Diffusion in Multicomponent Solids

Diffusion in Multicomponent Solids by Indian Institute of Technology Kanpur

Beginner 0(0 Ratings) 0 Students enrolled
Created by IIT Kanpur Staff Last updated Sat, 05-Mar-2022 English


Diffusion in Multicomponent Solids free videos and free material uploaded by IIT Kanpur Staff .

Syllabus / What will i learn?

Week 1: Basics of thermodynamics: laws of thermodynamics, concept of chemical potentials and criteria for equilibrium

Week 2: Refresher on Solution Thermodynamics and Phase Stability

Week 3: Phenomenology of multicomponent diffusion and various frames of reference used for measuring diffusion fluxes

Week 4: Solving diffusion equation for various boundary conditions including solution of multicomponent diffusion equation

Week 5: Self diffusion, impurity diffusion, interdiffusion and intrinsic diffusion; Experimental determination of interdiffusion and intrinsic diffusion coefficients

Week 6: Point defects in crystalline solids and mechanisms of diffusion

Week 7: Random walk, diffusivity and correlation effects in diffusion

Week 8: Derivation of correlation factors in some crystalline lattices

Week 9: Derivation of fundamental driving forces for diffusion: chemical potential gradients and atomic mobilities; cross effects in multicomponent diffusion driven by defect mechanisms

Week 10: Interrelation between multicomponent diffusion coefficients, atomic jump frequencies and thermodynamic factors

Week 11: Multiphase diffusion, diffusion structures and phase diagrams

Week 12: Experimental determination of activation energies for diffusion; Fast diffusion paths: Grain boundary and pipe diffusion



Curriculum for this course
0 Lessons 00:00:00 Hours
+ View more
Description

Diffusion is the fundamental process controlling most of the phase transformations and hence, is of great interest through both theoretical and application perspectives. Knowledge of diffusion behavior of materials is essential for control as well as design of new processes. Moreover, most of the industrially important systems are based on three or more components and thus, the understanding of diffusion in multicomponent systems is particularly of greater interest. This course will treat both the phenomenology and atomic theory of diffusion in multicomponent systems. In most of the first half, the course will cover the phenomenological aspect of diffusion, which is more important practically as it deals with usage of phenomenological diffusion coefficients for modeling various diffusion-driven processes as well as actual determination of these coefficients. Major part of the later half will focus on understanding the theoretical aspect of diffusion including atomic mechanisms of diffusion, fundamental driving forces for diffusion and dependence of phenomenological diffusion coefficients on atomic jump frequencies and thermodynamic factors. All the concepts and treatments will be explained in the context of both binary and multicomponent effects in diffusion. At the end of the course, the student should be able to describe diffusion in dilute as well as concentrated multicomponent alloys in terms of multicomponent diffusion coefficients, solve the diffusion equation for various processes, identify the various types of diffusion coefficients and select the appropriate type for a given model, understand the physical significance of these coefficients, evaluate these coefficients theoretically for some model systems and know the various methodologies of their experimental determination.

INTENDED AUDIENCE: Metallurgical Engineering, Materials Science, Mechanical Engineering,Chemical Engineering

PRE REQUISITE : Preliminary knowledge of materials thermodynamics and structure of materials is desirable

INDUSTRY SUPPORT : The industry working on design and development of alloys and processes may benefit from this course e.g. to name a few are General Electrics, General Motors, Tata Steel, Boing etc.

You need online training / explanation for this course?

1 to 1 Online Training contact instructor for demo :


+ View more

Other related courses
About the instructor
  • 0 Reviews
  • 0 Students
  • 128 Courses
+ View more
Student feedback
0
Average rating
  • 0%
  • 0%
  • 0%
  • 0%
  • 0%
Reviews

Material price :

Free

1:1 Online Training Fee: 1 /-
Contact instructor for demo :