Lecture 1 Introduction to soft computing.
Lecture 2 : Introduction to Fuzzy Logic.
Lecture 3 : Fuzzy membership functions (Contd.) and Defining Membership functions.
Lecture 4 : Fuzzy operations.
Lecture 5 : Fuzzy relations.
Lecture 6 : Fuzzy Relations (contd.) & Fuzzy propositions.
Lecture 7 : Fuzzy implications.
Lecture 8 : Fuzzy Inferences.
Lecture 9 : Defuzzification techniques (Part-I).
Lecture 10 : Defuzzification Techniques (Part-I) (contd.).
Lecture 11 : Fuzzy logic controller.
Lecture 12 : Fuzzy Logic Controller (Contd.).
Lecture 13 : Fuzzy logic controller (Cond.).
Lecture 14 : Concept of Genetic Algorithm.
Lecture 15 : Concept of Genetic Algorithm (Contd.) and GA Strategies.
Lecture 16 : GA Operator : Encoding schemes.
Lecture 17 : GA operator : encoding scheme (contd.).
Lecture 18 : GA Operator : Selection.
Lecture 19 : GA Operator Selection (Contd.).
Lecture 20 : GA Operator: Crossover techniques.
Lecture 21 : GA Operator : Crossover (Contd.).
Lecture 22 : GA Operator : Crossover (Contd.).
Lecture 23 : GA Operator : Mutation and others.
Lecture 24 : Multi-objective optimization problem solving.
Lecture 25 : Multi-objective optimization problem solving (Contd.).
Lecture 26 : Concept of domination.
Lecture 27 : Non-Pareto based approaches to solve MOOPs.
Lecture 28 : Non-Pareto based approaches to solve MOOPs (Contd.).
Lecture 29 : Pareto-Based approaches to solve MOOPs.
Lecture 30 : Pareto-based approaches to solve MOOPs (contd..).
Lecture 31 : Pareto-based approach to solve MOOPs.
Lecture 32 : Pareto-based approach to solve MOOPs (contd.).
Lecture 33 : Pareto-based approach to solve MOOPs (contd).
Lecture 34 : Introduction to Artificial Neural Network.
Lecture 35 : ANN Architectures.
Lecture 36 : Training ANNs.
Lecture 37 : Training ANNs (Contd..).
Lecture 38 : Training ANNs (Contd..).
Lecture 39 : Training ANNs (Contd..).Lecture 40 : Soft computing tools.
Write a public review