Engineering Fracture Mechanics training provided by university of Indian Institute of Technology Madras
Engineering Fracture Mechanics free videos and free material uploaded by Indian Institute of Technology, chennai (IIT chennai). This session contains about Engineering Fracture Mechanics Updated syllabus , Lecture notes , videos , MCQ , Privious Question papers and Toppers Training Provided Training of this course. If Material not uploaded check another subject
Week 1 : EFM Course outline and Spectacular Failures
Week 2 : Introduction to LEFM and EPFM, Fatigue Crack Growth Model
Week 3 : Crack Growth and Fracture Mechanisms, Griffith TMs Theory of Fracture
Week 4 : Energy Release Rate
Week 5 : Review of Theory of Elasticity
Week 6 : Westergaard Solution for Stress and Displacements for Mode I, Relationship between K and G
Week 7 : Introduction to multi parameter stress field for Mode I, Mode II and Mixed Modes
Week 8 : SIF for Various Geometries
Week 9 : Modeling Plastic Deformation, Irwin TMs model, Dugdale Mode
lWeek 10 : Fracture Toughness Testing, Paris Law and Sigmoidal curve
Week 11 : Crack Closure, Crack Growth Models, J-Integral
Week 12 : Failure Assessment Diagram, Mixed Mode Fracture, Crack Arrest and Repair Methodologies
The course covers the basic aspects of Engineering Fracture Mechanics. Spectacular failures that triggered the birth of fracture mechanics, Modes of loading, Classification as LEFM and EPFM, Crack growth and fracture mechanisms, Energy release rate, Resistance, Griffith Theory of fracture, Extension of Griffith Theory by Irwin and Orowan, R-Curve, Pop-in phenomena, Crack branching. Necessary and sufficient conditions for fracture, Stress and Displacement fields in the very near and near-tip fields, Westergaard, Williams and Generalised Westergaard solutions, Influence of the T-stress and higher order terms, Role of photoelasticity on the development of stress field equations in fracture mechanics, Equivalence between SIF and G, Various methods for evaluating Stress Intensity Factors, Modeling plastic zone at the crack-tip, Irwin and Dugdale models, Fracture toughness testing,Fedderson TMs residual strength diagram, Paris law, J-integral, HRR field, Mixed-mode fracture, Crack arrest methodologies.INTENDED AUDIENCE : Students in Engineering Colleges and working professionals in similar areasPRE-REQUISITES : Basic course on Strength of Materials. Course on Theory of Elasticity desirableINDUSTRY SUPPORT : HAL, Honeywell, GE, GM, NAL, DMRL, DRDO, BEML, Mahindra&Mahindra, Tata Motors, L&T, VSSC, Defense and Atomic energy Laboratories
Write a public review