFWatermarkRemover.com/buy.htm

PROBLEMS, PROBLEM SPACES AND SEARCH

To solve the problem of building a system you should take the following steps:
1. Define the problem accurately including detailed specifications and what constitutes a
suitable solution.
2. Scrutinize the problem carefully, for some features may have a central affect on the
chosen method of solution.
3. Segregate and represent the background knowledge needed in the solution of the
problem.
4. Choose the best solving techniques for the problem to solve a solution.

Problem solving is a process of generating solutions from observed data.
* a ‘problem’ is characterized by a set of goals,
« a set of objects, and
* a set of operations.
These could be ill-defined and may evolve during problem solving.
* A ‘problem space’ is an abstract space.
v" A problem space encompasses all valid states that can be generated by the
application of any combination of operators on any combination of objects.
v The problem space may contain one or more solutions. A solution is a
ations and abjects that achieve the goals.

ination of Qpe
A ‘search’ refers to the searc selutien in a kbl ace.
v' Search/procegds diﬁft S‘E con@r’
4 e depth;first sgearch a adthafi age t 0o oIseIrchl

strategies.

2.1 Al - General Problem Solving
Problem solving has been the key area of concern for Artificial Intelligence.

Problem solving is a process of generating solutions from observed or given data. It is however
not always possible to use direct methods (i.e. go directly from data to solution). Instead,
problem solving often needs to use indirect or modelbased methods.

General Problem Solver (GPS) was a computer program created in 1957 by Simon and Newell
to build a universal problem solver machine. GPS was based on Simon and Newell’s theoretical
work on logic machines. GPS in principle can solve any formalized symbolic problem, such as
theorems proof and geometric problems and chess playing. GPS solved many simple problems,
such as the Towers of Hanoi, that could be sufficiently formalized, but GPS could not solve any
real-world problems.

To build a system to solve a particular problem, we need to:

e Define the problem precisely — find input situations as well as final situations for an
acceptable solution to the problem

14

http://www.PDFWatermarkRemover.com/buy.htm

e Analyze the problem — find few important features that may have impact on the
appropriateness of various possible techniques for solving the problem

e Isolate and represent task knowledge necessary to solve the problem

e Choose the best problem-solving technique(s) and apply to the particular problem

Problem definitions
A problem is defined by its ‘elements’ and their ‘relations’. To provide a formal description of a
problem, we need to do the following:

a. Define a state space that contains all the possible configurations of the relevant objects,
including some impossible ones.

b. Specify one or more states that describe possible situations, from which the problem-
solving process may start. These states are called initial states.

c. Specify one or more states that would be acceptable solution to the problem.

These states are called goal states.
Specify a set of rules that describe the actions (operators) available.

The problem can then be solved by using the rules, in combination with an appropriate control
strategy, to move through the problem space until a path from an initial state to a goal state is

found, This is known as_‘search’. Thus;
io ear iPa ntal tg theypro olving proc I ' |
. isa gene chanismrth bgu h ofe difect

method is not known.

e Search provides the framework into which more direct methods for
solving subparts of a problem can be embedded. A very large number of
Al problems are formulated as search problems.

e Problem space

A problem space is represented by a directed graph, where nodes represent search state and paths
represent the operators applied to change the state.

To simplify search algorithms, it is often convenient to logically and programmatically represent
a problem space as a tree. A tree usually decreases the complexity of a search at a cost. Here, the
cost is due to duplicating some nodes on the tree that were linked numerous times in the graph,
e.g. node B and node D.

A tree is a graph in which any two vertices are connected by exactly one path. Alternatively, any
connected graph with no cycles is a tree.

15

http://www.PDFWatermarkRemover.com/buy.htm

Graph Trees

A
A = Th B 5
P Y
D B D
\V \
C - D

Fig. 2.1 Graph and Tree

. ProszoIviIg: Tu, FIZl;mungIreb tﬁv&i ih Mﬂ [nlv[g lay be

characterized as a systematic search through a range of possible actions to reach some predefined
goal or solution. Problem-solving methods are categorized as special purpose and general
purpose.

* A special-purpose method is tailor-made for a particular problem, often exploits very specific
features of the situation in which the problem is embedded.

* A general-purpose method is applicable to a wide variety of problems. One General-purpose

technique used in Al is ‘means-end analysis’: a step-bystep, or incremental, reduction of the
difference between current state and final goal.

16

http://www.PDFWatermarkRemover.com/buy.htm

2.3 DEFINING PROBLEM AS A STATE SPACE SEARCH

To solve the problem of playing a game, we require the rules of the game and targets for winning
as well as representing positions in the game. The opening position can be defined as the initial
state and a winning position as a goal state. Moves from initial state to other states leading to the
goal state follow legally. However, the rules are far too abundant in most games— especially in
chess, where they exceed the number of particles in the universe. Thus, the rules cannot be
supplied accurately and computer programs cannot handle easily. The storage also presents
another problem but searching can be achieved by hashing.

The number of rules that are used must be minimized and the set can be created by expressing
each rule in a form as possible. The representation of games leads to a state space representation
and it is common for well-organized games with some structure. This representation allows for
the formal definition of a problem that needs the movement from a set of initial positions to one
of a set of target positions. It means that the solution involves using known techniques and a
systematic search. This is quite a common method in Artificial Intelligence.

2.3.1 State Space Search
A state space represents a problem in terms of states and operators that change states.
A state space consists of:
e A representation of the states the system can be in. For example, in a
ame, the board regpresents the current state of the game.
];
a

oar
o A setlof ¢ @ os that ¢ g state ipi@sangiher st oard
ame, the'@perat@rs are IEfro nya . Ofitenthe
orsiare rep e hayc Astaie regresgntation to
e Aninitial state.

represent the new state.

e A set of final states; some of these may be desirable, others undesirable.
This set is often represented implicitly by a program that detects terminal
states.

2.3.2 The Water Jug Problem

In this problem, we use two jugs called four and three; four holds a maximum of four gallons of
water and three a maximum of three gallons of water. How can we get two gallons of water in
the four jug?

The state space is a set of prearranged pairs giving the number of gallons of water in the pair of
jugs at any time, i.e., (four, three) where four =0, 1, 2, 3 or 4 and three =0, 1, 2 or 3.

The start state is (0, 0) and the goal state is (2, n) where n may be any but it is limited to three
holding from 0 to 3 gallons of water or empty. Three and four shows the name and numerical
number shows the amount of water in jugs for solving the water jug problem. The major
production rules for solving this problem are shown below:

17

http://www.PDFWatermarkRemover.com/buy.htm

Initial condition

1. (four, three) if four < 4

2. (four, three) if three< 3

3. (four, three) If four >0

4. (four, three) if three > 0

5. (four, three) if four + three<4

6. (four, three) if four + three<3

7. (0, three) If three >0

8. (four, 0) if four >0
9.(0,2)

10. (2, 0)

11. (four, three) if four < 4

12. (three, four) if three < 3

Goal comment

(4, three) fill four from tap

(four, 3) fill three from tap

(O, three) empty four into drain
(four, 0) empty three into drain
(four + three, 0) empty three into
four

(O, four + three) empty four into
three

(three, 0) empty three into four

(O, four) empty four into three

(2, 0) empty three into four

(0, 2) empty four into three

(4, three-diff) pour diff, 4-four, into
four from three

(four-diff, 3) pour diff, 3-three, into
three from four and a solution is
given below four three rule

(Fig. 2.2 Production Rules for the Water Jug Problem)

Gallons in Four Jug

Gallons in Three Jug

NOPRWWOO

VTUP

Rules Applied

ulse.com

0

10

(Fig. 2.3 One Solution to the Water Jug Problem)

The problem solved by using the production rules in combination with an appropriate control
strategy, moving through the problem space until a path from an initial state to a goal state is
found. In this problem solving process, search is the fundamental concept. For simple problems
it is easier to achieve this goal by hand but there will be cases where this is far too difficult.

2.4 PRODUCTION SYSTEMS

Production systems provide appropriate structures for performing and describing search
processes. A production system has four basic components as enumerated below.

e A set of rules each consisting of a left side that determines the applicability of the
rule and a right side that describes the operation to be performed if the rule is

applied.

e A database of current facts established during the process of inference.

18

http://www.PDFWatermarkRemover.com/buy.htm

e A control strategy that specifies the order in which the rules will be compared
with facts in the database and also specifies how to resolve conflicts in selection
of several rules or selection of more facts.

e Arrule firing module.

The production rules operate on the knowledge database. Each rule has a precondition—that is,
either satisfied or not by the knowledge database. If the precondition is satisfied, the rule can be
applied. Application of the rule changes the knowledge database. The control system chooses
which applicable rule should be applied and ceases computation when a termination condition on
the knowledge database is satisfied.

Example: Eight puzzle (8-Puzzle)

The 8-puzzle is a 3 x 3 array containing eight square pieces, numbered 1 through 8, and
one empty space. A piece can be moved horizontally or vertically into the empty space, in effect
exchanging the positions of the piece and the empty space. There are four possible moves, UP
(move the blank space up), DOWN, LEFT and RIGHT. The aim of the game is to make a
sequence of moves that will convert the board from the start state into the goal state:

2 3 4 1 213

8 |6 | 2 8 4

7 5 7 16135 |
Initial State Goal State

This example can be solved by the operator sequence UP, RIGHT, UP, LEFT, DOWN.
Example: Missionaries and Cannibals

The Missionaries and Cannibals problem illustrates the use of state space search for planning
under constraints:

Three missionaries and three cannibals wish to cross a river using a two person boat. If
at any time the cannibals outnumber the missionaries on either side of the river, they will eat the
missionaries. How can a sequence of boat trips be performed that will get everyone to the other
side of the river without any missionaries being eaten?

State representation:

1. BOAT position: original (T) or final (NIL) side of the river.

2. Number of Missionaries and Cannibals on the original side of the river.
3. Start is (T 3 3); Goal is (NIL 0 0).

Operators:

19

http://www.PDFWatermarkRemover.com/buy.htm

(MM

{8}

O)['Two Missionaries cross the river.

(MC 1 1) [One Missionary and one Cannibal.

(CC 0 2)Two Cannibals.

(M 1 0) [|One Missionary.

(C 0 1) NOne Cannibal,

Missionaries/Cannibals Search Graph

Missionaries on Left Cannibels on Left

Boat Position

20

http://www.PDFWatermarkRemover.com/buy.htm

2.4.1 Control Strategies

The word ‘search’ refers to the search for a solution in a problem space.

« Search proceeds with different types of ‘search control strategies .

* A strategy is defined by picking the order in which the nodes expand.
The Search strategies are evaluated along the following dimensions: Completeness, Time
complexity, Space complexity, Optimality (the search- related terms are first explained, and then
the search algorithms and control strategies are illustrated next).

Search-related terms
* Algorithm’s performance and complexity
Ideally we want a common measure so that we can compare approaches in order to select
the most appropriate algorithm for a given situation.
v" Performance of an algorithm depends on internal and external factors.

Internal factors/ External factors
= Time required to run
= Size of input to the algorithm
= Space (memory) required to run
= Speed of the computer
= Quality of the compiler

v' Complexity is a measure of the performance of an algorithm. Complexity
measures the internal factors, usyally in time than space.
*Co

ut [
It iS\the'meastire off resolrc rms of T nd Spact (:Q m
v IT A is an algorithm that solves a decision problem ,theHrun- ime of A is the number of

steps taken on the input of length n.
v Time Complexity T(n) of a decision problem f is the run-time of the ‘best’ algorithm A

for f.
v’ Space Complexity S(n) of a decision problem f is the amount of memory used by the

‘best’ algorithm A for f.

—

* ‘Big - O’ notation
The Big-0O, theoretical measure of the execution of an algorithm, usually indicates the time or the
memory needed, given the problem size n, which is usually the number of items.
* Big-O notation
The Big-O notation is used to give an approximation to the run-time- efficiency of an algorithm;
the letter ‘O’ is for order of magnitude of operations or space at run-time.
* The Big-O of an Algorithm A
v"If an algorithm A requires time proportional to f(n), then algorithm A is said to be
of order f(n), and it is denoted as O(f(n)).
v" If algorithm A requires time proportional to n2, then the order of the algorithm is
said to be O(n2).
v' If algorithm A requires time proportional to n, then the order of the algorithm is
said to be O(n).

21

http://www.PDFWatermarkRemover.com/buy.htm

The function f(n) is called the algorithm’s growth-rate function. In other words, if an algorithm
has performance complexity O(n), this means that the run-time t should be directly proportional
ton, iez e n or t = k n where k is constant of proportionality.

Similarly, for algorithms having performance complexity O(log2(n)), O(log N), O(N log N),
O(2N) and so on.

Example 1:
Determine the Big-O of an algorithm:

Calculate the sum of the n elements in an integer array a[0..n-1].

Line no. Instructions No of execution steps
line 1 sum 1
line 2 for (Ii=0;i<n;i++) n+1
line 3 sum += aJi] n
line 4 print sum 1
Total 2n+3

Thus, the polynomial (2n + 3) is dominated by the 1st term as n while the number of elements in
the array becomes very large.

* In determining the Big-O, ignore constants such as 2 and 3. So the algorithm is of order n.
* So the Big-O of the algorithm is O(n).

e In other words{the run-timg o Igorithm Iincreases roughly as the size of the input data n,
e.g., anarmay of Size . | f C O m
[

Tree structure
Tree is a way of organizing objects, related in a hierarchical fashion.
* Tree is a type of data structure in which each element is attached to one or more
elements directly beneath it.
* The connections between elements are called branches.
* Tree is often called inverted trees because it is drawn with the root at the top.
* The elements that have no elements below them are called leaves.
* A binary tree is a special type: each element has only two branches below it.
Properties
* Tree is a special case of a graph.
* The topmost node in a tree is called the root node.
* At root node all operations on the tree begin.
* A node has at most one parent.
* The topmost node (root node) has no parents.
» Each node has zero or more child nodes, which are below it .
* The nodes at the bottommost level of the tree are called leaf nodes.
Since leaf nodes are at the bottom most level, they do not have children.
* A node that has a child is called the child’s parent node.
* The depth of a node n is the length of the path from the root to the node.
* The root node is at depth zero.

22

http://www.PDFWatermarkRemover.com/buy.htm

« Stacks and Queues

The Stacks and Queues are data structures that maintain the order of last-in, first-out and first-in,
first-out respectively. Both stacks and queues are often implemented as linked lists, but that is
not the only possible implementation.
Stack - Last In First Out (LIFO) lists

e An ordered list; a sequence of items, piled one on top of the other.

e The insertions and deletions are made at one end only, called Top.

e |If Stack S =(a[1], a[2], a[n]) then a[1] is bottom most element

e Any intermediate element (a[i]) is on top of element a[i-1], 1 <i<=n.

e In Stack all operation take place on Top.

The Pop operation removes item from top of the stack.
The Push operation adds an item on top of the stack.

Queue - First In First Out (FIFO) lists

 An ordered list; a sequence of items; there are restrictions about how items can be added to and
removed from the list. A queue has two ends.

« All insertions (enqueue) take place at one end, called Rear or Back

« All deletions (dequeue) take place at other end, called Front.

« If Queue has a[n] as rear element then a[i+1] is behind a[i] , 1 <i<=n.

* All gperati ace at o d of queue @r the other.
The D e opeératian remov item agiFrentef th e.
The Eng@eue opgrati anyitem t e . @

Search

Search is the systematic examination of states to find path from the start / root state to the goal
state.

» Search usually results from a lack of knowledge.

* Search explores knowledge alternatives to arrive at the best answer.

* Search algorithm output is a solution, that is, a path from the initial state to a state that satisfies
the goal test.

For general-purpose problem-solving — ‘Search’ is an approach.

« Search deals with finding nodes having certain properties in a graph that represents search
space.

» Search methods explore the search space ‘intelligently’, evaluating possibilities without
investigating every single possibility.

Examples:

* For a Robot this might consist of PICKUP, PUTDOWN, MOVEFORWARD, MOVEBACK,
MOVELEFT, and MOVERIGHT—until the goal is reached.

* Puzzles and Games have explicit rules: e.g., the ‘Tower of Hanoi’ puzzle

23

http://www.PDFWatermarkRemover.com/buy.htm

(a) Start (b) Final

-i

Fig. 2.4 Tower of Hanoi Puzzle

This puzzle involves a set of rings of different sizes that can be placed on three different pegs.
* The puzzle starts with the rings arranged as shown in Figure 2.4(a)

* The goal of this puzzle is to move them all as to Figure 2.4(b)

* Condition: Only the top ring on a peg can be moved, and it may only be placed on a smaller
ring, or on an empty peg.

In this Tower of Hanoi puzzle:

* Situations encountered while solving the problem are described as states.

* Set of all possible configurations of rings on the pegs is called ‘problem space’.
» States

A State is a

tation of el ts in a given moment.
A proBlemfs defined By its Ele angl their relatieqs.
At eacRiinStant af a pri@bleny; th {mjv s;@ic@iptor@rs;miptors
indicat lect ts)

Among all possible states, there are two special states called:
v Initial state — the start point
v Final state — the goal state
» State Change: Successor Function
A ‘successor function’ is needed for state change. The Successor Function moves one state to
another state.
Successor Function:
v Itis a description of possible actions; a set of operators.
v’ ltis a transformation function on a state representation, which converts that state into
another state.
It defines a relation of accessibility among states.
It represents the conditions of applicability of a state and corresponding transformation
function.

v
v

» State space
A state space is the set of all states reachable from the initial state.
v A state space forms a graph (or map) in which the nodes are states and the arcs between
nodes are actions.
v In a state space, a path is a sequence of states connected by a sequence of actions.
v' The solution of a problem is part of the map formed by the state space.

24

http://www.PDFWatermarkRemover.com/buy.htm

» Structure of a state space
The structures of a state space are trees and graphs.
v Atreeis a hierarchical structure in a graphical form.
v' A graph is a non-hierarchical structure.

* A tree has only one path to a given node;
i.e., atree has one and only one path from any point to any other point.
* A graph consists of a set of nodes (vertices) and a set of edges (arcs). Arcs establish
relationships (connections) between the nodes; i.e., a graph has several paths to a given node.
* The Operators are directed arcs between nodes.
A search process explores the state space. In the worst case, the search explores all possible
paths between the initial state and the goal state.
* Problem solution
In the state space, a solution is a path from the initial state to a goal state or, sometimes, just a
goal state.

v A solution cost function assigns a numeric cost to each path; it also gives the cost of

applying the operators to the states.
v A solution quality is measured by the path cost function; and an optimal solution has the
lowest path cost among all solutions.

v The solutions can be any or optimal or all.

v' The importance of cost depends on the problem and the type of solution asked
* Problem description
A problem consists of the description of:

world,
ansfor e State worldfinto a :
v f the World. ° @
The following action one taken to describe the problem:
v State space is defined explicitly or implicitly

A state space should describe everything that is needed to solve a problem and nothing that is
not needed to solve the problem.

v Initial state is start state

v Goal state is the conditions it has to fulfill.
The description by a desired state may be complete or partial.

v Operators are to change state

v' Operators do actions that can transform one state into another;

v Operators consist of: Preconditions and Instructions;

Preconditions provide partial description of the state of the world that must be true in order to
perform the action, and
Instructions tell the user how to create the next state.
e Operators should be as general as possible, so as to reduce their number.
e Elements of the domain has relevance to the problem
v" Knowledge of the starting point.
e Problem solving is finding a solution
v Find an ordered sequence of operators that transform the current (start) state
into a goal state.

25

http://www.PDFWatermarkRemover.com/buy.htm

e Restrictions are solution quality any, optimal, or all
v" Finding the shortest sequence, or
v' finding the least expensive sequence defining cost, or
v" finding any sequence as quickly as possible.
This can also be explained with the help of algebraic function as given below.

PROBLEM CHARACTERISTICS

Heuristics cannot be generalized, as they are domain specific. Production systems provide ideal
techniques for representing such heuristics in the form of IF-THEN rules. Most problems
requiring simulation of intelligence use heuristic search extensively. Some heuristics are used to
define the control structure that guides the search process, as seen in the example described
above. But heuristics can also be encoded in the rules to represent the domain knowledge. Since
most Al problems make use of knowledge and guided search through the knowledge, Al can be
described as the study of techniques for solving exponentially hard problems in polynomial time
by exploiting knowledge about problem domain.

To use the heuristic search for problem solving, we suggest analysis of the problem for the
following considerations:

e Decomposability of the problem into a set of independent smaller subproblems
P035|b|I|ty of undoing solution steps, if they are found to be unwise
[]

the roblem universe
1 em WE mmher
S heggo ﬁ
e Role of knowledge in problem solving

e Nature of solution process: with or without interacting with the user

The general classes of engineering problems such as planning, classification, diagnosis,
monitoring and design are generally knowledge intensive and use a large amount of heuristics.
Depending on the type of problem, the knowledge representation schemes and control strategies
for search are to be adopted. Combining heuristics with the two basic search strategies have been
discussed above. There are a number of other general-purpose search techniques which are
essentially heuristics based. Their efficiency primarily depends on how they exploit the domain-
specific knowledge to abolish undesirable paths. Such search methods are called ‘weak
methods’, since the progress of the search depends heavily on the way the domain knowledge is
exploited. A few of such search techniques which form the centre of many Al systems are briefly
presented in the following sections.

Problem Decomposition

Suppose to solve the expression is: + J(X3 + X2 + 2X + 3sinx) dx

26

http://www.PDFWatermarkRemover.com/buy.htm

[(X3 + X2+ 2X + 3sinx)dx

e TR —

[x3dx [x2dx [2xdx |3sinxdx
| | | |
4 { " e
X°/4 x3/3 2]xdx 3isinxdx
|
|
x2 —3C0sX

This problem can be solved by breaking it into smaller problems, each of which we can solve by
using a small collection of specific rules. Using this technique of problem decomposition, we can
solve very large problems very easily. This can be considered as an intelligent behaviour.

Can Solution Steps be Ignored?

Suppose we are trying to prove a mathematical theorem: first we proceed considering that

proving a lemma will be useful. Later we realize that it is not at all useful. We start with another

one to prove the theorem. Here we simply ignore the first method.

Consiger t legproblemgtessolve: we Ike a wrong move and realize that mistake. But
Bt

here, the controlf$tratégy mpst @ ra@k ofjalth v, that tr initial
state a art with sofbe ne VE.
Considefthe problem ying chess. , a o re€over fram that

step. These problems are illustrated in the three important classes of problems mentioned below:
1. Ignorable, in which solution steps can be ignored. Eg: Theorem Proving
2. Recoverable, in which solution steps can be undone. Eg: 8-Puzzle
3. Irrecoverable, in which solution steps cannot be undone. Eg: Chess

Is the Problem Universe Predictable?

Consider the 8-Puzzle problem. Every time we make a move, we know exactly what will happen.
This means that it is possible to plan an entire sequence of moves and be confident what the
resulting state will be. We can backtrack to earlier moves if they prove unwise.

Suppose we want to play Bridge. We need to plan before the first play, but we cannot play with
certainty. So, the outcome of this game is very uncertain. In case of 8-Puzzle, the outcome is
very certain. To solve uncertain outcome problems, we follow the process of plan revision as the
plan is carried out and the necessary feedback is provided. The disadvantage is that the planning
in this case is often very expensive.

Is Good Solution Absolute or Relative?
Consider the problem of answering questions based on a database of simple facts such as the
following:

27

http://www.PDFWatermarkRemover.com/buy.htm

1. Siva was a man.
2. Siva was a worker in a company.
3. Siva was born in 1905.
4. All men are mortal.
5. All workers in a factory died when there was an accident in 1952.
6. No mortal lives longer than 100 years.
Suppose we ask a question: ‘Is Siva alive?’
By representing these facts in a formal language, such as predicate logic, and then using formal
inference methods we can derive an answer to this question easily.
There are two ways to answer the question shown below:
Method I:
1. Siva was a man.
2. Siva was born in 1905.
3. All men are mortal.
4. Now it is 2008, so Siva’s age is 103 years.
5. No mortal lives longer than 100 years.
Method II:
1. Siva is a worker in the company.
2. All workers in the company died in 1952.
Answer: So Siva is not alive. It is the answer from the above methods.

We are interested to answer the question; it does not matter which path we follow. If we follow
one path successfully to the correct answer, then there is no reason to go back and check another

SLLRLSe.com

Production systems provide us with good ways of describing the operations that can be

performed in a search for a solution to a problem.

At this time, two questions may arise:

1. Can production systems be described by a set of characteristics? And how can they be

easily implemented?

2. What relationships are there between the problem types and the types of production

systems well suited for solving the problems?

To answer these questions, first consider the following definitions of classes of production

systems:

1. A monotonic production system is a production system in which the application of a
rule never prevents the later application of another rule that could also have been
applied at the time the first rule was selected.

A non-monotonic production system is one in which this is not true.

3. A partially communicative production system is a production system with the
property that if the application of a particular sequence of rules transforms state P into
state Q, then any combination of those rules that is allowable also transforms state P
into state Q.

4. A commutative production system is a production system that is both monotonic and
partially commutative.

N

28

http://www.PDFWatermarkRemover.com/buy.htm

Table 2.1 Four Categories of Production Systems

Production System Monotonic Non-monotonic
Partially Commutative Theorem Proving Robot Navigation
Non-partially Commutative Chemical Synthesis Bridge

Is there any relationship between classes of production systems and classes of problems?
For any solvable problems, there exist an infinite number of production systems that show how
to find solutions. Any problem that can be solved by any production system can be solved by a
commutative one, but the commutative one is practically useless. It may use individual states to
represent entire sequences of applications of rules of a simpler, non-commutative system. In the
formal sense, there is no relationship between kinds of problems and kinds of production systems
Since all problems can be solved by all kinds of systems. But in the practical sense, there is
definitely such a relationship between the kinds of problems and the kinds of systems that lend
themselves to describing those problems.

Partially commutative, monotonic productions systems are useful for solving ignorable
problems. These are important from an implementation point of view without the ability to
backtrack to previous states when it is discovered that an incorrect path has been followed. Both
types of partially commutative production systems are significant from an implementation point;
they tend to lead to many duplications of individual states during the search process. Production
systems th partiall tative are gseful for many problems in which permanent

C
A Se.com
Issues th the Desig Search PLJa S ®

Each search process can be considered to be a tree traversal. The object of the search is to find a
path from the initial state to a goal state using a tree. The number of nodes generated might be
huge; and in practice many of the nodes would not be needed. The secret of a good search
routine is to generate only those nodes that are likely to be useful, rather than having a precise
tree. The rules are used to represent the tree implicitly and only to create nodes explicitly if they
are actually to be of use.

The following issues arise when searching:

* The tree can be searched forward from the initial node to the goal state or backwards from the
goal state to the initial state.

* To select applicable rules, it is critical to have an efficient procedure for matching rules against
states.

» How to represent each node of the search process? This is the knowledge representation
problem or the frame problem. In games, an array suffices; in other problems, more complex
data structures are needed.

Finally in terms of data structures, considering the water jug as a typical problem do we use a
graph or tree? The breadth-first structure does take note of all nodes generated but the depth-first
one can be modified.

29

http://www.PDFWatermarkRemover.com/buy.htm

Check duplicate nodes

1. Observe all nodes that are already generated, if a new node is present.

2. If it exists add it to the graph.

3. If it already exists, then
a. Set the node that is being expanded to the point to the already existing node
corresponding to its successor rather than to the new one. The new one can be thrown
away.

b. If the best or shortest path is being determined, check to see if this path is better or
worse than the old one. If worse, do nothing.

Better save the new path and work the change in length through the chain of successor nodes if
necessary.

Example: Tic-Tac-Toe

State spaces are good representations for board games such as Tic-Tac-Toe. The position of a
game can be explained by the contents of the board and the player whose turn is next. The board
can be represented as an array of 9 cells, each of which may contain an X or O or be empty.
« State:

v Player to move next: X or O.

v" Board configuration:
n - - I - -
71 COIM

X X

* Operators: Change an empty cell to X or O.

« Start State: Board empty; X’s turn.

» Terminal States: Three X’s in a row; Three O’s in a row; All cells full.
Search Tree

The sequence of states formed by possible moves is called a search tree. Each level of the tree is
called a ply.

Since the same state may be reachable by different sequences of moves, the state space may in
general be a graph. It may be treated as a tree for simplicity, at the cost of duplicating states.

30

http://www.PDFWatermarkRemover.com/buy.htm

X
X X
X X X X X
0 0
0 0 0

Solving problems using search

* Given an informal description of the problem, construct a formal description as a state space:
v Define a data structure to represent the state.
v Make a representation for the initial state from the given data.
v Write programs to represent operators that change a given state representation to a new

EiPrrtse.com

v How large is the search space?
v" How well structured is the domain?
v" What knowledge about the domain can be used to guide the search?

31

http://www.PDFWatermarkRemover.com/buy.htm

HEURISTIC SEARCH TECHNIQUES:

Search Algorithms

Many traditional search algorithms are used in Al applications. For complex problems, the
traditional algorithms are unable to find the solutions within some practical time and space
limits. Consequently, many special techniques are developed, using heuristic functions.
The algorithms that use heuristic functions are called heuristic algorithms.

* Heuristic algorithms are not really intelligent; they appear to be intelligent because they
achieve better performance.

* Heuristic algorithms are more efficient because they take advantage of feedback from the data
to direct the search path.

 Uninformed search algorithms or Brute-force algorithms, search through the search space all
possible candidates for the solution checking whether each candidate satisfies the problem’s
statement.

« Informed search algorithms use heuristic functions that are specific to the problem, apply
them to guide the search through the search space to try to reduce the amount of time spent in
searching.

A good heuristic will make an informed search dramatically outperform any uninformed search:
for example, the Traveling Salesman Problem (J SP), where the goal is to find is a good solution

instead of f; e Best s@lut
In such\pfoblems; the Searchy pr@ceeds ucu ent ation_abQut :@ erﬁﬁt
which path is closer to the goal and follow it, although it does not always guarantee to find the

best possible solution. Such techniques help in finding a solution within reasonable time and
space (memory). Some prominent intelligent search algorithms are stated below:

1. Generate and Test Search

2. Best-first Search

3. Greedy Search

4. A* Search

5. Constraint Search

6. Means-ends analysis

There are some more algorithms. They are either improvements or combinations of these.

« Hierarchical Representation of Search Algorithms: A Hierarchical representation of most
search algorithms is illustrated below. The representation begins with two types of search:

» Uninformed Search: Also called blind, exhaustive or brute-force search, it uses no
information about the problem to guide the search and therefore may not be very efficient.

« Informed Search: Also called heuristic or intelligent search, this uses information about the
problem to guide the search—usually guesses the distance to a goal state and is therefore
efficient, but the search may not be always possible.

32

http://www.PDFWatermarkRemover.com/buy.htm

Search Algorithms
G(State, Operator, Cost)

No Heun'stics/ Nser Heuristics h(n)

Uninformed Search Informed Search

Priority Queue: g(n)
LIFO Stack FIFO
Queue

Depth First Search || Breadth First Search

DFS BFS Cost First Search Generate and Test Hill Climbing
Imposed Fixed
Depth Limit Priority
Queue = h(n)
Depth Limited Best First Search Problem Constraint Means-end
Search S SIC oA Reduction Satisfaction Analysis
gradually fixed Priority Queue
depth limit f(n) = h(n) + g(n)
Iterative
Deepening DFS A* Search A0* Search

Different Search Algorithms

Fig.
The first rgquirefhent §§ thatit tiof, il a e g pragra onithe Board
and in ater Jug preblem, filling water JS used to Tilljugs. Itme S ;@ olfstrategi
without the motion will never lead to the solution.

The second requirement is that it is systematic, that is, it corresponds to the need for global
motion as well as for local motion. This is a clear condition that neither would it be rational to
fill a jug and empty it repeatedly, nor it would be worthwhile to move a piece round and round
on the board in a cyclic way in a game. We shall initially consider two systematic approaches for
searching. Searches can be classified by the order in which operators are tried: depth-first,

breadth-first, bounded depth-first.

33

http://www.PDFWatermarkRemover.com/buy.htm

Depth First

Breadth IW\
/\ :

ANR

Requires a lot of storage

4 3 Goes too deep if tree is very large

Bounded Depth First

—= Maximum Depth Boundary

Depth is bounded artificially. Low storage requirement

Breadth-first search

A Search strategy, in which the highest layer of a decision tree is searched completely before
proceeding to the next layer is called Breadth-first search (BFS).

* In this strategy, no viable solutions are omitted and therefore it is guaranteed that an optimal
solution is found.

* This strategy is often not feasible when the search space is large.

Algorithm

1. Create a variable called LIST and set it to be the starting state.

2. Loop until a goal state is found or LIST is empty, Do

a. Remove the first element from the LIST and call it E. If the LIST is empty, quit.

b. For every path each rule can match the state E, Do

(i) Apply the rule to generate a new state.

(ii) If the new state is a goal state, quit and return this state.

(iii) Otherwise, add the new state to the end of LIST.

34

http://www.PDFWatermarkRemover.com/buy.htm

Advantages

1. Guaranteed to find an optimal solution (in terms of shortest number of steps

to reach the goal).

2. Can always find a goal node if one exists (complete).

Disadvantages

1. High storage requirement: exponential with tree depth.

Depth-first search

A search strategy that extends the current path as far as possible before backtracking to the last
choice point and trying the next alternative path is called Depth-first search (DFS).

» This strategy does not guarantee that the optimal solution has been found.

» In this strategy, search reaches a satisfactory solution more rapidly than breadth first, an
advantage when the search space is large.

Algorithm

Depth-first search applies operators to each newly generated state, trying to drive directly toward
the goal.

1. If the starting state is a goal state, quit and return success.

2. Otherwise, do the following until success or failure is signalled:

a. Generate a successor E to the starting state. If there are no more successors, then signal failure.
b. Call Depth-first Search with E as the starting state.

c. If success is returned signal success; otherwise, continue in the loop.

Advantages

1. Low storage requirement: linear with tree depth.

2. Easily programmed: function call stack does most of the work of maintaining state of the
searc

Disadvantages
1. May %ind a suf-optial s@lution (onegithatiis @eepe orecgst th stisolutio

2. Incomplete: without a depth bound, may not find a solution even IT 0ne exists.

2.4.2.3 Bounded depth-first search

Depth-first search can spend much time (perhaps infinite time) exploring a very deep path that
does not contain a solution, when a shallow solution exists. An easy way to solve this problem is
to put a maximum depth bound on the search. Beyond the depth bound, a failure is generated
automatically without exploring any deeper.

Problems:

1. It’s hard to guess how deep the solution lies.

2. If the estimated depth is too deep (even by 1) the computer time used is dramatically
increased, by a factor of bextra.

3. If the estimated depth is too shallow, the search fails to find a solution; all that computer time
is wasted.

Heuristics

A heuristic is a method that improves the efficiency of the search process. These are like tour
guides. There are good to the level that they may neglect the points in general interesting
directions; they are bad to the level that they may neglect points of interest to particular
individuals. Some heuristics help in the search process without sacrificing any claims to entirety
that the process might previously had. Others may occasionally cause an excellent path to be
overlooked. By sacrificing entirety it increases efficiency. Heuristics may not find the best

35

http://www.PDFWatermarkRemover.com/buy.htm

solution every time but guarantee that they find a good solution in a reasonable time. These are
particularly useful in solving tough and complex problems, solutions of which would require
infinite time, i.e. far longer than a lifetime for the problems which are not solved in any other
way.
Heuristic search
To find a solution in proper time rather than a complete solution in unlimited time we use
heuristics. ‘A heuristic function is a function that maps from problem state descriptions to
measures of desirability, usually represented as numbers’. Heuristic search methods use
knowledge about the problem domain and choose promising operators first. These heuristic
search methods use heuristic functions to evaluate the next state towards the goal state. For
finding a solution, by using the heuristic technique, one should carry out the following steps:
1. Add domain—specific information to select what is the best path to continue searching along.
2. Define a heuristic function h(n) that estimates the ‘goodness’ of a node n.
Specifically, h(n) = estimated cost(or distance) of minimal cost path from n to a goal state.
3. The term, heuristic means ‘serving to aid discovery’ and is an estimate, based on domain
specific information that is computable from the current state description of how close we are to
a goal.
Finding a route from one city to another city is an example of a search problem in which
different search orders and the use of heuristic knowledge are easily understood.
1. State: The current city in which the traveller is located.
2. Operators: Roads linking the current city to other cities.
3. Cost Metric: The cost of taking a given road between cities.

information: The search could be guided by the direction of the goal city from the

d usgai istance asjan estimate of the distance to the goal.
lemsy the graditional algogth ,ée‘ed ab e,@ @
ical time and space limits. Consequently, many special techniques are
developed, using heuristic functions.
* Blind search is not always possible, because it requires too much time or Space (memory).

Heuristics are rules of thumb; they do not guarantee a solution to a problem.
* Heuristic Search is a weak technique but can be effective if applied correctly; it requires
domain specific information.

Characteristics of heuristic search
* Heuristics are knowledge about domain, which help search and reasoning in its domain.
* Heuristic search incorporates domain knowledge to improve efficiency over blind search.
* Heuristic is a function that, when applied to a state, returns value as estimated merit of state,
with respect to goal.
v Heuristics might (for reasons) underestimate or overestimate the merit of a state with
respect to goal.
v" Heuristics that underestimate are desirable and called admissible.
* Heuristic evaluation function estimates likelihood of given state leading to goal state.
* Heuristic search function estimates cost from current state to goal, presuming function is
efficient.

36

http://www.PDFWatermarkRemover.com/buy.htm

Heuristic search compared with other search
The Heuristic search is compared with Brute force or Blind search techniques below:

Comparison of Algorithms

Brute force / Blind search Heuristic search

Can only search what it has knowledge Estimates ‘distance’ to goal state
about already through explored nodes

No knowledge about how far a node Guides search process toward goal

node from goal state
Prefers states (nodes) that lead
close to and not away from goal
state

Example: Travelling salesman

A salesman has to visit a list of cities and he must visit each city only once. There are different
routes between the cities. The problem is to find the shortest route between the cities so that the
salesman visits all the cities at once.

Suppose there are N cities, then a solution would be to take N! possible combinations to find the
shortest distance to decide the required route. This is not efficient as with N=10 there are

36,28\800 outes. This xample of combinatorial explosion.
There etter ethads fol'thélsolutioh offSuch prolems: one‘s le & am
First, generate all the complete paths and Tind the distance of the first Complete path. IT the next

path is shorter, then save it and proceed this way avoiding the path when its length exceeds the
saved shortest path length, although it is better than the previous method.

Generate and Test Strategy

Generate-And-Test Algorithm

Generate-and-test search algorithm is a very simple algorithm that guarantees to find a solution if
done systematically and there exists a solution.

Algorithm: Generate-And-Test

1.Generate a possible solution.

2.Test to see if this is the expected solution.

3.If the solution has been found quit else go to step 1.

Potential solutions that need to be generated vary depending on the kinds of problems. For some
problems the possible solutions may be particular points in the problem space and for some
problems, paths from the start state.

37

http://www.PDFWatermarkRemover.com/buy.htm

Generator

Possible solutions

Tester @ Correct soltion

@
@ Incorrect solutions

Figure: Generate And Test
Generate-and-test, like depth-first search, requsiles that complete solutions be generated for

i matic f it is only afl exhaustive search of the problem space.
n also be generated y bt s@lugion i uaranteed proachfis What is
ritisiEMuseum algogithm: fiding afl ob) teBr‘ti M anderi

While generating complete solutions and generating random solutions are the two extremes there
exists another approach that lies in between. The approach is that the search process proceeds
systematically but some paths that unlikely to lead the solution are not considered. This
evaluation is performed by a heuristic function.

Depth-first search tree with backtracking can be used to implement systematic generate-and-test
procedure. As per this procedure, if some intermediate states are likely to appear often in the
tree, it would be better to modify that procedure to traverse a graph rather than a tree.
Generate-And-Test And Planning

Exhaustive generate-and-test is very useful for simple problems. But for complex problems even
heuristic generate-and-test is not very effective technique. But this may be made effective by
combining with other techniques in such a way that the space in which to search is restricted. An
Al program DENDRAL, for example, uses plan-Generate-and-test technique. First, the planning
process uses constraint-satisfaction techniques and creates lists of recommended and
contraindicated substructures. Then the generate-and-test procedure uses the lists generated and
required to explore only a limited set of structures. Constrained in this way, generate-and-test
proved highly effective. A major weakness of planning is that it often produces inaccurate
solutions as there is no feedback from the world. But if it is used to produce only pieces of
solutions then lack of detailed accuracy becomes unimportant.

38

http://www.PDFWatermarkRemover.com/buy.htm

Hill Climbing
Hill Climbing is heuristic search used for mathematical optimization problems in the field of
Artificial Intelligence .
Given a large set of inputs and a good heuristic function, it tries to find a sufficiently good
solution to the problem. This solution may not be the global optimal maximum.
= In the above definition, mathematical optimization problems implies that hill climbing
solves the problems where we need to maximize or minimize a given real function by
choosing values from the given inputs. Example-Travelling salesman problem where we
need to minimize the distance traveled by salesman.
= ‘Heuristic search’ means that this search algorithm may not find the optimal solution to
the problem. However, it will give a good solution in reasonable time.
= A heuristic function is a function that will rank all the possible alternatives at any
branching step in search algorithm based on the available information. It helps the
algorithm to select the best route out of possible routes.
Features of Hill Climbing
1. Variant of generate and test algorithm : It is a variant of generate and test algorithm. The
generate and test algorithm is as follows :

1. Generate a possible solutions.

2. Test to see if this is the expected solution.

3. If the solution has been found quit else go to step 1.

Hence we call Hill climbing as a variant of generate and test algorithm as it takes the feedback

from iest pr?cedure. Then this feedback is utilized by the generator in deciding the next move in

searcfispage.
2. the Greedy approa t any Point inggtat , the archi that difection
y whigh optiizes the cost o ti ittt e of ipgthe optimal Solution at
the end.
Types of Hill Climbing

1. Simple Hill climbing : It examines the neighboring nodes one by one and selects the first
neighboring node which optimizes the current cost as next node.
Algorithm for Simple Hill climbing :
Step 1 : Evaluate the initial state. If it is a goal state then stop and return success. Otherwise,
make initial state as current state.
Step 2 : Loop until the solution state is found or there are no new operators present which can be
applied to current state.
a) Select a state that has not been yet applied to the current state and apply it to produce a new
state.
b) Perform these to evaluate new state
i. If the current state is a goal state, then stop and return success.
ii. If it is better than the current state, then make it current state and proceed further.
iii. If it is not better than the current state, then continue in the loop until a solution is found.

Step 3 : Exit.

39

https://www.geeksforgeeks.org/travelling-salesman-problem-set-1/
http://www.PDFWatermarkRemover.com/buy.htm

2. Steepest-Ascent Hill climbing : It first examines all the neighboring nodes and then
selects the node closest to the solution state as next node.

Step 1 : Evaluate the initial state. If it is goal state then exit else make the current state as initial
state
Step 2 : Repeat these steps until a solution is found or current state does not change
i. Let ‘target’ be a state such that any successor of the current state will be better than it;
ii. for each operator that applies to the current state
a. apply the new operator and create a new state
b. evaluate the new state
c. if this state is goal state then quit else compare with ‘target’
d. if this state is better than ‘target’, set this state as ‘target’
e. if target is better than current state set current state to Target
Step 3 : Exit
3. Stochastic hill climbing : It does not examine all the neighboring nodes before deciding
which node to select .t just selects a neighboring node at random, and decides (based on
the amount of improvement in that neighbor) whether to move to that neighbor or to
examine another.
State Space diagram for Hill Climbing
State space diagram is a graphical representation of the set of states our search algorithm can
reach vs the value of our objective function(the function which we wish to maximize).
X-axis : denotes the state space ie states or configuration our algorithm may reach.
Y-axis : denotes the values of objective functlce)i)correspondmg to to a particular state.

The ts 11fbe that st ce wherelobjective function has maximum value(global
maxi alitalalas

objective function 3
_— global maximum

shoulder

local maximum

“flat” local maximum

/

= State space
current
State

Different regions in the State Space Diagram
1. Local maximum : It is a state which is better than its neighboring state however there
exists a state which is better than it(global maximum). This state is better because here
value of objective function is higher than its neighbors.

40

http://www.PDFWatermarkRemover.com/buy.htm

2. Global maximum : It is the best possible state in the state space diagram. This because at
this state, objective function has highest value.

3. Plateua/flat local maximum : It is a flat region of state space where neighboring states
have the same value.

4. Ridge : Itis region which is higher than its neighbours but itself has a slope. It is a special
kind of local maximum.

5. Current state : The region of state space diagram where we are currently present during
the search.

6. Shoulder : It is a plateau that has an uphill edge.

Problems in different regions in Hill climbing
Hill climbing cannot reach the optimal/best state(global maximum) if it enters any of the
following regions :

1. Local maximum : At a local maximum all neighboring states have a values which is
worse than than the current state. Since hill climbing uses greedy approach, it will not
move to the worse state and terminate itself. The process will end even though a better
solution may exist.

To overcome local maximum problem : Utilize backtracking technique. Maintain a list of
visited states. If the search reaches an undesirable state, it can backtrack to the previous
configuration and explore a new path.

2. Plateau : On plateau all neighbors have same value . Hence, it is not possible to select the
best direction.

To overcome plateaus : Make a big jump. Randomly select a state far away from current state.
Chances are that we will land at a non-plateau Igion

paint olla an look |
nward. e the algo

e peak because movement in all possible
tHin sto en it gac @ tate.
id Infthis ki bstacle, Bs&itwo orgnage r [: forettesting.

implies moving 1n several directions at once.
Best First Search (Informed Search)

In BFS and DFS, when we are at a node, we can consider any of the adjacent as next
node. So both BFS and DFS blindly explore paths without considering any cost function. The
idea of Best First Search is to use an evaluation function to decide which adjacent is most
promising and then explore. Best First Search falls under the category of Heuristic Search or
Informed Search.

We use a priority queue to store costs of nodes. So the implementation is a variation of BFS, we
just need to change Queue to PriorityQueue.

Algorithm:
Best-First-Search(Grah g, Node start)
1) Create an empty PriorityQueue
PriorityQueue pg;
2) Insert "start™ in pg.
pg.insert(start)
3) Until PriorityQueue is empty
u = PriorityQueue.DeleteMin

41

http://www.PDFWatermarkRemover.com/buy.htm

If u is the goal
Exit
Else
Foreach neighbor v of u
If v "Unvisited"
Mark v "Visited"
pg.insert(v)
Mark v "Examined"
End procedure
Let us consider below example.

We start from source "S" and search for
goal "I" using given costs and Best
First search.

pq initially contains S

We remove s from and process unvisited
neighbors of S to pq.

pg now contains {A, C, B} (C is put
before B because C has lesser cost)

We remove A from pg and process unvisited
neighbors of A to pg.
pg now contains {C, B, E, D}

42

http://cdncontribute.geeksforgeeks.org/wp-content/uploads/BFS2.png
http://www.PDFWatermarkRemover.com/buy.htm

We remove C from pg and process unvisited
neighbors of C to pg.
pg now contains {B, H, E, D}

We remove B from pg and process unvisited
neighbors of B to pg.
pg now contains {H, E, D, F, G}

We remove H from pg. Since our goal
"I" is a neighbor of H, we return.
Analysis :
= The worst case time complexity for Best First Search is O(n * Log n) where n is number
of nodes. In worst case, we may have to visit all nodes before we reach goal. Note that
priority queue is implemented using Min(or Max) Heap, and insert and remove
operations take O(log n) time.
= Performance of the algorithm depends on how well the cost or evaluation function is
designed.

A* Search Algorithm

A* is a type of search algorithm. Some problems can be solved by representing the world in the
initial state, and then for each action we can pegform on the world we generate states for what the

worldiwould be like if\we did s do thisfuntil.the disin tate.that ecified as
a solution fthen the rolite fr rtifo t alistate solution to @ rablerl
[]

In this tutorial 1 will look at the use of state space search to find the shortest path between two
points (pathfinding), and also to solve a simple sliding tile puzzle (the 8-puzzle). Let's look at
some of the terms used in Artificial Intelligence when describing this state space search.

Some terminology

A node is a state that the problem's world can be in. In pathfinding a node would be just a 2d
coordinate of where we are at the present time. In the 8-puzzle it is the positions of all the tiles.
Next all the nodes are arranged in a graph where links between nodes represent valid steps in
solving the problem. These links are known as edges. In the 8-puzzle diagram the edges are
shown as blue lines. See figure 1 below.

State space search, then, is solving a problem by beginning with the start state, and then for each
node we expand all the nodes beneath it in the graph by applying all the possible moves that can
be made at each point.

Heuristics and Algorithms
At this point we introduce an important concept, the heuristic. This is like an algorithm, but with

a key difference. An algorithm is a set of steps which you can follow to solve a problem, which
always works for valid input. For example you could probably write an algorithm yourself for

43

http://www.PDFWatermarkRemover.com/buy.htm

multiplying two numbers together on paper. A heuristic is not guaranteed to work but is useful in
that it may solve a problem for which there is no algorithm.

We need a heuristic to help us cut down on this huge search problem. What we need is to use our
heuristic at each node to make an estimate of how far we are from the goal. In pathfinding we
know exactly how far we are, because we know how far we can move each step, and we can
calculate the exact distance to the goal.

But the 8-puzzle is more difficult. There is no known algorithm for calculating from a given
position how many moves it will take to get to the goal state. So various heuristics have been
devised. The best one that I know of is known as the Nilsson score which leads fairly directly to
the goal most of the time, as we shall see.

Cost

When looking at each node in the graph, we now have an idea of a heuristic, which can estimate
how close the state is to the goal. Another important consideration is the cost of getting to where
we are. In the case of pathfinding we often assign a movement cost to each square. The cost is
the same then the cost of each square is one. If we wanted to differentiate between terrain types
we may give higher costs to grass and mud than to newly made road. When looking at a node we
want to add up the cost of what it took to get here, and this is simply the sum of the cost of this
node and all those that are above it in the graph.

8 Puzzle
Let's look at the 8 puzzle in more detail. This is.a simple sliding tile puzzle on a 3*3 grid where

one tile is ou ¢an w the other files into the gap until you get the puzzle into the
goal p@sitiOn. See figure 1. I I C ﬂ l 'O m
P e

Figure 1 : The 8-Puzzle state space for a very simple example

There are 362,880 different states that the puzzle can be in, and to find a solution the search has
to find a route through them. From most positions of the search the number of edges (that's the

44

http://www.PDFWatermarkRemover.com/buy.htm

blue lines) is two. That means that the number of nodes you have in each level of the search is
2°d where d is the depth. If the number of steps to solve a particular state is 18, then that€s
262,144 nodes just at that level.

The 8 puzzle game state is as simple as representing a list of the 9 squares and what's in them.
Here are two states for example; the last one is the GOAL state, at which point we've found the
solution. The first is a jumbled up example that you may start from.

Start state SPACE, A,C,H,B,D, G, F, E
Goal state A, B, C, H, SPACE, D, G, F, E
The rules that you can apply to the puzzle are also simple. If there is a blank tile above, below, to
the left or to the right of a given tile, then you can move that tile into the space. To solve the
puzzle you need to find the path from the start state, through the graph down to the goal state.

There is example code to to solve the 8-puzzle on the github site.

Pathfinding
In a video game, or some other pathfinding scenario, you want to search a state space and find
out how to get from somewhere you are to somewhere you want to be, without bumping into

walls or going too far. For reasons we will see later, the A* algorithm will not only find a path, if
there is one, but it will find the shortest path. A state in pathfinding is simply a position in the

world. In the example of a maze game like Pacman you can represent where everything is using

a simple 2drgri efStart stat
at th@ start of the se@rch. The

afora ghost sayywould be the 2d coordinate of where the ghost is
t uld b&whe man' nd€atihim.
her&jis eXample €odgtto [dlo pathfiading og the githdb site.

Figure 2 : The first three steps of a pathfinding state space

45

https://github.com/justinhj/astar-algorithm-cpp/blob/master/8puzzle.cpp
https://github.com/justinhj/astar-algorithm-cpp/blob/master/findpath.cpp
http://www.PDFWatermarkRemover.com/buy.htm

Implementing A*

We are now ready to look at the operation of the A* algorithm. What we need to do is start with
the goal state and then generate the graph downwards from there. Let's take the 8-puzzle in
figure 1. We ask how many moves can we make from the start state? The answer is 2, there are
two directions we can move the blank tile, and so our graph expands.

If we were just to continue blindly generating successors to each node, we could potentially fill
the computer's memory before we found the goal node. Obviously we need to remember the best
nodes and search those first. We also need to remember the nodes that we have expanded
already, so that we don't expand the same state repeatedly.

Let's start with the OPEN list. This is where we will remember which nodes we haven't yet
expanded. When the algorithm begins the start state is placed on the open list, it is the only state
we know about and we have not expanded it. So we will expand the nodes from the start and put
those on the OPEN list too. Now we are done with the start node and we will put that on the
CLOSED list. The CLOSED list is a list of nodes that we have expanded.

f=g+h

Using the OPEN and CLOSED list lets us be more selective about what we look at next in the
search. We want to look at the best nodes first. We will give each node a score on how good we
think it is. This score should be thought of as the cost of getting from the node to the goal plus
the cost of getting to where we are. Traditionally this has been represented by the letters f, g and
h.'g" is the sum of all the costs it took to get here, 'h' is our heuristic function, the estimate of
what it will take to get to the goal. 'f' is the sum_of these two. We will store each of these in our

node
Using the £ g an@ h values the ofithna will irg€tedWsubjegt to cq DN 1[Book
at furth&k/on, towards the I and will¥find'it iR the shortest rou‘e ssipl

So far we have looked at the components of the A*, let's see how they all fit together to make the
algorithm :

Pseudocode
Hopefully the ideas we looked at in the preceding paragraphs will now click into place as we
look at the A* algorithm pseudocode. You may find it helpful to print this out or leave the

window open while we discuss it.

To help make the operation of the algorithm clear we will look again at the 8-puzzle problem in
figure 1 above. Figure 3 below shows the f,g and h scores for each of the tiles.

46

http://heyes-jones.com/pseudocode.php
http://www.PDFWatermarkRemover.com/buy.htm

f.g.h scores : 17.0.17

. Start state

1.1,10 9.1,18

B K
P PN

9.2.17 These nodes dan ¥ gef loaked af

Figure 3 : 8-Puzzle state space showing f,g,h scores

—_—
—

1

220

First of all look at the g score for each node. This is the cost of what it took to get from the start
to that node. So in the picture the center number is g. As you can see it increases by one at each
level. In some problems the cost may vary for different state changes. For example in

pathfinding etines e of terraingthat costs more than other types.

Next mbeflin riple. {hislis e istic s enti ve |
am usi ic kllown@s n'kele eﬁﬁ/ergiqui(m mwon
in man : i ourcalcula 0 iven &p S

Advantages:
It is complete and optimal.
It is the best one from other techniques. It is used to solve very complex problems.

It is optimally efficient, i.e. there is no other optimal algorithm guaranteed to expand fewer nodes
than A*.

Disadvantages:

This algorithm is complete if the branching factor is finite and every action has fixed cost.

The speed execution of A* search is highly dependant on the accuracy of the heuristic algorithm
that is used to compute h (n).

47

http://www.PDFWatermarkRemover.com/buy.htm

AO* Search: (And-Or) Graph

The Depth first search and Breadth first search given earlier for OR trees or graphs can be easily
adopted by AND-OR graph. The main difference lies in the way termination conditions are
determined, since all goals following an AND nodes must be realized; where as a single goal
node following an OR node will do. So for this purpose we are using AO* algorithm.

Like A* algorithm here we will use two arrays and one heuristic function.

OPEN:

It contains the nodes that has been traversed but yet not been marked solvable or unsolvable.
CLOSE:

It contains the nodes that have already been processed.

6 7:The distance from current node to goal node.

AlgoRithm
Step 1:\Rlace theistar e toOPu ; (° (:O I I l
Step 2: Compute the most promising solution tree say TO.

Step 3: Select a node n that is both on OPEN and a member of TO. Remove it from OPEN and
place it in

CLOSE

Step 4: If nis the terminal goal node then leveled n as solved and leveled all the ancestors of n
as solved. If the starting node is marked as solved then success and exit.

Step 5: If nis not a solvable node, then mark n as unsolvable. If starting node is marked as
unsolvable, then return failure and exit.

Step 6: Expand n. Find all its successors and find their h (n) value, push them into OPEN.
Step 7: Return to Step 2.

Step 8: Exit.

48

http://www.PDFWatermarkRemover.com/buy.htm

Implementation:

Let us take the following example to implement the AO* algorithm.

Solvabl
/@(ov e)

(Unsolvable)

* (Solvable)
Figure

Step 1:

In the\@bove graph, thg solvable @ S @re E d the Y 0 H.
Take he startingfhode JSofptace AlintalO X
o
1e. OPEN = CLOSE =(NULL)

Step 2:

49

http://www.PDFWatermarkRemover.com/buy.htm

The children of A are B and C which are solvable. So place them into OPEN and place A into the
CLOSE.

1e. OPEN = CLOSE = o

Now process the nodes B and C. The children of B and C are to be placed into OPEN. Also remove B and
C from OPEN and place them into CLOSE.

Step 3:

So OPEN = C
G| D| E Al B |C

(0)

50

http://www.PDFWatermarkRemover.com/buy.htm

‘0’ indicated that the nodes G and H are unsolvable.
Step 4:
As the nodes G and H are unsolvable, so place them into CLOSE directly and process the nodes D and E.

1.e. OPEN = CLOSE =

B C G D H H©

Step 5:

Now we have been reached at our goal state. So place F into CLOSE.

A C c© D E w© | F

vV 1T UI UToCU.CUITI

51

http://www.PDFWatermarkRemover.com/buy.htm

i.e. CLOSE =
Step 6:

Success and Exit

AO* Graph:

o
Viurumpne.cCOm

Advantages:

It is an optimal algorithm.

If traverse according to the ordering of nodes. It can be used for both OR and AND graph.
Disadvantages:

Sometimes for unsolvable nodes, it can’t find the optimal path. Its complexity is than other
algorithms.

PROBLEM REDUCTION

Problem Reduction with AO* Algorithm.

When a problem can be divided into a set of sub problems, where each sub problem can be
solved separately and a combination of these will be a solution, AND-OR graphs or AND - OR

trees are used for representing the solution. The decomposition of the problem or problem
reduction generates AND arcs. One AND are may point to any number of successor nodes. All

52

http://www.PDFWatermarkRemover.com/buy.htm

these must be solved so that the arc will rise to many arcs, indicating several possible solutions.
Hence the graph is known as AND - OR instead of AND. Figure shows an AND - OR graph.

Cioals Avanire TV Sop
And arc

Gonl: Steal TV Set Guoal: Earn some inaney Goal: Buy TV Set

Figure shows AND - Or graph - an example,

An algorithm to find a solution in an AND - OR graph must handle AND area appropriately. A*
algorithm can not search AND - OR graphs efficiently. This can be understand from the give
figure.

Figure 3.7: AND-OR Graphs
In figuré®(a) the op no as®been e>Ued r in afea tho[aI I]ding

to C-D . the numbers at each node represent the value of f ' at that node (cost of getting to the
goal state from current state). For simplicity, it is assumed that every operation(i.e. applying a
rule) has unit cost, i.e., each are with single successor will have a cost of 1 and each of its
components. With the available information till now , it appears that C is the most promising
node to expand since its f ' = 3, the lowest but going through B would be better since to use C
we must also use D' and the cost would be 9(3+4+1+1). Through B it would be 6(5+1).

Thus the choice of the next node to expand depends not only n a value but also on whether that
node is part of the current best path form the initial mode. Figure (b) makes this clearer. In figure
the node G appears to be the most promising node, with the least f ' value. But G is not on the
current beat path, since to use G we must use GH with a cost of 9 and again this demands that
arcs be used (with a cost of 27). The path from A through B, E-F is better with a total cost of
(17+1=18). Thus we can see that to search an AND-OR graph, the following three things must
be done.

1. traverse the graph starting at the initial node and following the current best path, and
accumulate the set of nodes that are on the path and have not yet been expanded.

2. Pick one of these unexpanded nodes and expand it. Add its successors to the graph and
computer f' (cost of the remaining distance) for each of them.

53

http://1.bp.blogspot.com/_ZGzaqHb40vU/TEk4aFB9nkI/AAAAAAAAAGg/wk43hjjHOoc/s1600/BestFirstSearch1.jpg
http://4.bp.blogspot.com/_ZGzaqHb40vU/TEk1fyQdz8I/AAAAAAAAAGY/qiwz__Js55k/s1600/BestFirstSearch2.jpg
http://www.PDFWatermarkRemover.com/buy.htm

3. Change the f ' estimate of the newly expanded node to reflect the new information produced
by its successors. Propagate this change backward through the graph. Decide which of the
current best path.

The propagation of revised cost estimation backward is in the tree is not necessary in A*

algorithm. This is because in AO* algorithm expanded nodes are re-examined so that the current
best path can be selected. The working of AO* algorithm is illustrated in figure as follows:

Befure Step 1 Tefore Step 2

iy i5) 7 1 ™

(4) (4)

Referring the figure. The initial node is expanded and D is Marked initially as promising node. D

IS expande an AND -F. f ' valge of D is updated to 10. Going backwards we can
see th -Cishe igno r S nt bes . BeaRd e
expanded mext. Thi cessico es M IléSiéi ora! pat mends,
indicati reis utign. An Azddlgont e fram otlet@'thalother i

always that of the lowest cost and it is independent of the paths through other nodes.

The algorithm for performing a heuristic search of an AND - OR graph is given below. Unlike
A* algorithm which used two lists OPEN and CLOSED, the AO* algorithm uses a single
structure G. G represents the part of the search graph generated so far. Each node in G points
down to its immediate successors and up to its immediate predecessors, and also has with it the
value of h' cost of a path from itself to a set of solution nodes. The cost of getting from the start
nodes to the current node "g" is not stored as in the A* algorithm. This is because it is not
possible to compute a single such value since there may be many paths to the same state. In AO*
algorithm serves as the estimate of goodness of a node. Also a there should value called
FUTILITY is used. The estimated cost of a solution is greater than FUTILITY then the search is
abandoned as too expansive to be practical.

For representing above graphs AO* algorithm is as follows

AO* ALGORITHM:
1. Let G consists only to the node representing the initial state call this node INTT. Compute
h' (INIT).

2. Until INIT is labeled SOLVED or hi (INIT) becomes greater than FUTILITY, repeat the
following procedure.

54

http://1.bp.blogspot.com/_ZGzaqHb40vU/TEkyIi1PzHI/AAAAAAAAAGQ/FwR_3J0S7qo/s1600/BestFirstSearch3.jpg
http://www.PDFWatermarkRemover.com/buy.htm

() Trace the marked arcs from INIT and select an unbounded node NODE.
(1) Generate the successors of NODE . if there are no successors then assign FUTILITY as
h' (NODE). This means that NODE is not solvable. If there are successors then for each
one
called SUCCESSOR, that is not also an ancester of NODE do the following
(a) add SUCCESSOR to graph G
(b) if successor is not a terminal node, mark it solved and assign zero to its h ' value.
(c) If successor is not a terminal node, compute it h' value.
(1) propagate the newly discovered information up the graph by doing the following . let S be a
set of nodes that have been marked SOLVED. Initialize S to NODE. Until S is empty
repeat
the following procedure;

(@) select a node from S call if CURRENT and remove it from S.

(b) compute h' of each of the arcs emergigg from CURRENT , Assign minimum h' to

VTURulse.com

(d) Mark CURRENT SOLVED if all of the nodes connected to it through the new marked
are have been labeled SOLVED.

(e) If CURRENT has been marked SOLVED or its h " has just changed, its new status
et be propagate backwards up the graph . hence all the ancestors of CURRENT are added
(Refered fzorosm Artificial Intelligence TMH)

AO* Search Procedure.
1. Place the start node on open.
2. Using the search tree, compute the most promising solution tree TP .

3. Select node n that is both on open and a part of tp, remove n from open and place it no closed.

4. If n is a goal node, label n as solved. If the start node is solved, exit with success where tp is
the solution tree, remove all nodes from open with a solved ancestor.

55

http://www.PDFWatermarkRemover.com/buy.htm

5. If nis not solvable node, label n as unsolvable. If the start node is labeled as unsolvable, exit
with failure. Remove all nodes from open ,with unsolvable ancestors.

6. Otherwise, expand node n generating all of its successor compute the cost of for each newly
generated node and place all such nodes on open.

7. Go back to step(2)

Note: AO* will always find minimum cost solution.

CONSTRAINT SATISFACTION:-

Many problems in Al can be considered as problems of constraint satisfaction, in which the goal
state satisfies a given set of constraint. constraint satisfaction problems can be solved by using
any of the search strategies. The general form of the constraint satisfaction procedure is as
follows:

Until a complete solution is found or until all paths have led to lead ends, do

1. select an unexpanded node of the search graph.

2. Apply the constraint inference rules to the selected node to generate all possible new
constkaints
0

JdJ PSS 8. COMm

4. If the set of constraints describes a complete solution then report success.

3. 1f th

5. If neither a constraint nor a complete solution has been found then apply the rules to generate
new partial solutions. Insert these partial solutions into the search graph.

Example: consider the crypt arithmetic problems.

SEND
+ MORE

Assign decimal digit to each of the letters in such a way that the answer to the problem is correct
to the same letter occurs more than once , it must be assign the same digit each time . no two
different letters may be assigned the same digit. Consider the crypt arithmetic problem.

56

http://www.PDFWatermarkRemover.com/buy.htm

CONSTRAINTS:-

1. no two digit can be assigned to same letter.

2. only single digit number can be assign to a letter.

1. no two letters can be assigned same digit.

2. Assumption can be made at various levels such that they do not contradict each other.

3. The problem can be decomposed into secured constraints. A constraint satisfaction approach
may be used.

4. Any of search techniques may be used.

5. Backtracking may be performed as applicable us applied search techniques.

TUPulse.com

D=?

m
Il
N}

O;”UZ-<
LG

w
Il
N

C1,C 2, C3 stands for the carry variables respectively.

Goal State: the digits to the letters must be assigned in such a manner so that the sum is satisfied.

Solution Process:
We are following the depth-first method to solve the problem.

1. initial guess m=1 because the sum of two single digits can generate at most a carry 'L".

57

http://www.PDFWatermarkRemover.com/buy.htm

2. When n=1 0=0 or 1 because the largest single digit number added to m=1 can generate the
sum of either 0 or 1 depend on the carry received from the carry sum. By this we conclude that
0=0 because m is already 1 hence we cannot assign same digit another letter(rule no.)

3. We have m=1 and 0=0 to get 0=0 we have s=8 or 9, again depending on the carry received
from the earlier sum.

The same process can be repeated further. The problem has to be composed into various
constraints. And each constraints is to be satisfied by guessing the possible digits that the letters
can be assumed that the initial guess has been already made . rest of the process is being shown
in the form of a tree, using depth-first search for the clear understandability of the solution
process.

VTUPulse.com

58

http://www.PDFWatermarkRemover.com/buy.htm

Step -1 M=1 S=8or9
O
=2
E(2) +0(0)+C2(1 Km: N
l/l’i{lo lrcziC
E2HO(M+C2(1y=N(3) E(Zp-O(0)+C2(0)~N(2yx
Contradiction (Rule 3)
N3 RACI(I or 0)=E(2)
IfCi=1 \ITCI-O
R=, =9
$=9,C3=0 $=8,C3=1
DHE(2)~Y DE(2)~Y
D=7 (to gencrate a carry)}
"X Contradiction{Ruie 3)
D4 D=5 D=7
v
Solution not (To Satisfy Y should
Satisfied generate carry)

Contradiction for value of 0 Comes
X
After Step 1 we derive zre more conclusion that Y contradiction should generase a
Carry. That is D+2>0

Step-2 M=1
/ O=0 Or S=8,8-9 C3=1,0C3=0

-

Let E=3

EQ (0 C21 or 0)=M
C2-1 2=

EG PO C21ENME) EGPO0)C2(0)=N(3)
X

Contradiction
NEHRHCI(] or 0)~E(3)
/C1=1 C1=0
R78
$=9

Contraction (Y should generate carry in that case C|
DHE(=Y cannet be equal do 0)
Ve

D>6(Controduction)

59

http://www.PDFWatermarkRemover.com/buy.htm

After Step 2, we found that C1 cannot be Zero, Sice Y has to generate & carry to
satisfy gonl state. From this step omwards, no veed to branch for C1=4.
Swep-3

M= S=8 ,C3=] ,$~9,C3=0

0=0

LetE~S
E(S)rO(0)=C20 1 or DN

c2-1 C270
E(SH O[O+ C2(1 =N{6) E(SPHO(01=C2(0)~N(5}

NI61FR*CI(L or 0)-F(5)
.
R_/
9
D=E(SrY

i
D=5 D=7

D3)ES=Y(0) DG EEEY(L IXTHE(S=Y(2)

Contradiction Conteadiction

At Step (4) we have assigned a single digit to every letter in accordance with the
constraints & production rules.

Now by backtracking , we find the different digits sssipned to different letters and
herce reach the solution state.

LW A ol BN N [

I

mZ AW O <
Il
o oo e

ZC
il

Il

eEeRP.
L b =
o

[S 2= B o

C3(0) C2(1) CI(1)
S(9) E(5) N(@©6) D(7)
+ M(1) O0) R(8) E(5)

M(1) O(0) N(6) E(5) Y(2)

60

http://2.bp.blogspot.com/_ZGzaqHb40vU/TElnRmL4BAI/AAAAAAAAAHA/NR9QfxkBVZI/s1600/constraint-2.jpg
http://1.bp.blogspot.com/_ZGzaqHb40vU/TElmP0DWy8I/AAAAAAAAAG4/d4QXXWyEu28/s1600/constraint-3.jpg
http://www.PDFWatermarkRemover.com/buy.htm

MEANS - ENDS ANALYSIS:-

Most of the search strategies either reason forward of backward however, often a mixture o the
two directions is appropriate. Such mixed strategy would make it possible to solve the major
parts of problem first and solve the smaller problems the arise when combining them together.
Such a technique is called "Means - Ends Analysis".

The means -ends analysis process centers around finding the difference between current state and
goal state. The problem space of means - ends analysis has an initial state and one or more goal
state, a set of operate with a set of preconditions their application and difference functions that
computes the difference between two state a(i) and s(j). A problem is solved using means - ends
analysis by

1. Computing the current state s1 to a goal state s2 and computing their difference D12.

2. Satisfy the preconditions for some recommended operator op is selected, then to reduce the
difference D12.

3. The operator OP is applied if possible. If not the current state is solved a goal is created and
means- ends analysis is applied recursively to reduce the sub goal.

4. If the sub goal is solved state is restored and work resumed on the original problem.

(the Vpro ram ffo us erual i$as ES Gﬁ ;@'ﬂ m
: o)
means- ends analysis | useful for many human planning activities. Consider the example o

planing for an office worker. Suppose we have a different table of three rules:

1. If in out current state we are hungry , and in our goal state we are not hungry , then either the
"visit hotel"” or "visit Canteen " operator is recommended.

2. If our current state we do not have money , and if in your goal state we have money, then the
"Visit our bank" operator or the "Visit secretary™ operator is recommended.

3. If our current state we do not know where something is , need in our goal state we do know,

then either the "visit office enquiry” , "visit secretary™ or "visit co worker " operator is
recommended.

61

http://www.PDFWatermarkRemover.com/buy.htm

KNOWLEDGE REPRESENTATION

KNOWLEDGE REPRESENTATION:-

For the purpose of solving complex problems c\encountered in Al, we need both a large amount
of knowledge and some mechanism for manipulating that knowledge to create solutions to new
problems. A variety of ways of representing knowledge (facts) have been exploited in Al
programs. In all variety of knowledge representations , we deal with two kinds of entities.

A. Facts: Truths in some relevant world. These are the things we want to represent.
B. Representations of facts in some chosen formalism . these are things we will
actually be able to manipulate.

One way to think of structuring these entities is at two levels : (a) the knowledge level, at which
facts are described, and (b) the symbol level, at which representations of objects at the
knowledge level are defined in terms of symbols that can be manipulated by programs.

The facts and representations are linked with two-way mappings. This link is called
representation mappings. The forward representation mapping maps from facts to
representations. The backward representation mapping goes the other way, from representations

to facts.
OneM releseuis ral Mg (E&L&ngli‘) se@. m of
the repréSentation for eUseina , a néed m h

English representation of those facts in order to facilitate getting information into and out of the
system. We need mapping functions from English sentences to the representation we actually use
and from it back to sentences.

Representations and Mappings

« Inorder to solve complex problems encountered in artificial intelligence, one needs both
a large amount of knowledge and some mechanism for manipulating that knowledge to
create solutions.

o Knowledge and Representation are two distinct entities. They play central but
distinguishable roles in the intelligent system.

o Knowledge is a description of the world. It determines a system’s competence by what it
knows.

e Moreover, Representation is the way knowledge is encoded. It defines a system’s
performance in doing something.

o Different types of knowledge require different kinds of representation.

62

http://www.PDFWatermarkRemover.com/buy.htm

Reasoning

programs
Initial * Internal
facts [&— Representation
English

English generation
understanding

English

Representation

Fig: Mapping between Facts and Representations
The Knowledge Representation models/mechanisms are often based on:

e Logic
¢ Rules
e Frames

e Semantic Net
Knowledge is categorized into two major types:
1. Tacit corresponds to “informal” or “implicit*
o Exists within a human being;
e Itisembodied.
o Difficult to articulate formally.

gificult to cem icate or shafe.
reover, Hard I@r c
. awnffrom Expgrience jactign, ukSi\@ght C O I I l
2. BXplicit forma of owleau, c e

Explicit knowledge
o Exists outside a human being;
e Itis embedded.
e Can be articulated formally.
e Also, Can be shared, copied, processed and stored.
e So, Easy to steal or copy
« Drawn from the artifact of some type as a principle, procedure, process, concepts.
A variety of ways of representing knowledge have been exploited in Al programs.
There are two different kinds of entities, we are dealing with.
1. Facts: Truth in some relevant world. Things we want to represent.
2. Also, Representation of facts in some chosen formalism. Things we will actually be able
to manipulate.
These entities structured at two levels:
1. The knowledge level, at which facts described.
2. Moreover, The symbol level, at which representation of objects defined in terms of
symbols that can manipulate by programs
Framework of Knowledge Representation
e The computer requires a well-defined problem description to process and provide a well-
defined acceptable solution.

63

http://www.PDFWatermarkRemover.com/buy.htm

e Moreover, To collect fragments of knowledge we need first to formulate a description in
our spoken language and then represent it in formal language so that computer can

understand.
e Also, The computer can then use an algorithm to compute an answer.

So, This process illustrated as,

Informal

Represent Interpret

Compute

Representation

Fig: Knowledge Representation Framework

The steps are:
e The informal formalism of the problem takes place first.

« It then represented formally and the computer produces an output.
« This output can then represented in an informally described solution that user understands

or checks for consistency.
The Problem solving requires,

«\ For I&dge rgpr tion, and
. ovel, Conversi rmal Khowledge*to al k t
versigh of Impligit k owled'kﬁx i$@. ‘ @l I l
Mapping between F d n ®

a prese
Knowledge is a collection of facts from some domain.
e Also, We need a representation of “facts* that can manipulate by a program.
o Moreover, Normal English is insufficient, too hard currently for a computer program to
draw inferences in natural languages.
e Thus some symbolic representation is necessary.
A good knowledge representation enables fast and accurate access to knowledge and
understanding of the content.
A knowledge representation system should have following properties.
1. Representational Adequacy
e The ability to represent all kinds of knowledge that are needed in that domain.
2. Inferential Adequacy
e Also, The ability to manipulate the representational structures to derive new
structures corresponding to new knowledge inferred from old.
3. Inferential Efficiency
« The ability to incorporate additional information into the knowledge structure that
can be used to focus the attention of the inference mechanisms in the most
promising direction.
4. Acquisitional Efficiency
« Moreover, The ability to acquire new knowledge using automatic methods
wherever possible rather than reliance on human intervention.

64

http://www.PDFWatermarkRemover.com/buy.htm

Knowledge Representation Schemes
Relational Knowledge
o The simplest way to represent declarative facts is a set of relations of the same sort used
in the database system.
o Provides a framework to compare two objects based on equivalent attributes. o Any
instance in which two different objects are compared is a relational type of knowledge.
e The table below shows a simple way to store facts.
o Also, The facts about a set of objects are put systematically in columns.
« This representation provides little opportunity for inference.

Player Height Weight Bats - Throws
Aaron 6-0 180 Right - Right
Mays 5-10 170 Right - Right
Ruth 6-2 215 Left - Left
Williams 6-3 205 Left - Right

e Given the facts, it is not possible to answer a simple question such as: “Who is the
heaviest player?”

e Also, But if a procedure for finding the heaviest player is provided, then these facts will
enable that procedure to compute an answer.

o Moreover, We can ask things like who “bats — left” and “throws — right”.

Inheritable Knowledge
e Here the knowledge elements inherit attributes from their parents.
o The knowledge embodied in the design hierarchies found in the functional, physical and

ins.
i hiefarchyg el s inhecit attributes from their pagents, in es, not
[l@&ttribdtes offthe pare ts Prescrilded t ild efemen
0, Thginh isfa powe r ' bt n

e Moreover, The basic KR (Knowledge Representation) needs to augment with inference
mechanism.

« Property inheritance: The objects or elements of specific classes inherit attributes and
values from more general classes.

e S0, The classes organized in a generalized hierarchy.

65

http://www.PDFWatermarkRemover.com/buy.htm

AN

Tazz Avant Garde/
Jazz
msiance nstance
Milses Davis John Zom
= g o
Miles Davis Group
Miles Davis Quintet Massada

o Boxed nodes — objects and values of attributes of objects.
e Arrows — the point from object to its value.

Thi knalivn lot and filler structure, semantic network or a collection of
The ste alue fortan attrifutefof §n@ect: ‘ O I I l
1. d the Bbject e krmowledg o

2. If there is a value for the attribute report it

3. Otherwise look for a value of an instance, if none fail

4. Also, Go to that node and find a value for the attribute and then report it

5. Otherwise, search through using is until a value is found for the attribute.

Inferential Knowledge

e This knowledge generates new information from the given information.

« This new information does not require further data gathering form source but does
require analysis of the given information to generate new knowledge.

« Example: given a set of relations and values, one may infer other values or relations. A
predicate logic (a mathematical deduction) used to infer from a set of attributes.
Moreover, Inference through predicate logic uses a set of logical operations to relate
individual data.

o Represent knowledge as formal logic: All dogs have tails Vx.: dog(x) — hastail(x)

e Advantages:

e A et of strict rules.

e Can use to derive more facts.

e Also, Truths of new statements can be verified.
o Guaranteed correctness.

« So, Many inference procedures available to implement standard rules of logic popular in
Al systems. e.g Automated theorem proving.

66

http://www.PDFWatermarkRemover.com/buy.htm

Procedural Knowledge
o Arepresentation in which the control information, to use the knowledge, embedded in the
knowledge itself. For example, computer programs, directions, and recipes; these indicate
specific use or implementation;
e Moreover, Knowledge encoded in some procedures, small programs that know how to do
specific things, how to proceed.
o Advantages:

o Heuristic or domain-specific knowledge can represent.

o Moreover, Extended logical inferences, such as default reasoning facilitated.

e Also, Side effects of actions may model. Some rules may become false in time.
Keeping track of this in large systems may be tricky.

o Disadvantages:

e Completeness — not all cases may represent.

e Consistency — not all deductions may be correct. e.g If we know that Fred is a
bird we might deduce that Fred can fly. Later we might discover that Fred is an
emu.

« Modularity sacrificed. Changes in knowledge base might have far-reaching
effects.

e Cumbersome control information.

USING PREDICATE LOGIC
Representation of Simple Facts |n Lo |c

Propositional logic is fsefu e nda o
exists.
Also, In"Order to draw c fac resented | (ﬂec enl way as,

1. Marcus is a man.
e man(Marcus)
2. Plato is aman.
o man(Plato)
3. All men are mortal.
e mortal(men)
But propositional logic fails to capture the relationship between an individual being a man and
that individual being a mortal.
e How can these sentences be represented so that we can infer the third sentence from the
first two?
e Also, Propositional logic commits only to the existence of facts that may or may not be
the case in the world being represented.
e Moreover, It has a simple syntax and simple semantics. It suffices to illustrate the process
of inference.
e Propositional logic quickly becomes impractical, even for very small worlds.
Predicate logic
First-order Predicate logic (FOPL) models the world in terms of
e Objects, which are things with individual identities
o Properties of objects that distinguish them from other objects
o Relations that hold among sets of objects

67

http://www.PDFWatermarkRemover.com/buy.htm

o Functions, which are a subset of relations where there is only one “value” for any given
“input”
First-order Predicate logic (FOPL) provides
« Constants: a, b, dog33. Name a specific object.
o Variables: X, Y. Refer to an object without naming it.
« Functions: Mapping from objects to objects.
e Terms: Refer to objects
o Atomic Sentences: in(dad-of(X), food6) Can be true or false, Correspond to propositional
symbols P, Q.
A well-formed formula (wff) is a sentence containing no “free” variables. So, That is, all
variables are “bound” by universal or existential quantifiers.
(VX)P(x, y) has x bound as a universally quantified variable, but y is free.
Quantifiers
Universal quantification
e (YX)P(x) means that P holds for all values of x in the domain associated with that variable
e E.g, (¥Xx) dolphin(x) — mammal(x)
Existential quantification
e (3 x)P(x) means that P holds for some value of x in the domain associated with that
variable
e E.g., (3 x) mammal(x) A lays-eggs(x)
Also, Consider the following example that shows the use of predicate logic as a way of
representing knowledge.
1. Marcus was a man.

us Wias a Bompgia
ompeiang\werefRo .
sar was a rler.
so, All Pompelans were either loyal to Caesar or ate(r him.
Everyone is loyal to someone.
People only try to assassinate rulers they are not loyal to.
Marcus tried to assassinate Caesar.
The facts described by these sentences can be represented as a set of well-formed formulas (wffs)
as follows:
1. Marcus was a man.
« man(Marcus)
2. Marcus was a Pompeian.
e Pompeian(Marcus)
3. All Pompeians were Romans.
e Vx:Pompeian(x) — Roman(x)
4. Caesar was a ruler.
o ruler(Caesar)
5. All Pompeians were either loyal to Caesar or hated him.
e inclusive-or
e V¥x: Roman(x) — loyalto(x, Caesar) Vv hate(x, Caesar)
e exclusive-or
e Vx: Roman(x) — (loyalto(x, Caesar) A— hate(x, Caesar)) Vv
e (-loyalto(x, Caesar) A hate(x, Caesar))

2
3
4.
S.
6
7
8

68

http://www.PDFWatermarkRemover.com/buy.htm

6. Everyone is loyal to someone.
e Vx: 3y: loyalto(x, y)
7. People only try to assassinate rulers they are not loyal to.
e VX VYy: person(x) A ruler(y) A tryassassinate(Xx, y)
o —loyalto(x, y)
8. Marcus tried to assassinate Caesar.
o tryassassinate(Marcus, Caesar)
Now suppose if we want to use these statements to answer the question: Was Marcus loyal to
Caesar?
Also, Now let’s try to produce a formal proof, reasoning backward from the desired goal: =
loyalto(Marcus, Caesar)
In order to prove the goal, we need to use the rules of inference to transform it into another goal
(or possibly a set of goals) that can, in turn, transformed, and so on, until there are no unsatisfied
goals remaining.

=loyalto(Marcus, Caesar)
T (7, substitution)

person(Marcus) A ruler(Caesar) A
tryassassinate(Marcus, Caesar)

I (4)

person(Marcus)
tryassassinate(Marcus, Caesar)

T (8)

- julse.com

Figure: An attempt to prove =loyalto(Marcus, Caesar).

e The problem is that, although we know that Marcus was a man, we do not have any way
to conclude from that that Marcus was a person. Also, We need to add the representation
of another fact to our system, namely: Vman(x) — person(x)

e Now we can satisfy the last goal and produce a proof that Marcus was not loyal to
Caesar.

e Moreover, From this simple example, we see that three important issues must be
addressed in the process of converting English sentences into logical statements and then
using those statements to deduce new ones:

1. Many English sentences are ambiguous (for example, 5, 6, and 7 above).
Choosing the correct interpretation may be difficult.

2. Also, There is often a choice of how to represent the knowledge. Simple
representations are desirable, but they may exclude certain kinds of reasoning.

3. Similalry, Even in very simple situations, a set of sentences is unlikely to contain
all the information necessary to reason about the topic at hand. In order to be able
to use a set of statements effectively. Moreover, It is usually necessary to have
access to another set of statements that represent facts that people consider too
obvious to mention.

69

http://www.PDFWatermarkRemover.com/buy.htm

Representing Instance and ISA Relationships

Specific attributes instance and isa play an important role particularly in a useful form of
reasoning called property inheritance.

The predicates instance and isa explicitly captured the relationships they used to express,
namely class membership and class inclusion.

4.2 shows the first five sentences of the last section represented in logic in three different
ways.

The first part of the figure contains the representations we have already discussed. In
these representations, class membership represented with unary predicates (such as
Roman), each of which corresponds to a class.

Asserting that P(x) is true is equivalent to asserting that x is an instance (or element) of P.
The second part of the figure contains representations that use the instance predicate
explicitly.

1. Man(Marcus).

2. Pompeian(Marcus).

3. Vx: Pompeian(x) — Roman(x).

4. ruler(Caesar).

5. ¥x: Roman(x) — lovalto(x, Caesar) v hate(x, Caesar).

I. instance(Marcus, man).

2. instance(Marcus, Pompeian).

3. ¥x: instance(x, Pompeian) — instance(x, Roman).

4. instance(Caesar, ruler),

5. ¥x:instance(x, Roman). — loyalto(x, Cacsar) v hate(x, Caesar). C O I I l
1. instance(Marcus, man).

2. instance(Marcus, Pompeian).

3. isa(Pompeian, Roman)

4. instance(Caesar, ruler).

5. ¥x:instance(x, Roman). - loyalto(x, Caesar) v hate(x, Caesar).
6. Vx: Vy: Vz: instance(x, ¥) A isa(v, z)— instance(x, 7).

Figure: Three ways of representing class membership: ISA Relationships

The predicate instance is a binary one, whose first argument is an object and whose
second argument is a class to which the object belongs.

But these representations do not use an explicit isa predicate.

Instead, subclass relationships, such as that between Pompeians and Romans, described
as shown in sentence 3.

The implication rule states that if an object is an instance of the subclass Pompeian then it
is an instance of the superclass Roman.

Note that this rule is equivalent to the standard set-theoretic definition of the subclass-
superclass relationship.

The third part contains representations that use both the instance and isa predicates
explicitly.

The use of the isa predicate simplifies the representation of sentence 3, but it requires that
one additional axiom (shown here as number 6) be provided.

70

http://www.PDFWatermarkRemover.com/buy.htm

Computable Functions and Predicates
o To express simple facts, such as the following greater-than and less-than relationships:
gt(1,0) 1t(0,1) gt(2,1) 1t(1,2) gt(3,2) It(2,3)
o Itis often also useful to have computable functions as well as computable predicates.
Thus we might want to be able to evaluate the truth of gt(2 + 3,1)
e To do so requires that we first compute the value of the plus function given the arguments
2 and 3, and then send the arguments 5 and 1 to gt.
Consider the following set of facts, again involving Marcus:
1) Marcus was a man.
man(Marcus)
2) Marcus was a Pompeian.
Pompeian(Marcus)
3) Marcus was born in 40 A.D.
born(Marcus, 40)
4) All men are mortal.
X: man(x) — mortal(x)
5) All Pompeians died when the volcano erupted in 79 A.D.
erupted(volcano, 79) A V x : [Pompeian(x) — died(x, 79)]
6) No mortal lives longer than 150 years.
X: t1: At2: mortal(x) born(x, t1) gt(t2 —¢1,150) — died(x, t2)
7) It is now 1991.
now = 1991
ese ideas of ggmputable functions and predicates can be useful.

So, Above shows how th
It alsoimakes use ot the notion ¢ ality and allows,eq bjects t substitut r each
other Whenever It appgars helpfi dofso duri 0

. , Now8upp want to a thelq OT @C i

o The statements suggested here, there may be two ways of deducing an answer.

« Either we can show that Marcus is dead because he was killed by the volcano or we can
show that he must be dead because he would otherwise be more than 150 years old,
which we know is not possible.

o Also, As soon as we attempt to follow either of those paths rigorously, however, we
discover, just as we did in the last example, that we need some additional knowledge. For
example, our statements talk about dying, but they say nothing that relates to being alive,
which is what the question is asking.

So we add the following facts:
8) Alive means not dead.
x: t: [alive(x, t) — — dead(x, t)] [~ dead(x, t) — alive(x, t)]
9) If someone dies, then he is dead at all later times.
X: t1: At2: died(x, t1) gt(z2, t1) — dead(x, t2)
So, Now let’s attempt to answer the question “Is Marcus alive?” by proving: — alive(Marcus,
now)

71

http://www.PDFWatermarkRemover.com/buy.htm

Resolution
Propositional Resolution
1. Convert all the propositions of F to clause form.
2. Negate P and convert the result to clause form. Add it to the set of clauses obtained in
step 1.
3. Repeat until either a contradiction is found or no progress can be made:

1. Select two clauses. Call these the parent clauses.

2. Resolve them together. The resulting clause, called the resolvent, will be the
disjunction of all of the literals of both of the parent clauses with the following
exception: If there are any pairs of literals L and — L such that one of the parent
clauses contains L and the other contains —L, then select one such pair and
eliminate both L and = L from the resolvent.

3. If the resolvent is the empty clause, then a contradiction has been found. If it is
not, then add it to the set of classes available to the procedure.

The Unification Algorithm
« In propositional logic, it is easy to determine that two literals cannot both be true at the
same time.
o Simply look for L and =L in predicate logic, this matching process is more complicated
since the arguments of the predicates must be considered.
e For example, man(John) and =man(John) is a contradiction, while the man(John) and
—man(Spot) is not.

eq Thu rio determig@escontradictiols, we need a matching procedure that compares
twgiliterals an@ disc@ve ther thereexistsa substiftign m
AP Use ram
ere is @strai afd recur roCeduie’; C h@untiedti ortthmy that does
it

Algorithm: Unify(L1, L2)
1. If L1 or L2 are both variables or constants, then:
1. If L1 and L2 are identical, then return NIL.
2. Elseif L1 is a variable, then if L1 occurs in L2 then return {FAIL}, else return
(L2/L1).
3. Also, Else if L2 is a variable, then if L2 occurs in L1 then return {FAIL}, else
return (L1/L2). d. Else return {FAIL}.
If the initial predicate symbols in L1 and L2 are not identical, then return {FAIL}.
If LI and L2 have a different number of arguments, then return {FAIL}.
4. Set SUBST to NIL. (At the end of this procedure, SUBST will contain all the
substitutions used to unify L1 and L2.)
5. For I « 1 to the number of arguments in L1 :
1. Call Unify with the i argument of L1 and the i argument of L2, putting the
resultin S.
2. If S contains FAIL then return {FAIL}.
3. If Sisnotequal to NIL then:
2. Apply S to the remainder of both L1 and L2.
3. SUBST: = APPEND(S, SUBST).
6. Return SUBST.

wmn

72

http://www.PDFWatermarkRemover.com/buy.htm

Resolution in Predicate Logic
We can now state the resolution algorithm for predicate logic as follows, assuming a set of given
statements F and a statement to be proved P:
Algorithm: Resolution
1. Convert all the statements of F to clause form.
2. Negate P and convert the result to clause form. Add it to the set of clauses obtained in 1.
3. Repeat until a contradiction found, no progress can make, or a predetermined amount of
effort has expanded.

1. Select two clauses. Call these the parent clauses.

2. Resolve them together. The resolvent will the disjunction of all the literals of both
parent clauses with appropriate substitutions performed and with the following
exception: If there is one pair of literals T1 and -T2 such that one of the parent
clauses contains T2 and the other contains T1 and if T1 and T2 are unifiable, then
neither T1 nor T2 should appear in the resolvent. We call T1 and T2
Complementary literals. Use the substitution produced by the unification to create
the resolvent. If there is more than one pair of complementary literals, only one
pair should omit from the resolvent.

3. If the resolvent is an empty clause, then a contradiction has found. Moreover, If it
is not, then add it to the set of classes available to the procedure.

Resolution Procedure
e Resolution is a procedure, which gains its efficiency from the fact that it operates on
at,havebe nverted to gvery convenient standard form.

praducespr futation.
ords,(to priove teui. ,Soeit iselid)ti n attempts to
the n @f the s ent p c niradigtio Twitly thg kn@wn

statements (i.e., that it is unsatisfiable).

o The resolution procedure is a simple iterative process: at each step, two clauses, called
the parent clauses, are compared (resolved), resulting in a new clause that has inferred
from them. The new clause represents ways that the two parent clauses interact with each
other. Suppose that there are two clauses in the system:

winter V summer

= winter V cold

Now we observe that precisely one of winter and = winter will be true at any point.

If winter is true, then cold must be true to guarantee the truth of the second clause. If =
winter is true, then summer must be true to guarantee the truth of the first clause.

Thus we see that from these two clauses we can deduce summer V cold

This is the deduction that the resolution procedure will make.

Resolution operates by taking two clauses that each contains the same literal, in this
example, winter.

Moreover, The literal must occur in the positive form in one clause and in negative form
in the other. The resolvent obtained by combining all of the literals of the two parent
clauses except the ones that cancel.

o If the clause that produced is the empty clause, then a contradiction has found.

For example, the two clauses
winter

73

http://www.PDFWatermarkRemover.com/buy.htm

- winter
will produce the empty clause.

Natural Deduction Using Rules

Testing whether a proposition is a tautology by testing every possible truth assignment is
expensive—there are exponentially many. We need a deductive system, which will allow us to
construct proofs of tautologies in a step-by-step fashion.

The system we will use is known as natural deduction. The system consists of a set of rules of
inference for deriving consequences from premises. One builds a proof tree whose root is the
proposition to be proved and whose leaves are the initial assumptions or axioms (for proof trees,
we usually draw the root at the bottom and the leaves at the top).

For example, one rule of our system is known as modus ponens. Intuitively, this says that if we
know P is true, and we know that P implies Q, then we can conclude Q.

P P=Q
Q

The propositions above the line are called premises; the proposition below the line is

the conclusion. Both the premises and the conclusion may contain metavariables (in this case, P
and Q) representing arbitrary propositions. When an inference rule is used as part of a proof, the
metavariables are replaced in a consistent way with the appropriate kind of object (in this case,
propositions).

Most rules come in one of two flavors: introduction or elimination rules. Introduction rules

introduce t gical o r, and elinfination rules eliminate it. Modus ponens is an
eliminatiogyrule On the F:;?a sigle : ten Wi m This
is heMen ading progfs. is H graﬂod@@e ould al

have written (=<lim) tewdicate that t the'e a |8for e

Rules for Conjunction
Conjunction (A) has an introduction rule and two elimination rules:

(modus ponens)

P Q _PAQ _PAQ
PAQ (A-intro) P (A-elim-left) Q (A-elim-right)
Rule for T

The simplest introduction rule is the one for T. It is called "unit". Because it has no premises, this
rule is an axiom: something that can start a proof.

= (unit)

Rules for Implication

In natural deduction, to prove an implication of the form P = Q, we assume P, then reason under
that assumption to try to derive Q. If we are successful, then we can conclude that P = Q.

In a proof, we are always allowed to introduce a new assumption P, then reason under that
assumption. We must give the assumption a name; we have used the name X in the example
below. Each distinct assumption must have a different name.

(assum)

[x:P]

74

http://www.PDFWatermarkRemover.com/buy.htm

Because it has no premises, this rule can also start a proof. It can be used as if the proposition P
were proved. The name of the assumption is also indicated here.
However, you do not get to make assumptions for free! To get a complete proof, all assumptions
must be eventually discharged. This is done in the implication introduction rule. This rule
introduces an implication P = Q by discharging a prior assumption [x : P]. Intuitively, if Q can
be proved under the assumption P, then the implication P = Q holds without any assumptions.
We write x in the rule name to show which assumption is discharged. This rule and modus
ponens are the introduction and elimination rules for implications.

[x:P]
: P=0Q

b g (=-elim, modus ponens)
P=Q (=-intro/x)
A proof is valid only if every assumption is eventually discharged. This must happen in the proof
tree below the assumption. The same assumption can be used more than once.
Rules for Disjunction

P (v-intro- Q (v-intro- PvQ P=R Q=R (v-

PvQ Ieft) PvQ right) R elim)

Rules for Negation
A negation =P can be considered an abbreviation for P = 1:

_P=>1
P =1 (--elim)

-V TUPulse.com

(ex falso quodlibet, EFQ)

P— (reductio ad absurdum, RAA/x)

Reductio ad absurdum (RAA) is an interesting rule. It embodies proofs by contradiction. It says

that if by assuming that P is false we can derive a contradiction, then P must be true. The

assumption x is discharged in the application of this rule. This rule is present in classical logic

but not in intuitionistic (constructive) logic. In intuitionistic logic, a proposition is not

considered true simply because its negation is false.

Excluded Middle

Another classical tautology that is not intuitionistically valid is the the law of the excluded

middle, P v =P. We will take it as an axiom in our system. The Latin name for this rule

is tertium non datur, but we will call it magic.
pv-p (Magic)

Proofs

A proof of proposition P in natural deduction starts from axioms and assumptions and derives P

with all assumptions discharged. Every step in the proof is an instance of an inference rule with

metavariables substituted consistently with expressions of the appropriate syntactic class.

Example

75

http://www.PDFWatermarkRemover.com/buy.htm

For example, here is a proof of the proposition (A= B = C) = (AAB = C).

——— (A}
[w:An 5
4 "B A S B piasg W
B=(C (=B T — B
(=E)

c
ArB= ¢ &M
A=B=0C)=(AnB=0C)

(=1x)

The final step in the proof is to derive (A = B = C) = (A AB = C) from (A A B = C), which is
done using the rule (=-intro), discharging the assumption [x : A = B = C]. To see how this rule
generates the proof step, substitute for the metavariables P, Q, x in the rule as follows: P = (A =
B=C),Q=(AAB=C), and x = x. The immediately previous step uses the same rule, but with
a different substitution: P=AAB,Q=C, x =Y.

The proof tree for this example has the following form, with the proved proposition at the root
and axioms and assumptions at the leaves.

A proposition that hasa cormiple Ofyin agdeluciive s is cal t stem.
Soun and €ompleteress
A measulie of a deduc Stem's PO ekl t i erful ove allitru

statements. A deductive system is said to be complete if all true statements are theorems (have
proofs in the system). For propositional logic and natural deduction, this means that all
tautologies must have natural deduction proofs. Conversely, a deductive system is

called sound if all theorems are true. The proof rules we have given above are in fact sound and
complete for propositional logic: every theorem is a tautology, and every tautology is a theorem.
Finding a proof for a given tautology can be difficult. But once the proof is found, checking that
it is indeed a proof is completely mechanical, requiring no intelligence or insight whatsoever. It
is therefore a very strong argument that the thing proved is in fact true.

We can also make writing proofs less tedious by adding more rules that provide reasoning
shortcuts. These rules are sound if there is a way to convert a proof using them into a proof using
the original rules. Such added rules are called admissible.

Procedural versus Declarative Knowledge
We have discussed various search techniques in previous units. Now we would consider a set of
rules that represent,
1. Knowledge about relationships in the world and
2. Knowledge about how to solve the problem using the content of the rules.
Procedural vs Declarative Knowledge
Procedural Knowledge

76

http://www.PDFWatermarkRemover.com/buy.htm

A representation in which the control information that is necessary to use the knowledge

is embedded in the knowledge itself for e.g. computer programs, directions, and recipes;

these indicate specific use or implementation;

The real difference between declarative and procedural views of knowledge lies in where
control information reside.

For example, consider the following

Man (Marcus)

Man (Caesar)

Person (Cleopatra)

vx: Man(x) — Person(x)

Now, try to answer the question. ?Person(y)

The knowledge base justifies any of the following answers.
Y=Marcus

Y=Caesar

Y=Cleopatra

We get more than one value that satisfies the predicate.

If only one value needed, then the answer to the question will depend on the order in
which the assertions examined during the search for a response.

If the assertions declarative then they do not themselves say anything about how they will
be examined. In case of procedural representation, they say how they will examine.

Declarative Knowledge

A statement in which knowledge specified, but the use to which that knowledge is to be

put is not given.
s are the facts which can stand alone, not

LS E.OM.
with the knowledge and how.
For example, a set of logical assertions can combine with a resolution theorem prover to
give a complete program for solving problems but in some cases, the logical assertions
can view as a program rather than data to a program.
Hence the implication statements define the legitimate reasoning paths and automatic
assertions provide the starting points of those paths.
These paths define the execution paths which is similar to the ‘if then else “in traditional

programming.
So logical assertions can view as a procedural representation of knowledge.

Loglc Programming — Representing Knowledge Using Rules

Logic programming is a programming paradigm in which logical assertions viewed as
programs.
These are several logic programming systems, PROLOG is one of them.
A PROLOG program consists of several logical assertions where each is a horn clause
i.e. a clause with at most one positive literal.
Ex: P, PVQ,P—-Q
The facts are represented on Horn Clause for two reasons.
1. Because of a uniform representation, a simple and efficient interpreter can write.
2. The logic of Horn Clause decidable.

77

http://www.PDFWatermarkRemover.com/buy.htm

e Also, The first two differences are the fact that PROLOG programs are actually sets of
Horn clause that have been transformed as follows:-

1. If the Horn Clause contains no negative literal then leave it as it is.

2. Also, Otherwise rewrite the Horn clauses as an implication, combining all of the
negative literals into the antecedent of the implications and the single positive
literal into the consequent.

e Moreover, This procedure causes a clause which originally consisted of a disjunction of
literals (one of them was positive) to be transformed into a single implication whose
antecedent is a conjunction universally quantified.

« But when we apply this transformation, any variables that occurred in negative literals
and so now occur in the antecedent become existentially quantified, while the variables in
the consequent are still universally quantified.

For example the PROLOG clause P(x): — Q(X, y) is equal to logical expression ¥x: 3y: Q (X,
y) — P(x).

e The difference between the logic and PROLOG representation is that the PROLOG
interpretation has a fixed control strategy. And so, the assertions in the PROLOG
program define a particular search path to answer any question.

« But, the logical assertions define only the set of answers but not about how to choose
among those answers if there is more than one.

Consider the following example:

1. Logical representation
VX : pet(x) [0 small (x) — apartmentpet(x)
vx : cat(x) [dog(x) — pet(x)

- pagdle (%)) LLsmall
odle|(fluffy) I I l
2. Prolog/representati g e o C O

apartmentpet (x) : pet(x), small (x
pet (x): cat ()
pet (x): dog(x)
dog(x): poodle (x)
small (x): poodle(x)
poodle (fluffy)

Forward versus Backward Reasoning

Forward versus Backward Reasoning
A search procedure must find a path between initial and goal states.
There are two directions in which a search process could proceed.
The two types of search are:
1. Forward search which starts from the start state
2. Backward search that starts from the goal state
The production system views the forward and backward as symmetric processes.
Consider a game of playing 8 puzzles. The rules defined are
Square 1 empty and square 2 contains tile n. —

78

http://www.PDFWatermarkRemover.com/buy.htm

e Also, Square 2 empty and square 1 contains the tile n.
Square 1 empty Square 4 contains tile n. —
o Also, Square 4 empty and Square 1 contains tile n.
We can solve the problem in 2 ways:
1. Reason forward from the initial state
o Step 1. Begin building a tree of move sequences by starting with the initial configuration
at the root of the tree.
o Step 2. Generate the next level of the tree by finding all rules whose left-hand side
matches against the root node. The right-hand side is used to create new configurations.
o Step 3. Generate the next level by considering the nodes in the previous level and
applying it to all rules whose left-hand side match.
2. Reasoning backward from the goal states:
o Step 1. Begin building a tree of move sequences by starting with the goal node
configuration at the root of the tree.
o Step 2. Generate the next level of the tree by finding all rules whose right-hand side
matches against the root node. The left-hand side used to create new configurations.
o Step 3. Generate the next level by considering the nodes in the previous level and
applying it to all rules whose right-hand side match.
e S0, The same rules can use in both cases.
e Also, In forwarding reasoning, the left-hand sides of the rules matched against the current
state and right sides used to generate the new state.
e Moreover, In backward reasoning, the right-hand sides of the rules matched against the
current state and left sides are used to ggnerate the new state.
ﬂ

Theregare f sinfluenci type of r@asoning. They are,
1. BArg'theraimoreéipossible orfgoalistate ?\\We rom gialley
th.
2 X

In ' what direction s the branching tactor greater? \WWe proceed In the direction with the
lower branching factor.

3. Will the program be asked to justify its reasoning process to a user? If, so then it is
selected since it is very close to the way in which the user thinks.

4. What kind of event is going to trigger a problem-solving episode? If it is the arrival of a
new factor, the forward reasoning makes sense. If it is a query to which a response is
desired, backward reasoning is more natural.

Example 1 of Forward versus Backward Reasoning

e ltis easier to drive from an unfamiliar place from home, rather than from home to an
unfamiliar place. Also, If you consider a home as starting place an unfamiliar place as a
goal then we have to backtrack from unfamiliar place to home.

Example 2 of Forward versus Backward Reasoning

o Consider a problem of symbolic integration. Moreover, The problem space is a set of
formulas, which contains integral expressions. Here START is equal to the given formula
with some integrals. GOAL is equivalent to the expression of the formula without any
integral. Here we start from the formula with some integrals and proceed to an integral
free expression rather than starting from an integral free expression.

Example 3 of Forward versus Backward Reasoning

S

79

http://www.PDFWatermarkRemover.com/buy.htm

e The third factor is nothing but deciding whether the reasoning process can justify its
reasoning. If it justifies then it can apply. For example, doctors are usually unwilling to
accept any advice from diagnostics process because it cannot explain its reasoning.

Example 4 of Forward versus Backward Reasoning

e Prolog is an example of backward chaining rule system. In Prolog rules restricted to Horn
clauses. This allows for rapid indexing because all the rules for deducing a given fact
share the same rule head. Rules matched with unification procedure. Unification tries to
find a set of bindings for variables to equate a sub-goal with the head of some rule. Rules
in the Prolog program matched in the order in which they appear.

Combining Forward and Backward Reasoning

o Instead of searching either forward or backward, you can search both simultaneously.

e Also, That is, start forward from a starting state and backward from a goal state
simultaneously until the paths meet.

o This strategy called Bi-directional search. The following figure shows the reason for a
Bidirectional search to be ineffective.

Start

. Gaoal
Start Goal

Forward Reasoning (goal driven) Backward Reasoning (data driven)

Forwarersus BaciMydeadining WAl | wd s 0 W NS 1 1 1

Also, The two searches may pass each other resulting in more work.

o Based on the form of the rules one can decide whether the same rules can apply to both
forward and backward reasoning.

e Moreover, If left-hand side and right of the rule contain pure assertions then the rule can
reverse.

e And so the same rule can apply to both types of reasoning.

« If the right side of the rule contains an arbitrary procedure then the rule cannot reverse.

e S0, In this case, while writing the rule the commitment to a direction of reasoning must
make.

Symbolic Reasoning Under Uncertainty
Symbolic Reasoning

e The reasoning is the act of deriving a conclusion from certain properties using a given
methodology.

e The reasoning is a process of thinking; reasoning is logically arguing; reasoning is
drawing the inference.

e When a system is required to do something, that it has not been explicitly told how to do,
it must reason. It must figure out what it needs to know from what it already knows.

80

http://www.PDFWatermarkRemover.com/buy.htm

