MACHINE LEARNING TRAINING

MACHINE LEARNING TRAINING course provide by ducat IT training School

Beginner 0(0 Ratings) 0 Students enrolled
Created by ducatittrainingschool staff Last updated Mon, 02-May-2022 English


MACHINE LEARNING TRAINING free videos and free material uploaded by ducatittrainingschool staff .

Syllabus / What will i learn?

MODULE 1: PYTHON ESSENTIALS

  • What is Python..?
  • A Brief history of Python
  • Why Should I learn Python..?
  • Installing Python
  • How to execute Python program
  • Write your first program
  • VARIABLES & DATA TYPES
  • Variables
  • Numbers
  • String
  • Lists ,Tuples & Dictionary

CONDITIONAL STATEMENTS & LOOPS

  • if...statement
  • if...else statement
  • elif...statement
  • The while...Loop
  • The for....Loop

CONTROL STATEMENTS

  • continue statement
  • break statement
  • pass statement

FUNCTIONS

  • Define function
  • Calling a function
  • Function arguments
  • Built-in functions

MODULES & PACKAGES

  • Modules
  • How to import a module...?
  • Packages
  • How to create packages

CLASSES & OBJECTS

  • Introduction about classes & objects
  • Creating a class & object
  • Inheritance
  • Methods Overriding
  • Data hiding

FILES & EXCEPTION HANDLING

  • Writing data to a file
  • Reading data from a file
  • Read and Write data from csv file
  • try...except
  • try...except...else
  • finally
  • os module

MODULE 1 : GETTING STARTED WITH PYTHON LIBRARIES

  • what is data analysis ?
  • why python for data analysis ?
  • Essential Python Libraries
  • Installation and setup
  • Ipython
  • Jupyter Notebook

MODULE 2 : NUMPY ARRAYS

  • Creating multidimensional array
  • NumPy-Data types
  • Array attributes
  • Indexing and Slicing
  • Creating array views and copies
  • Manipulating array shapes
  • I/O with NumPy

MODULE 3 : WORKING WITH PANDAS

  • Installing pandas
  • Pandas dataframes
  • Pandas Series
  • Data aggregation with Pandas DataFrames
  • Concatenating and appending DataFrames
  • Joining DataFrames
  • Handling missing data    

MODULE 4 : DATA LOADING,STORAGE AND FILE FORMAT

  • Writing CSV files with numpy and pandas
  • HDF5 format
  • Reading and Writing to Excel with pandas
  • JSON data
  • Parsing HTML with Beautiful Soup
  • PyTables

MODULE 5 : STATISTICS AND LINEAR ALGEBRA

  • Basic statistics with numpy
  • Linear Algebra with numpy
  • Numpy random numbers
  • Creating a numpy masked array

MODULE 6 : DATA VISUALIZATION

  • Installation matplotlib
  • Basic matplotlib plots
  • Scatter plots
  • Saving plots to file
  • plotting functions in pandas
  • MODULE 7 : INTRODUCTION TO MACHINE LEARNING
  • What is ML..?
  • Types of ML
  • Decision trees
  • Linear regression
  • Logistic regression
  • Naive Bayes
  • k-Nearest Neighbors

MODULE 8: NATURAL LANGUAGE PROCESSING

  • Install nltk
  • Tokenize words
  • Tokenizing sentences
  • Stop words with NLTK
  • Stemming words with NLTK
  • Speech tagging
  • Sentiment analysis with NLTK

MODULE 9: INTRODUCTION TO OPENCV

  • Setting up opencv
  • Loading and displaying images
  • Applying image filters
  • Tracking faces
  • Face recognition

MODULE 10: WORKING WITH BIG DATA

  • What is Hadoop?
  • MapReduce
  • File handling with Hadoopy
  • Pig
  • Pyspark    

INTRODUCTION TO MACHINE LEARNING

  • What is Machine learing?
  • Overview about sci-kit learn and tensorflow
  • Types of ML
  • Some complementing fields of ML
  • ML algorithms
  • Machine learning examples

MODULE 2: REGRESSION BASED LEARNING

  • Simple regression
  • Multiple regression
  • Logistic regression
  • Predicting house prices with regression

MODULE 3: CLUSTERING BASED LEARNING

  • Definition
  • Types of clustering
  • The k-means clustering algorithm

MODULE 4: DATA MINING

  • Introducing data mining
  • Decision Tree
  • Affity Analysis
  • Clustering

MODULE 5: CLASSIFIATION – SENTIMENT ANALYSIS

MODULE 6: NATURAL LANGUAGE PROCESSING

  • Install nltk
  • Tokenize words
  • Tokenizing sentences
  • Stop words with NLTK
  • Stemming words with NLTK
  • Speech tagging
  • Sentiment analysis with NLTK

MODULE 7: MAKING SENSE OF DATA THROUGH VISUALIZATION

  • Introducing matplotlib
  • Bar Charts
  • Line Charts
  • Scatter plots
  • Bubble charts

MODULE 8: WORKING WITH OPENCV

  • Setting up opencv
  • Loading and displaying images
  • Applying image filters
  • Tracking faces
  • Face recognition

MODULE 9: PERFORMING PREDICTIONS WITH LINEAR REGRESSION

  • Simple linear regression
  • Multiple regression
  • Training and testing model

MODULE 10: SUPPORT VECTOR MACHINES(SVM)

MODULE 11: NEURAL NETWORKS



Curriculum for this course
0 Lessons 00:00:00 Hours
+ View more
Description
You need online training / explanation for this course?

1 to 1 Online Training contact instructor for demo :


+ View more

Other related courses
About the instructor
  • 0 Reviews
  • 1 Students
  • 140 Courses
Student feedback
0
Average rating
  • 0%
  • 0%
  • 0%
  • 0%
  • 0%
Reviews

Material price :

Free

1:1 Online Training Fee: 1 /-
Contact instructor for demo :